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Abstract

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the
very demanding requirements for its experimental implementation. This typically requires
very fast changes in the boundary conditions of the problem. We show that an ensemble of
two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low
frequencies and close to a quantum phase transition, stimulates the production of photons
from the vacuum. This paves the way for an effective simulation of the DCE through a
mechanism that has recently found experimental demonstration. The spectral properties of the
emitted radiation reflect the critical nature of the system and allow us to link the detection of
DCE to the Kibble–Zurek mechanism for the production of defects when crossing a
continuous phase transition.

PACS number: 42.50.Pq

(Some figures may appear in colour only in the online journal)

1. Introduction

When N two-level atoms interact collectively with a single
mode of the electromagnetic field inside a cavity, thus
realizing the so-called Dicke model [1], there is a critical
value of the atom–photon coupling gc at which the system
undergoes a quantum phase transition, generally referred to as
the super-radiant transition. Below the critical coupling the
atoms are in their ground level and no photons are present. In
contrast, above gc there is a spontaneous symmetry breaking
and the photon field gets populated through a mechanism
producing a displaced coherent state [2]. The experimental
demonstration of the super-radiant transition in the Dicke
model has remained outstanding until recently, when a
key result was achieved in a setup involving intra-cavity
Bose–Einstein condensates [3]. A super-radiant transition has
been enforced by exploiting the spatial self-organization of
the atoms in an intra-cavity condensate coupled to the cavity
field and subjected to an optical-lattice potential.

Close to a quantum phase transition there is an intimate
relation between equilibrium and dynamical properties. The
critical slowing down, characteristic of continuous phase
transitions, suggests that the response to a time-periodic
external drive may be highly non-trivial. In the case of the
super-radiant transition there are two additional fundamental
reasons to look for the response of the system to an external
ac drive: the detection of the dynamical Casimir effect
(DCE) [4, 5] and the investigation of the Kibble–Zurek
mechanism (KZM) [6, 7]. Notwithstanding some interesting
proposals [8–11] having the potential to ease the requirements
for its observability, an experimental demonstration of DCE
is still elusive in the optical domain, due to the prohibitively
large frequencies at which the system’s parameter should be
modulated to produce a measurable flux of photons. Here,
we prove that, at the super-radiant transition, a DCE-like
mechanism arises from the use of a time-dependent driving
and results in a flux of photons generated from the vacuum
fluctuations. Recently, DCE was observed in an experiment
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performed using microwaves [12]. Our proposal pursues
a different direction: we observe that, on approaching the
Dicke super-radiant phase transition, the frequencies at which
the DCE-like effect becomes observable are lowered, thus
narrowing the gap separating the experimental state-of-the-art
from the observation of the effect.

Moreover, we unveil an intriguing connection between
the occurrence of DCE through the mechanism we propose
and the KZM. The latter predicts the formation of defects
in a quantum many-body system dragged through a critical
point [13–15] and is due to the inability of the system to
remain in its ground state. The production of defects occurs
regardless of how slowly the dragging is performed and
the mechanism has been shown to be related to adiabatic
quantum computation [16] and quantum annealing [17].
We are thus able to bridge two fundamental phenomena
in out-of-equilibrium quantum systems with the goal of
simplifying their observation. The recent demonstration of the
Dicke super-radiant transition [3], which is the building block
of our proposal, marks a promising starting point towards an
experimental investigation along the lines of our work.

The paper is organized as follows. In section 2, we will
consider the case in which all the dissipative processes can
be neglected and the system undergoes a unitary evolution.
In section 3, we will extend our analysis to the case when
the cavity experiences photon losses and we will show that a
constant flux of photons is present in the output field of the
cavity when the system’s parameters are modulated in time.
Finally, in section 4 we will link the generation of photons
arising from the DCE to the KZM, presenting qualitative
and quantitative evidence of the connection between the two
phenomena.

