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Abstract: Creep and relaxation tests, performed on various materials like polymers, rubbers
and so on are well-fitted by power-laws with exponent 8 € [0,1] (Nutting (1921), Di Paola et
al. (2011)). The consequence of this observation is that the stress-strain relation of hereditary
materials is ruled by fractional operators (Scott Blair (1947), Slonimsky (1961)). A large amount
of researches have been performed in the second part of the last century with the aim to connect
constitutive fractional relations with some mechanical models by means of fractance trees and
ladders (see Podlubny (1999)). Recently, Di Paola and Zingales (2012) proposed a mechanical
model that corresponds to fractional stress-strain relation with any real exponent and they have
proposed a description of above model (Di Paola et al. (2012)). In this study the authors aim
to extend the study to cases with more fractional phases and to fractional Kelvin-Voigt model

of hereditariness.
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1. INTRODUCTION

In recent years fractional differential equations (FDE)
have been used more and more often in several fields of
physics as well as in applied mechanics context. FDE, in
linear or non-linear formulations, have been introduced to
describe several complex phenomena occurring at multiple
temporal as well as spatial observation scales (Tarasov
(2010), Podlubny (1999), Metzeler et al. (2000), Di Paola
and Zingales (2008)). Indeed, since the beginning of the
twentieth century, the time evolution of polymer stress
relaxation as well as of current intensity relaxation in
dielectric capacitors proved to be well described, analyti-
cally, by time-varying power-laws functions. This observa-
tion leads several authors to derive the governing equation
of physical and dynamical linear systems with the aid
of Boltzmann superposition principle, yielding fractional-
order differential equations (Mainardi (2010), Schiessel et
al. (1995), Caputo (1969), Hilfer (2000), Chechkin et al.
(2008)).

Beside the efficiency of fractional-order operators to de-
scribe, phenomenologically, the time-varying evolution
of systems properties like stress relaxation or creep,
fractional-order differential equations do not correspond
to a physical picture of the system and, in this regard,
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several attempts have been proposed in relevant scien-
tific literature to yield a the mechanical correspondence
with fractional-order differential equations (Schiessel et al.
(1995), Metzeler et al. (2000), Bagley and Torvik (1983),
Bagley and Torvik (1985), Liebst and Torvik (1996),
Podlubny (1999), Lazopoulos (2006), Povstenko (2008),
Sherief et al. (2010)). Recently the authors introduced
exact mechanical model corresponding to spatial-order
fractional operators in the context of non-local elasticity
(see Di Paola and Zingales (2008), