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Probing mechanical quantum coherence with an ultracold-atom meter
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We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic
coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into
a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of
the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly
related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme
relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a
continuous detection of the cantilever’s dynamics.
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I. INTRODUCTION

Recently, a considerable research effort has been put
into achieving quantum control of micro- and nanoscale
mechanical systems [1]. The role played by such objects
in the current quest for demonstrating quantumness at the
mesoscopic scale has changed in time, and by today they have
become key players. Micro- and nanomechanical devices are
now considered for quantum technological purposes as well
as foundational questions [1–3].

As interesting and promising as they could be, such systems
are in general very difficult to probe and measure directly.
The necessity of isolating their fragile dynamics from the
influences of the outside world and the need for low operating
temperatures that allow for the magnification of the quantum
mechanical features of their motion often imply that no direct
access to such devices is possible. By today, several schemes
exist that use the interaction with light to extract information
from the mechanical structures [4]. However, such methods
are certainly not exhaustive and a more systematic approach
to measure the quantum features of micro- or nanomechanical
devices is highly desirable.

In this sense, a considerable step forward has been the
design of interfaces between mechanical systems and ancillae
such as superconducting systems and (ultra)cold atomic
ensembles [5,6], which can be used to efficiently monitor, mea-
sure, and prepare the inaccessible mechanical counterparts.
Most interestingly, some of these hybridization strategies are
already mature enough to have found interesting preliminary
implementations [7]. In this work, we present a different
strategy by demonstrating that the interaction between an
ultracold atomic system and a mechanical oscillator can be
exploited for effective diagnostics of mechanical quantum
coherences. A similar approach has been used in a recent work
[8] for different purposes. Along the lines of Ref. [5], where it
was shown that a similar system can mimic the strong-coupling
regime of cavity quantum electrodynamics, we consider a
setup composed of a mechanical oscillator placed on an
atom chip and coupled to a spinor Bose Einstein condensate
(BEC) through a magnetic tip. In our scheme, the magnetic
tip acts as a transducer turning the mechanical oscillations

into a magnetic field experienced by the atomic spins. The
motion of the latter in turn results in a driving force for the
mechanical oscillator. A physically transparent description of
the mechanism underlying our proposal is provided by the
formal mapping of the spinor BEC onto a tridimensional rotor:
the magneticlike coupling between the atoms of the BEC and
the mechanical system results in the interaction between a
harmonic oscillator and one of the components of the rotor.
This allows us to “write” information of the coherences present
in the cantilever state onto the state of the rotor, which can then
be read out using a technique based on the optical Faraday
effect. Our work provides a fully analytical framework for the
proposed protocol and discusses a number of relevant cases
showing the effectiveness of the scheme. The complexity of the
problem, which requires the management of a very large sector
of the Hilbert space of the cantilever-BEC system, demands
the development of appropriate methods to include the relevant
sources of noise affecting the device. A detailed treatment of
this issue is left to future work.

The remainder of this work is organized as follows. In
Secs. II and III, we introduce the setup, the magneticlike
interaction Hamiltonian, and, following Refs. [9–11], carefully
guide through the formal mapping of the BEC onto a rotor. We
finally recast the BEC-cantilever coupling terms into the form
of a direct interaction between a harmonic oscillator and one
of the components of the BEC rotor. In Sec. III B, we propose
a possible detection scheme by means of the readout of such
a rotor component and apply our framework to a few relevant
instances. In Sec. IV, we present our conclusions and briefly
discuss a few interesting open questions.

II. THE SETUP AND THE HAMILTONIAN

We consider the setup sketched in Fig. 1, which consists
of an on-chip single-clamped cantilever and a spinor BEC
trapped in close proximity to the chip and the cantilever. The
latter is assumed to be manufactured so as to accommodate at
its free-standing end a single-domain magnetic molecule (or
tip). Technical details on the fabrication methods of similar
devices can be found in Refs. [5,7], which have also been
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FIG. 1. (Color online) Sketch of the setup for BEC-based probing
of mechanical coherences. A BEC is placed in close proximity
to a nanomechanical cantilever endowed with a magnetic tip. The
coupling between the magnetic field generated by the mechanical
quantum antenna and the ultracold atoms embodies a mechanism for
the effective probing of coherences in the state of the mechanical
system.

found to have very large quality factors, which guarantee a
good resolution of the rich variety of modes in the cantilever’s
spectrum. At room temperature, thermal fluctuations are able
to (incoherently) excite all flexural and torsional modes and, in
the following, we assume that a filtering process is put in place,
restricting our observation to a narrow frequency window, so
as to select only a single mechanical mode.

The second key element of our setup is a BEC of 87Rb atoms
held in an (tight) optical trap and prepared in the hyperfine level
|F = 1〉. As we assume the trapping to be optical, there is no
distinction between atoms with different quantum numbers
mF = 0, ±1 of the projections of the total spin along the
quantization axis. Moreover, for a moderate number of atoms
in the condensate and a tight trap, we can invoke the so-called
single-mode approximation (SMA) [12], which amounts to
considering the same spatial distribution for all spin states.
These approximations will be made rigorous and formal in the
next subsections.

A. Hamiltonian of the system

In the following, we will briefly review the mapping of a
spinor BEC into a rotor [11]. The Hamiltonian of a BEC in
second quantization reads [9]

Ĥ =
∑

α

∫
dx "̂†

α(x)Ĥ 0
α "̂α(x)

+
∑

α,β,µ,ν

Gα,β,µ,ν

∫
dx "̂†

α(x)"̂†
β(x)"̂µ(x)"̂ν(x), (1)

where the second line of the equation describes the particle-
particle scattering mechanism and Ĥ 0

α= − (h̄2/2m)∇2 +
m[ω2(x2 + y2) + ω2

zz
2]/2, m is the mass of the Rb atoms, and

the ω are the trapping frequencies in the different spatial direc-
tions. The subscripts α,β,µ,ν refer to different z components
of the single-atom spin states. Since the scattering between two
particles does neither change the total spin nor its z component,
we can link the coefficients Gα,β,µ,ν to the scattering lengths for
the channels with total angular momentum FT = 0,2. Thus, by

making use of the Clebsch-Gordan coefficients, the full BEC
Hamiltonian can be rewritten as

Ĥ =
∑

α

∫
dx "̂†

α(x)Ĥ 0
α "̂α(x)

+ cs

2

∑

α,β

∫
dx "̂†

α(x)"̂†
β(x)"̂α(x)"̂β(x)

+ ca

2

∑

α,β,α′,β ′

∫
dx "̂†

α(x)"̂†
β(x)(Fα,β ·Fα′,β)

× "̂α′ (x)"̂β ′(x), (2)

where cs = (g0+2g2)/3 and ca = (g2−g0)/3, with g2j = 4πh̄2

a2j /m (j = 0,1) and a2j being the scattering length for the
FT = 2j channel [13]. Here F is the vector of the spin-1
matrices obeying the commutation relation [Fi ,Fj ] = i εijkFk ,
with εijk being the Levi-Civita tensor.

As one can see from Eq. (2), if ca ≈ 0 ( i.e., if g0 ≈
g2) and/or the number of atoms is not too large, the total
Hamiltonian is symmetric in the three spin components. By
assuming a strong enough optical confinement and a BEC of
a few thousand atoms, one can therefore think of the order
parameter as having a constant spatial distribution for all the
three species mF = 0, ±1 and write "̂α(x) =ψ (x)âα . This
is the so-called single-mode approximation (SMA) [12,14],
which leaves the Hamiltonian in the form

Ĥ =
∑

α

â†
α âα + c′

s

2

∑

α,β

â†
α â

†
β âα âβ

+ c′
a

2

∑

α,β,α′,β ′

(Fα,β · Fα′,β ′ )â†
α â

†
α′ âβ âβ ′ , (3)

where we have defined c′
i = ci

∫
dx |ψ (x)|4. As the distance

z0 between the BEC and the magnetic tip can be in the range
of a few µm (we take z0 = 1.5 µm in what follows) and the
spatial dimensions of the BEC are typically between tenths
and hundredths of µm (we considered az = 0.25 µm and ar =
0.09 µm), the relative correction to the magnetic field across
the sample is of the order of 0.2, which is small enough to
justify the SMA. Moreover, in the configuration assumed here,
the system will be mounted on an atomic chip, where the
static magnetic field can be tuned by adding magnets and/or
flowing currents passing through side wires. Such a design can
compensate any distortions to the trapping potential induced
by the tip.

By introducing N̂ =
∑

α â†
α âα and the angular momentum

operators L̂+ =
√

2(â†
0â−1 + â

†
1â0) and L̂z = (â†

1â
−
1 â

†
−1â−1)

[15], we can rewrite Eq. (3) as Ĥ = ĤA + ĤS , where we
have explicitly identified a symmetric part ĤS = µN̂ −
c′
sN̂ (N̂ − 1) and an antisymmetric one ĤA = c′

a(L̂2 − 2N̂ ).
It is important to remember that such a mapping is possible
due to the assumption of a common spatial wave function for
the three spin components. As long as the antisymmetric term
is small enough, this is not a strict constraint. By exploiting
Feshbach resonances [16], it is possible to adjust the couplings
g0 and g2 in such a way that g0 ≈ g2, which allows for the
possibility to increase the number of atoms in the BEC, still
remaining within the validity of the SMA.
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We now consider the BEC interaction Hamiltonian when
an external magnetic field is present. Due to its magnetic tip,
the cantilever produces a magnetic field and we assume that
only one mechanical mode is excited, so that the cantilever
can be modeled as a single quantum harmonic oscillator whose
annihilation (creation) operator we call b̂c (b̂†c). By allowing the
tip to have an intrinsic magnetization, we can split the magnetic
field into a static contribution B0 and an oscillating one δB̂
that arises from the oscillatory behavior of the mechanical
mode. The physical mechanism of interaction is Zeeman-like,
i.e., each atom experiences a torque that tends to align its
total magnetic moment to the external magnetic field. The
Hamiltonian for a single atom can be written as

Ĥ
(1)
Z = −µ·B = (gµB/h̄)Ŝ(1)·B, (4)

where µB is the Bohr magneton, Ŝ(1) is the spin operator vector
for a single atom, and g is the gyromagnetic ratio. In line with
Ref. [17], we adopt the convention that g and µ have opposite
signs. The total interaction Hamiltonian is then given by the
sum over all the atoms. By taking the direction of B0 as the
quantization axis (z axis) and the x axis in the direction of
〈δB̂〉, the magnetic Zeeman-like Hamiltonian is

ĤZ = gµBB0
z L̂z + gµBGcac(b̂†c + b̂c)L̂x, (5)

where we have used δB̂ = Gcac(b̂†c + b̂c)x, with Gc =
3µ0|µc|/(4πz4

0) being the gradient of the magnetic field
produced by the tip at a distance z0, x the unit vector along
the x axis, ac =

√
h̄/(2meωc), and me the effective mass of the

cantilever [18]. The full Hamiltonian of the BEC-cantilever
system is thus Ĥ = Ĥ 0

BEC + Ĥ 0
c + ĤI , with

Ĥ 0
BEC = µN̂−c′

sN̂ (N̂ − 1)+c′
a(L̂2 − 2N̂ )+gµBB0

z L̂z,

Ĥ 0
c = h̄ωcb̂

†
cb̂c, (6)

ĤI = gµBGcac(b̂†c + b̂c)L̂x.

It has been shown in Refs. [9,14] that Ĥ 0
BEC with B0

z = 0 allows
for an interesting dynamics of the populations of the three spin
states, which undergo Rabi-like oscillations, thus witnessing
the coherence properties of the BEC.