2. The system’s Hamiltonian and unitary evolution

We study a system consisting of N two-level atoms placed
inside a cavity in which the splitting between the ground
and excited states of each atom can be modulated in time.
In this section, we first review some interesting properties of
the system’s Hamiltonian in the absence of modulation [18]
and then address the case of a time-dependent Hamiltonian,
solving the unitary dynamics of the system.

Let us consider a system formed by N two-level atoms
interacting with the fundamental mode of the field inside a
cavity. We assume that the splitting between the ground and
the excited level of each atom can be externally modulated
in time. The fundamental mode of the cavity is described
using the annihilation and creation operators â and â†

and each two-level atom is treated as a pseudo-spin with
angular momentum components {σ̂ i

+, σ̂
i
−, σ̂ i

z }. Assuming that
the atoms interact with the field in a collective way, the whole
atomic cloud is described by the total angular momentum Ĵ
with components Ĵ± =

�
i σ̂ i

± and Ĵ z =
�

i σ̂ i
z . Within this

notation and setting h̄ = 1, the Hamiltonian of the system in
the absence of modulation and in the dipole approximation
reads as

H0 = ωaâ†â + ωb Ĵz +
g√
2 j

(â† + â)( Ĵ + + Ĵ−), (1)

where ωb is the static atomic splitting, which is assumed to be
the same for every atom, ωa is the fundamental frequency of

the cavity and g is the atom–field coupling constant. Here j is
the so-called ‘cooperation number’ in the Dicke theory and is

an eigenvalue of Ĵ 2.
When the number of atoms N becomes large, the

Holstein–Primakoff representation of angular momentum can
be used to formally assimilate the atomic cloud to an harmonic
oscillator [19]. Using this representation, the components
of the angular momentum Ĵ can be written in terms of
bosonic annihilation and creation operators b̂, b̂†. Since the
number of atoms is large, a good approximation for the
Holstein–Primakoff equations is given by Ĵ + ≈

√
2 j b̂†, Ĵ− ≈√

2 j b̂ and Ĵ z = (b̂†b̂ − j). Substituting these expressions in
equation (1) and neglecting the overall shifting term, the
Hamiltonian becomes

H0 =
�

k=a,b

ωk k̂†k̂ + g(â† + â)(b̂† + b̂) (2)

with k = {a, b}.
The Hamiltonian in equation (2) describes two harmonic

oscillators coupled via an xx interaction with coupling
constant g and can be exactly diagonalized. Considering
the position and momentum operators for the two modes,
xk = (1/

√
2ωk)(k̂† + k̂) and yk = i

√
(ωk/2)(k̂† − k̂), the

diagonal form is obtained by rotating the coordinate system
following the transformations xa = q1 cos γ + q2 sin γ and
xb = −q1 sin γ + q2 cos γ , where the angle γ is given by
tan 2γ = (4 g

√
ωaωb)/(ω

2
b − ω2

a). The rotated Hamiltonian
(up to an overall shifting) reads as

H0 = 1
2

�

k=1,2

(�2
k q̂2

k + p̂2
k ), (3)

where

�2
1 = 1

2

�
ω2

a + ω2
b −

�
(ω2

b − ω2
a)

2 + 16 g2ωaωb

�
,

�2
2 = 1

2

�
ω2

a + ω2
b +

�
(ω2

b − ω2
a)

2 + 16 g2ωaωb

�
.

(4)

Equation (3) describes two uncoupled harmonic oscillators
with frequencies �1 and �2.

It can be noted from equation (4) that the value of
�1 becomes imaginary when g exceeds the critical value
gc = √

ωaωb/2. That means that the system undergoes
different behaviors depending on being in the ‘normal phase’
(g < gc) or in the so-called ‘super-radiant phase’ (g > gc), as
explained in [18]. Indeed, the existence of this critical value is
crucial for the argument we put forth. Since at this stage we
are interested only in the normal phase regime, we will not go
into the details of the phase transition process. Nevertheless,
it is important to point out that the model described above is
valid only for g < gc and that the critical nature of the system
plays an important role.