B. Mapping into a rotor

While the Hamiltonian above is rather appealing, it is not
yet in a form that is of use for our application. In fact, let
us consider the natural basis to describe the system, i.e., the
one spanned by |L,Lz〉, which are the common eigenstates
of L̂ and L̂z. Due to the coherence in the state of the BEC,
we cannot fix the quantum number L, since, for instance, if
the BEC is in an eigenstate of L̂z with Lz = 0, then the state
has the form

∑N
L=0 cL|L,0〉. Tracking the evolution induced

by Eq. (6) on such a superposition is a nontrivial problem,
since for N ) 1 the accessible region of the Hilbert space
becomes quite large. Nevertheless, the problem can be tackled
by the formal mapping of the BEC into a quantum rotor. In the
following, we briefly discuss the basic ideas of this mapping

as given in Ref. [11]. Since we work with a fixed number of
particles, the state of the BEC can be decomposed as

∑

n′
0,±1

Cn′
0,±1

(â†
1)n

′
1 (â†

0)n
′
0 (â†

−1)n
′
−1 |0〉, (7)

where the sum is performed over all sets of labels {n′
0,±1} such

that n′
0+n′

−1+n′
1 = N . Let us now introduce the Schwinger-

like operators b̂x = (â−1−â1)/
√

2, b̂y = (â1+â−1)/(i
√

2), and

b̂z = â0, such that [b̂α,b̂β] = 0 and [b̂α,b̂
†
β ] = δα,β [11].

The generic BEC state in Eq. (7) can now be written
as |*N 〉= 1√

N!
(*·b̂†)N |0〉, with *=(cosφ sin θ, sinφ sin θ,

cos θ ). By varying (θ,φ) and thus the position vector |*〉 on the
unit sphere, it is possible to recover any superposition for the
state of a single atom among the states with mz = 0, ±1. Any
state with a fixed number of particles in the bosonic Hilbert
space can then be written as |"〉 =

∫
d* |*N 〉ψ(*), where

ψ(*) is the wave function of the rotor we are looking for to
complete the mapping. The next step is then to find the form
of the Hamiltonian in this space. According to Ref. [11], a
sufficient criterion for the two dynamics to be equivalent is the
existence of a Hamiltonian operator Ĥ in the Hilbert space of
the rotor such that Ĥ |"〉 =

∫
d* |*N 〉Ĥψ(*). The explicit

form of Ĥ can in fact be found by a straightforward calculation
that leads to the expressions of the z and x components of the
angular momentum operator of the form

L̂z = −i(b̂†x b̂y − b̂†y b̂x) = −iz · (* × ∇) = 1
h̄

z · L̂ = −i∂φ,

L̂x = 1
2

(b̂†zb̂x − b̂†x b̂z) + i

2
(b̂†zb̂y − b̂†y b̂z) = −ix · (* × ∇)

= 1
h̄

x · L̂ = i(sinφ ∂θ+ cot θ cosφ ∂φ). (8)

After discarding an inessential constant term, the Hamiltonian
that we are looking for reads Ĥ = Ĥ0

R + Ĥ0
c + ĤI , with

Ĥ0
R = c′

aL̂2 + (gµB/h̄)B0
z L̂z,

Ĥ0
c = p̂2

c /2me + meω
2
c q̂

2
c /2, (9)

ĤI = (gµB/h̄)Gcq̂cL̂x.

In Eq. (9) we have introduced, for convenience, the cantilever’s
position and momentum operators q̂c =

√
h̄/(2mωc)(b̂c + b̂

†
c)

and p̂c = i
√

h̄mωc/2(b̂†c − b̂c). We are now in a position to
look at BEC-cantilever joint dynamics. In particular, we will
focus on the detection of the cantilever properties by looking
at the BEC spin dynamics.

III. PROBING QUANTUM COHERENCES

A. Dynamics

The form of the interaction Hamiltonian ĤI allows for
the measurement of any observable whose corresponding
operator on the Hilbert space can be expressed as a function
of q̂c and p̂c with no back-action on the cantilever dynamics.
Moreover, when there is no magnetic field, the ground state
of a “ferromagnetic” (i.e., c2 < 0) spinor BEC is such that
all the atomic spins are aligned along a direction resulting
from a spontaneous symmetry breaking process [9]. Under
the effects of the cantilever antenna, two preferred directions
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are introduced in the system: the z direction, along which we
have the static magnetic field, and the x direction, defined by
the oscillatory component. The interplay between these two
competing magnetic fields is responsible for a “gyroscopic”
motion of the rotor about the z axis, exactly as in a classical
spinning top. By looking at the way the rotor undergoes such a
gyromagnetic motion, we can gather information about the
properties of the cantilever state. We notice that a similar
approach has been used to show the resonant coupling of an
atomic sample of 87Rb atoms with a magnetic tip similar to
the one considered here [19].