We are now ready to address the case when the atomic
splitting is sinusoidally modulated with frequency η and
amplitude λ. This is in some sense a generalization of the
scheme proposed in [10, 11], where a system consisting of
a single two-level atom placed inside a cavity is studied.
Let us consider the Hamiltonian given in equation (2) and
let us assume that the atomic frequency is no longer ωb but
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Figure 1. Mean number of photons inside a non-leaking cavity
against time calculated using the Lewis–Riesenfeld method in the
one-mode approximation (blue line) and solving the Heisenberg
equations of motions for exact two-mode Hamiltonian (red line).
The parameters are ωa = ωb = 1, η = 2�1, λ = 0.01. The values of
g are: (a) g = 0.99gc = 0.495 and (b) g = 0.9gc = 0.45.

a time-dependent function of the form �(t) = ωb + λ sin ηt
instead. Substituting this expression into equation (2), the
time-dependent Hamiltonian of the system becomes

H = ωaa†a + �(t)b†b + g(a† + a)(b† + b). (5)

The diagonalized Hamiltonian has the same form as the one
given in equation (3), with time-dependent frequencies �k(t)
which are obtained simply by substituting ωb with �(t) in
equation (4).

The unitary dynamics can be solved using two different
methods. In both cases, we assume that the system is
initialized in its ground state, i.e. with all the atoms in the
lower energy level and the field in the vacuum state at t = 0.

The first method consists of solving the Heisenberg equations
of motion for the field operators a and a† and for the atomic
cloud bosonic operators b and b†. The Heisenberg equations
are given by k̇ = −i [k, H ] with k = a, b. The equations
can be recast into an equation for the covariance matrix,
which is solved numerically. Alternatively, the problem can be
treated in the Schrodinger picture using the Lewis–Riesenfeld
method [20, 21]. This method gives us a strategy for solving
any time-dependent problem using the so-called dynamical
invariants, and it is particularly useful in the case of quadratic
Hamiltonians.

In this second case, we will make use of the diagonal form
of the Hamiltonian in order to make some approximations.
In the limit in which the modulation frequency η and the
time-dependent frequencies �k(t) satisfy the conditions

�2(t) � η, �2(t) � �1(t), (6)

the non-critical mode q̂2 will not contribute to the photon
production. In the adiabatic approximation we can get rid
of the second mode and describe the system as a single
harmonic oscillator with a time-dependent frequency whose
Hamiltonian is given by H ≈ (1/2)[�2

1(t)q̂
2 + p̂2]. Comparing

the results obtained in the two cases, we can test the validity
of the one-mode approximation.

The quantity of interest in the DCE context is the
mean number of photons �a†a� generated inside the cavity,
which is calculated using the Lewis–Riesenfeld method in
the single-mode approximation and using the Heisenberg
equations for the exact two-mode Hamiltonian. We find that
a modulation at frequency η = 2�1 results in the generation of
photons from vacuum inside the cavity. Moreover, as shown
in figure 1, the number of photons generated increases when

the coupling constant g approaches its critical value gc. The
two results are very similar when the coupling constant is
close to its critical value, e.g. g = 0.99gc (see figure 1(a)) as
expected. With the decreasing of g the discrepancy between
the two quantities increases (see figure 1(b)). This is due to
the fact that the conditions in equation (6) are not fulfilled
anymore when g is far away from the critical value gc

and the single-mode approximation is not valid any longer.
This behavior is conditioned to the choice of the system’s
parameters. Indeed, gc is now a time-dependent quantity and
the system would go through a phase transition if gc < g at
some time t, in which case the model used would fail and
the results would no longer make sense. It is thus important
to choose the system’s parameters in such a way that the
condition gc > g holds for all t. In analogy with the usual
DCE and with the single-atom schemes proposed in [10, 11],
the photons are created in pairs. On the other hand, while in
these schemes the modulation frequency is required to be of
the order of the photonic frequency, in our proposal η can be,
in principle, as small as we want, due to the fact that �1 → 0
at the phase transition.