In order to understand the mechanism, let us look at the
time evolution of the operator L̂x(t). We take an initial state of
the form

|"(0)〉 =
∑

n

Cn|En〉
∫

.1

d*ψ(*)|*〉, (10)

where .1 is the unit sphere and |En〉 are the energy eigenvalues
for the harmonic oscillator such that Ĥ0

c |En〉=En|En〉. In the
Heisenberg picture, the mean value of the x component of the
angular momentum is

〈L̂x(t)〉 = 〈"(0)|ei
Ĥ
h̄

t L̂x(0)e−i
Ĥ
h̄

t |"(0)〉

=
∫

.1,q,q ′
d* dq dq ′

∑

n,m

C∗
mCne

−iωn,mtφ∗
m(q ′)φn(q)〈q ′|q〉ψ∗(*)

(
ei

ĤI +Ĥ0
R

h̄
t L̂x(0)e−i

ĤI +Ĥ0
R

h̄
t
)
ψ(*)

=
∫

q

dq
∑

n,m

C∗
mCne

−iωn,mtφ∗
m(q)φn(q)

∫

.1

d*ψ∗(*)
(
ei

ĤI +Ĥ0
R

h̄
t L̂x(0)e−i

ĤI +Ĥ0
R

h̄
t
)
[ψ(*)], (11)

where we have used the closure relation
∫
q
|q〉〈q| = 1 twice

and introduced φn(q) = 〈q|En〉 and ωn,m =ωc(n − m). By
setting *q =

√
(gµB/h̄)2[(B0

z )2 + G2
cq

2], the time-evolved x
component of the angular momentum operator is

L̂x(t) = g2µ2
B

h̄2*2(q)

[(
B0

z

)2 cos(*q t) + G2
cq

2]L̂x(0)

+
gµBB0

z

h̄*q

sin(*q t)L̂y(0)

+
g2µ2

BB0
z Gcq

h̄2*2(q)
[1− cos(*q t)]L̂z(0)

= a1(q,t)L̂x(0) + a2(q,t)L̂y(0) + a3(q,t)L̂z(0). (12)

Comparing Eqs. (11) and (12), we find 〈L̂x(t)〉=
∑

j=x,y,z

Aj (t)L0
j , where

L0
j =

∫

.1

d*ψ∗(*)L̂j (0)[ψ(*)],

Aj (t) =
∑

n,m

C∗
mCne

−iωn,mt

∫

q

dq φ∗
m(q)φn(q)aj (q,t). (13)

If the cantilever is initially prepared in the general mixed
state ρc(0) =

∑
n Cn,m|En〉〈Em|, a similar expression for

the mean value of L̂x(t) is found, where now Aj =∑
n,m e−iωn,mtCn,m

∫
q
dq φ∗

m(q)φn(q)aj (q,t).
As the qualitative conclusions of our analysis do not depend

upon the initial value of the angular momentum component
of the spinor, in what follows we shall concentrate on an
illustrative example that allows us to clearly display our
results. We thus consider, without affecting the generality
of our discussions, 〈L̂x,y(0)〉 = 0 and 〈L̂z(0)〉 = 100. When
the cantilever and the BEC are uncoupled, we should expect
〈L̂x(t)〉 to oscillate at the Larmor frequency ωL = gµBB0

z and

with an amplitude independent of 〈L̂x (0)〉. The BEC-cantilever
coupling introduces a modulation of such oscillations and, in
the following, we will demonstrate that the analysis of such
oscillatory behavior is indeed useful to extract information on
the state of the cantilever.