The model treated here resembles the many-body
Landau–Zener problem studied in [22, 23] with the crucial
difference of the inclusion of the counter-rotating terms in our
analysis, which lead to both the super-radiant transition and
the production of photons. It is also worth mentioning that
in [24] a model similar to ours but based on a semi-classical
approach has been addressed to relate DCE-like effects to
Dicke super-radiance. In this work we perform a full quantum
treatment of both the atom–light interaction and the effects
on the photon statistics induced by the driving of the atomic
subsystem. Moreover, as discussed in section 4, we will
unveil a connection between the DCE-like effects and the KZ
mechanism.

3. Dissipative dynamics: the Langevin equations

approach

In the previous section, we have studied the case of a cavity
with perfect mirrors and have shown how it is possible to
generate photons by modulating the parameters of the system.
In this section, we consider a leaking cavity in which the
internal mode experiences photons’ losses due to the coupling
with the environment. Since we are neglecting atomic decays,
the equation of motion for the bosonic operator b describing
the atomic cloud is still the Heisenberg equation of motion
ḃ = −i [b, H ]. On the other hand, the cavity mode operator a
is subjected to dissipative processes, and its open dynamics
can be obtained by solving the Langevin equations of the
system and making use of the input–output formalism for
optical cavities [25].

To derive the Langevin equation describing the evolution
of the system in the non-rotating frame, we start by assuming a
cavity–bath interaction in the form of V = i

� ∞
0 dνkν(ανa† −

aα†
ν). For a generic quadratic two-mode Hamiltonian, the

equations of motion can be written in a compact matrix
notation. Taking into account that mode b does not experience
any dissipation, we define the bosonic operators vector
as u(t) = (a(t), b(t), a†(t), b†(t))T and the Langevin forces
vector as F(t) = ( f (t), 0, f †(t), 0)T. Within this notation,
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the equations for the two modes in the domain of time can
by rewritten in the form

u̇(t) = −i M(t)u(t) −
�

dt ��(t − t �)u(t �) + F(t), (7)

where M(t) is a time-dependent 4 × 4 matrix taking into
account the unitary evolution and �(t − t �) is the 4 × 4 matrix
of the damping kernels given by �(t − t �) = diag[γ (t −
t �), 0, γ (t − t �), 0]. It is worth mentioning that, when M(t) is
a periodic function of t with period T, it can be expanded
as a Fourier series which, in general, is given by M(t) =
M(t + T ) =

�
m Mm ei 2π

T mt .
Solving equation (7) might be a very hard task due to the

presence of a non-trivial convolution integral. The problem
can be avoided by moving in the domain of frequencies. Since
the matrix M(t) explicitly depends on time, by moving to
the frequencies domain we need to consider all the sideband
contributions coming from the Fourier decomposition.
Defining ũ(ω) = (ã(ω), b̃(ω), ã†(−ω), b̃†(−ω))T and F̃(ω) =
( f̃ (ω), 0, f̃ †(−ω), 0)T as the Fourier transform of the vectors
u(t) and F(t) introduced above, the Langevin equations in the
domain of frequencies read as [27]

iM(ω)





ũ(ω − mη)

...

ũ(ω + mη)



 =





F̃(ω − mη)

...

F̃(ω + mη)



 , (8)

where the matrixM(ω) is given by

M(ω) =





B−m M1 . . . M2m

M−1 B−(m−1)

...

... M1

M−2m . . . M−1 Bm




(9)

and where B j = M0 − (ω + jη) − i�̃(ω + jη). Here �̃(ω) =
diag[γ̃ (ω), 0, γ̃ (−ω), 0] is the Fourier transform of the
damping memory kernel and η = 2π/T . The Langevin force
operators f̃ (ω) in the domain of frequencies are linked to
the input operators of the cavity by f̃ (ω) = 2πkωρ(ω)αin

ω ,

where ρ(ω) represents the photonic density of states of the
bath [26]. On the other hand, following [26] again, the
dacay rates can be written in the domain of frequencies as
γ̃ (ω) = Re[γ̃ (ω)] + i Im[γ̃ (ω)]. While the imaginary part of
γ̃ (ω) is just a fixed Lamb shift, the real part Re[γ̃ (ω)] =
π |kω|2ρ(ω) is responsible for the frequency-depending
damping of the cavity mode. When the counterrotating terms
are taken into account it becomes crucial to consider that
the density of photonic state in the bath ρ(ω) is zero for
negative frequencies. It follows immediately that γ̃ (ω) = 0
and f̃ (ω) = 0 for ω < 0. In the following, we will also
suppose that the damping rate assumes the same value for
every positive frequency. This is equivalent to assuming that
kω = k ∀ω and ρ(ω) = 1 for ω > 0. Within this assumption,
we define γ0 ≡ π |k|2 and we can write Re[γ̃ (ω)] = γ0 for
ω > 0 and Re[γ̃ (ω)] = 0 for ω < 0.

We start our analysis by calculating the mean number
of photons inside the cavity at the stationary state
�a†a�, which is given by �a†a� = limt→∞�a†(t)a(t)�.

Figure 2. (Main panel) The mean number of photons inside a
leaking cavity against the interaction constant g in the case of
no-modulation for γ0 = 0.1 (blue line), γ0 = 0.2 (red line) and
γ0 = 0.3 (yellow line). (Inner panel) The mean number of photons
inside a leaking cavity against the modulation frequency η for
λ = 0.00005 and γ0 = 0.005 and g = 0.45 = 0.9gc.

After Fourier transformation, the limit gives �a†a� =
(1/2π)2

� ∞
−∞ dω�ã†(ω)ã(ω)�. For the Hamiltonian

considered here, the matrix M(t) includes a sinusoidal
modulation with period T = (2π)/η. Its Fourier expansion
is thus given by M(t) = M0 + M1(eiηt − e−iηt ). So the
Fourier expansion of M(t) counts just the three components
M0, M1 and M−1 = −M1. The solution of equation (8)
can be found simply by inverting the matrix iM. Calling
G(ω) = [iM(ω)]−1 and solving for ã(ω), the mean number
of photons is given by

�a†a�(m) = γ0

π

m�

j=−m

� ∞

jη
dω|G4m+1,4(m+ j)+3(−ω)|2, (10)

where the index (m) indicates the number of sidebands taken
into account and Gi, j (ω) are the matrix elements of G(ω). To
obtain equation (10), we have assumed that the input field is
in the vacuum state, so the operators αin

ω fulfill the condition
�αin

ω αin†

ω� � = δ(ω − ω�) and we have made use of the fact that
the state’s density function is given by ρ(ω) = 1 for ω > 0
and ρ(ω) = 0 for ω < 0.

Let us now consider the explicit calculation of the mean
number of photons inside the cavity in two simple cases. The
first example is the case when m = 0, i.e. no time-dependent
modulation is applied to the system (see [26] for more details).
In this case equation (10) simply reduces to

�a†a�(0) = γ0

π

� ∞

0
dω|G1,3(−ω)|2. (11)

The behavior of the number of photons �a†a�(0) against the
interaction constant g for various values of the decay rate γ

is shown in the main panel of figure 2. It is important to point
out that the non-vanishing mean number of photons is related
to the presence of virtual photons which are trapped inside
the cavity and cannot be observed. Indeed, due to the energy
conservation law, it is impossible for the photons to leave the
cavity and be detected when the Hamiltonian of the system
is time-independent and the input field is in the vacuum
state. We will see shortly that the number of photons leaking
out of the cavity is identically zero when no-modulation is
applied. Another simple example is given by considering a

4
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Figure 3. Radiation flux outside the cavity. (a) Flux of photons
outside the cavity against η for g/ωa = 0.9, gc/ωa = 0.45,
γ /ωa = 0.005 and λ/ωa = 0.005. For these parameters,
�0/ωa ≈ 0.315. (b) Flux of photons outside the cavity against η and
g for ωb/ωa = 1, γ /ωa = 0.005 and λ/ωa = 0.005.