We first consider the case of a cantilever initially prepared
in a superposition of a few eigenstates of the free Hamiltonian
Ĥ0

c , as in Eq. (10). In Fig. 2, we show the mean value
of L̂x(t) as a function of the coherence between the states
with quantum number n = 0 and n = 1, i.e., a state having
C0 = C1/α = 1/

√
1 + α2 and Cn = 0 otherwise. One can

see a clear modulation of the behavior of 〈L̂x(t)〉: a close

〉〈 (

FIG. 2. (Color online) Mean value of L̂x(t) for a cantilever in
the initial state as given by Eq. (10) with C0 = C1/α = 1/

√
1 + α2

and Cn = 0 otherwise. The BEC consists of N = 10387Rb atoms and
〈L̂x,y(0)〉 = 0, 〈L̂z(0)〉 = 100. We have used B0

z = 3 × 10−6 µT and
Gc ≈ 1.8 × 103 µT/µm.
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inspection reveals that the carrier frequency ωL is modulated
by the frequency ω0,1. In reality, the Larmor frequency is
renormalized, as can be seen by the expression for *q .
However, as we have taken Gcac + B0

z , one can safely assume
that the carrier frequency is very close to ωL. Moreover, the
maximum of the function is found at C0,1 = 1/

√
2, which

maximizes the coherence between the two states and thus
the effect of the modulation. For symmetry reasons, the
modulation described is not visible if the cantilever is prepared
in a superposition of phonon eigenstates whose quantum
numbers are all of the same parity (such as a single-mode
squeezed state). In this case, in fact, the function entering the
integral over q in A3 is antisymmetric, thus making it vanish.
In Fig. 3, 〈L̂x(t)〉 is shown for an initial state of the cantilever
having C0,1 = C2/α = 1/

√
2 + α2 and Cn = 0 otherwise. It is

worth noticing that one can identify two regions of oscillations
separated by the line of nodes at α = 1, where C0 = C1 = C2.
We can understand this behavior by studying the amplitudes
of oscillation in three α-dependent regions. For α < 1, the
main modulation frequency is given by ω0,1 and the role of
the third state is to modify the amplitude of the oscillations
(see Fig. 3). At α = 1, a destructive interference takes place
and the amplitude drops down. For α > 1, the frequency ω1,2

enters into the evolution of 〈L̂x(t)〉 (for parity reasons, the
term with frequency ω0,2 has no role) and determines a phase
shift of the oscillation fringes. It is interesting to observe that,
if the initial state of the cantilever is purely thermal, 〈L̂x(t)〉
does not oscillate: only quantum coherence in the state of
the mechanical system gives rise to oscillatory behaviors and
their presence is well signaled by the pattern followed by the
angular momentum of the spinor BEC. Although the examples
considered so far have been instrumental in explaining the
connections between the properties of the cantilever and
the dynamics of the spinor’s degrees of freedom, they are
unfortunately currently far from being realistic. We will
therefore now consider a closer-to-reality example of a pure
state that is likely to be achieved soon. Given the impressive
advances in the control and state-engineering of micro- and
nanomechanical systems, we will consider the cantilever to be
prepared in a coherent state with an average phonon number
nph [20]. In Fig. 4, we show the time evolution of L̂x(t) for
|α|2 = 1 [panel (a)], 5 [panel (b)], 15 [panel (c)], and 20
[panel (d)]. One can see that, depending on the mean number
of phonons initially present in the mechanical state, new
frequencies are introduced in the dynamics of the device: the
larger |α|2, the larger the number of frequencies involved due to
the Poissonian nature of the occupation probability distribution
of a coherent state. In Fig. 4(e), which addresses the case of
|α|2 = 20, the study of the dynamics at long evolution times
reveals that the carrier frequency is unaffected, for all practical
purposes, while the large number of frequencies entering in the
evolution gives rise to series of beats occurring at different time
scales.

B. Detection scheme

To read out the information imprinted on the rotor, one can
make use of the Faraday-rotation effect, which allows one to
measure one component of the angular momentum of the BEC
with only a negligible back-action on the condensate itself. It is

×
〉〈

FIG. 3. (Color online) Mean value of L̂x(t) for a cantilever in the
initial state as given by Eq. (10) with C0 = C1 = C2/α = 1/

√
2 + α2

and Cn = 0 otherwise. The BEC parameters are the same as in Fig. 2.
The inset shows that the change in |α| amounts to a shift of the
oscillations [we have taken = eiπ/6(0.5,1,2)].

well known from classical optics that the linear polarization of
an electromagnetic field propagating across an active medium
rotates with respect to the direction it had when entering the
medium itself. This is the essence of the Faraday-rotation
effect, which can be understood by decomposing the initial
polarization in terms of two opposite circularly polarized
components experiencing different refractive indices [21]:

〉〈 〉〈

〉〈 〉〈

〉〈

FIG. 4. (Color online) Time evolution of L̂x for a coherent initial
state of the cantilever with (a) |α|2 = 1, (b) 5, (c) 15, and (d) 20.
For the same parameter as in (d), the plot (e) shows that the carrier
frequency ωL is not significantly affected.
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by going through the medium, the two components acquire
different phases, thus tilting the resulting polarization.