weak modulation, in which case we can assume that only the
first two sidebands give a significant contribution (i.e. m = 1).
The number of photons is then given by

�a†a�(1) = γ0

π

� ∞

−η

dω|G5,3(−ω)|2 +
γ

π

� ∞

0
dω|G5,7(−ω)|2

+
γ

π

� ∞

η

dω|G5,11(−ω)|2]. (12)

The quantity �a†a�(1) is shown in the inner panel of figure 2
as a function of the modulating frequency η. The plot shows
a sharp resonance peak at η = 2�1, as expected from the
previous analysis in the unitary regime, with the difference
that in a leaking cavity the system reaches a stationary state
when the photons’ creation rate equals the cavity damping
rate.

We now pass to the explicit calculation of the flux of
photons leaking out of the cavity for the two cases treated
above. To obtain the output operator of the cavity αout

ω , we
substitute the solution for the internal operator ã(ω) into the
input–output relation for an optical cavity [25]. The photonic
flux outside the cavity is given by �α†α� =

� ∞
0 dω�αout†

ω αout
ω �.

This expression is very similar to the one giving the number of
photons inside the cavity, with the crucial difference that only
positive frequencies of the bath are included in the integration.
Assuming again that �αin

ω αin†

ω� � = δ(ω − ω�), ρ(ω) = 0 for
ω < 0 and ρ(ω) = γ0 for ω > 0, �α†α� reads as

�α†α�(m) = 4γ 2
0

m�

j=0

� jη

0
dω|G4m+1,4(m− j)+3(ω)|2. (13)

Note that, having the matrix elements of G the dimension of
time, the quantity �α†α� has the correct dimension of 1/t for
a flux of photons.

It can be seen immediately from equation (13)
that, as expected and according to energy conservation
law, no photons’ flux outside the cavity is observed
when m = 0, i.e. when no modulation is applied and
the Hamiltonian is time-independent. In contrast, any
time-dependent modulation generates a constant flux of
photons. For m = 1, equation (13) counts just one term given
by

�α†α�(1) = 2γ 2
0

� η

0
dω|G5,3(ω)|2. (14)

The flux of photons �α†α�(1) is plotted against the modulation
frequency η and the coupling constant g in figure 3. In

Figure 4. Spectral density of the output photons. Taking
ωa = ωb = 1, λ = 0.005, γ = 0.005, g = 0.9 and gc = 0.45, we find
that �0 = 0.315. We have taken η/2�0 = 1 (corresponding to
resonance conditions; the main panel), η/2�0 = 0.7 (upper inset)
and η/2�0 = 1.3 (lower inset).

panel (a), a resonance peak is clearly visible at η ≈ 0.63 when
g = 0.9gc = 0.45. For this value of g, the value of the smallest
eigenvalue �1 given in equation (4) is �1 ≈ 0.315. So, as
expected, the resonance occurs at η ≈ 2�1. This profile is the
same as the one relative to the photons’ flux inside the cavity
shown in figure 2. In panel (b), the flux of photons is plotted
against g and η. It can be seen that the resonance occurs at
η ≈ 2�1 regardless of the value of �1. Moreover, the photons’
flux at the resonance increases when g approaches its critical
value gc. It is thus evident that bringing the system close to
its critical point presents the double advantage of reducing the
frequency at which the DCE is observable and increasing the
number of photons generated in the process.

In the last part of this section, we analyze the spectral
density S(ω) of the output flux of photons, which is
linked to the spectral density inside the cavity P(ω) via
the input–output relations. To find P(ω), we consider the
autocorrelation function for the number of photons inside
the cavity at the stationary state (i.e. for t → ∞), which is
defined as F(τ ) = limt→∞�a†(t + τ )a(t)� [28]. Substituting
the Fourier transform of a(t) and a†(t), the equation
above becomes F(τ ) =

� ∞
−∞ dω�a†(ω)a(ω)� e−iωτ . Being the

spectral density P(ω) defined as the Fourier transform of the
autocorrelation function, it follows that P(ω) = �a†(ω)a(ω)�.
Considering the input–output relations and that π |kω|2 = γ0,

the spectral density of the output flux of photons can be
immediately written as S(ω) = (γ0/π)P(ω). In the case of
a weak modulation where only the first two sidebands are
taken into account and m = 1, S(ω) is non-vanishing only for
0 < ω < η and can be written as

S(ω) = 4γ 2
0 |G5,3(−ω + η)|2. (15)

The spectral density outside the cavity S(ω) for a weak
modulation is plotted in figure 4 for various values of the
modulation frequency η. When η = ηres = 2�1, the spectrum
reveals a single sharp peak at ω ≈ �1 (main panel). In the
non-resonant regime, the emission at ω ≈ �1 is drastically
reduced and other sideband emission lines appear (inner
panels).

5
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Adiabatic regime

Adiabatic regime

Impulsive regime Impulsive regime

ηt̂1

ηt̂2ηt̂3

ηt̂4

(a)

Figure 5. (a) Schematic representation of the four freeze-out points
in the trigonometric circle. (b) Probability of leaving the ground
state against η/�0 for g = 0.49/ωa and various values of λ.

4. Connection with the Kibble–Zurek mechanism

Finally, we address the crucial connection between our
DCE-like mechanism and the Kibble–Zurek one [6, 7]. In this
section, we consider only the single-mode approximation, and
thus we drop the index and set �1(t) ≡ �(t) to simplify the
notation. On approaching the critical point of the model in
equation (1), regardless of the value of η, there will always be
a regime where the perturbation is non-adiabatic and photons
are produced. A first estimate of the unavoidable departure
from adiabaticity, with a consequent photon flux, is obtained
by calculating the probability of the system to go into an
excited state. For simplicity, we consider one period in the
absence of damping. The probability of leaving the ground
state at the final time tf (ti being the initial time) is

P=1−|��(tf)|ϕ0(tf)�|2 (16)

with |ϕn(t)� being the instantaneous eigenstates of the
harmonic oscillator and |�(tf)� the final state of the system.
The KZM relies on the assumption that the state of a system
brought close enough to the critical point freezes when the
system is not able to adiabatically follow the changes in the
control parameter. For the driving here at hand, the freeze-out
times is found by solving the equation

T (t)/Ṫ (t) = τ (t), (17)

where T (t) = gc(t)/g − 1 plays the role of the relative
temperature of the system and τ = τ0/�(t) is its relaxation
time (τ0 = 1/ω).7 For a sinusoidal modulation of T (t) and if
the oscillating terms brings the system sufficiently close to
the critical point, one finds four solutions, each embodying
a freeze-out time. Figure 5(a) shows their representations in
the unit circle. As the system is initialized in its ground state,
i.e. |�(ti)� = |ϕ0(ti)�, the adiabatic condition T (t)/Ṫ (t) > τ

is satisfied until t = t̂1, where t̂1 is the freeze-out time at which
the system enters the so-called impulsive regime. During this
period, the state of the system is frozen until t = t̂2, when
the adiabatic condition is fulfilled again and the state of the
system becomes |�(t̂2)� = |ϕ0(t̂1)� =

�
n cn,0(t̂2, t̂1)|ϕn(t̂2)�,

where cn,m(t, t �) = �ϕn(t)|ϕm(t �)�. The same argument applies
to the second part of the cycle, where the system evolves
adiabatically for t ∈ [t̂2, t̂3] and is frozen for t ∈ [t̂3, t̂4].

7 Note that T (t) is defined as T (t) = 1 − g(t)/gc if the time-dependent
parameter is g instead of ω.

Figure 6. Output photon flux as a function of η for different values
of g. The transition between the adiabatic and non-adiabatic regimes
(sharp step) is located at the minimum of the gap and is shifted to
lower frequency when the coupling gets closer to the critical
coupling. At the critical point the dynamics is purely non-adiabatic.