In the case of an ultracold gas, an analogous rotation of
the polarization of a laser field propagating across the BEC
is due to the interaction of light with the atomic spins. If the
spins are randomly oriented, the net effect is null, while for
spins organized in clusters, the effect can indeed be measured.
It has been shown in Refs. [22,23] that the back-action on the
BEC induced by this sort of measurement is rather negligible.
In recent experiments, nondestructive measurements on a
single BEC of 23Na atoms have been used to show the
dynamical transition between two different regions of the
stability diagram of the system [24–26]. This method can thus
be effectively used to determine the dynamics of the angular
momentum components of the rotor BEC and thus indirectly
witness the presence of coherences in the state of the cantilever.
Moreover, as shown in Ref. [23], the signal-to-noise ratio is
proportional to

√
τpd/τs , where τpd is the characteristic time

for the response of the photodetector and τs is the average
time between consecutive photon-scattering events. In order
to be able to detect two distinct events on a time scale τ , we
thus need τpd < τ < τs to hold. This condition states that the
number of scattered photons has to be small enough during
the time τ over which the dynamics we want to resolve
occurs. On the other hand, the detector “death time” should be
smaller than the typical evolution time. While τs can be easily
tuned by adjusting the experimental working point, ultrafast
photodetectors of the latest generation have response time τpd

of a few ps. As in our scheme, we have τ ∈ [10−8,10−5] s and
the proposed coherence-probing method appears to be within
reach.

IV. CONCLUSION

We have considered a mechanical cantilever equipped
with a magnetic tip interacting with a spinor Bose-Einstein

condensate (BEC) held in an optical trap. The tip produces a
magnetic field made up of two components, namely a static one
along the tip’s natural anisotropic axes and one perpendicular
to it due to the cantilever’s oscillations. By exploiting the
mapping of a spinor BEC into a rotor model [11], it is
possible to take into account its quantum properties, which
would have been missed in a mean-field theory approach. The
BEC is thus mapped onto a quantum gyroscope undergoing
a precession about the direction of the magnetic tip’s static
field. We have assumed that the cantilever has been cooled
down [2,3] to a quantum regime and described it as a quantum
harmonic oscillator. We have shown that it is possible to
detect the presence of quantumness in the cantilever state
in the form of superposition of different eigenstate of the
harmonic oscillator. The way to do this is to look at the
gyroscopic precession by using Faraday spectroscopy, which
in turn only minimally disturbs the BEC dynamics, thus
allowing for a continuous probing of the system. Even though
we have restricted our analysis to a cantilever equipped
with a magnetic molecule, it is possible to generalize this
scheme to other sorts of mesoscopic magnetic systems, such as
nanotubes.

Note added. During completion of this work, a related
investigation reporting on the measurement back-action on
a vibrating membrane coupled to a BEC has appeared [27].
While the detailed context and general approach differ from
ours, this work reinforces the idea that quantum coherence in
mechanical systems can be reliably probed by ultracold atomic
systems.
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J. Reichel, Phys. Rev. Lett. 99, 140403 (2007).

[6] A. D. Armour and M. Blencowe, New J. Phys. 10, 095004
(2008); J. D. Teufel, T. Donner, Dale Li, J. W. Harlow,
M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W.
Lehnert, and R. W. Simmonds, Nature (London) 478, 89 (2011);

M. Paternostro, G. De Chiara, and G. M. Palma, Phys. Rev. Lett.
104, 243602 (2010); G. De Chiara, M. Paternostro, and G. M.
Palma, Phys. Rev. A 83, 052324 (2011); D. Hunger, S. Camerer,
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