The state at t̂4 is then

|�(t̂4)� =
�

k,n

ck,n(t̂4, t̂3)cn,0(t̂2, t̂1) e−iθn |ϕk(t̂4)�, (18)

where θn =
� t̂3

t̂2
dt En(t). Finally, the last part of the evolution

(t ∈ [t̂4, tf]) will not affect the probability P, which is thus
given by

P = 1 − |��(t̂4)|ϕ0(t̂4)�|2. (19)

The behavior of the probability P against η is shown in
figure 5(b) for different values of λ. Clearly, the closer
the system to the quantum phase transition, the more it
is susceptible to a low-frequency driving. A more detailed
analysis requires the study of the transient dynamics. The
scheme of figure 5(a) is still valid, the probability of
excitations being calculated by composing four different
dissipative maps in the same spirit of [29]. We expect only
quantitative changes.

To corroborate the connection between DCE and KZM,
we have further analyzed the photon production in the
adiabatic and non-adiabatic regimes (cf figure 6). For
η > �min (�min being the minimum value of �(t) over a cycle),
the dynamics is non-adiabatic and photons can be created.
Close to criticality, the minimum of the gap vanishes, the
system is always in the non-adiabatic regime and the photon
flux increases linearly with η until the maximum value at
resonance is reached. Far from the transition, the photon
production decreases from the resonance with a Lorentzian
behavior: when η < �min, the photon flux is sharply reduced
and a linear behavior is recovered but with a much smaller
value. This abrupt transition between the adiabatic and
non-adiabatic regimes demonstrates that the breakdown of
adiabaticity due to critical slowing down is at the origin of
photon creation in the DCE, a situation totally analogous to
what is described by the KZM.

5. Conclusions

We have proposed a scheme to realize the DCE by exploiting
the dragging of a driven quantum Dicke model across its
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critical point. By modeling the atom–field interaction as a
linear coupling between two harmonic oscillators, we have
made use of the peculiar features of a critical system close to a
quantum phase transition to simplify the observation of DCE
in the optical frequencies range. In particular, the reduction of
the energy gap between the ground and the first excited state
has been exploited in order to bring the modulation frequency
at which the DCE is observable to the level of experimental
feasibility. Moreover, by investigating the transition between
the adiabatic and the non-adiabatic regime, we have been able
to link the photon production arising from the DCE to another
fundamental phenomenon in condensed matter systems, the
KZM. Indeed, the connection between the DCE and the KZM,
which is supported by qualitative and quantitative evidence in
this work, emphasizes how both phenomena can be seen as
a consequence of the inability of the system to adiabatically
follow the parameters’ changes.

Some comments are due regarding the observation of the
photons’ flux outside the cavity. Due to the small frequency
of the photons generated when g approaches the critical value
(the emission frequency is at ω ≈ �1), the thermal noise in
the output signal may be significant and the detection process
may become a very demanding task. This problem can be
avoided by considering a cavity in which the two mirrors are
both semi-transparent and photons are allowed to come in
and leak out of the cavity from both sides. Being the thermal
baths in the two output fields completely uncorrelated, the
noise signal can be virtually eliminated by measuring the
correlations between the two output modes. Indeed, the study
of such correlations can be regarded as a more general subject
for further investigations.

We would like to emphasize the novelty and generality
of our proposal. Differently from previous works, we address
the problems involved in the experimental observation of
DCE in the optical regime by exploiting the peculiarities
of a critical system, using a full quantum approach and
including dissipative processes in our model. Moreover, to
the best of our knowledge, no connections have previously
been established between the fundamental phenomena such as
quantum phase transitions, DCE and KZM. Such a connection
represents a crucial result of this work. Although we have
explicitly considered a system formed by atoms trapped inside
a cavity where the atomic energy splitting is modulated in
time, our scheme can be applied to any system in which
the Dicke model can be implemented and some parameter
can be modulated in time. The last remark suggests a
prompt realization of our proposal in the light of the recent

experimental achievement of the Dicke phase transition [3] in
intra-cavity condensates coupled with the cavity field.
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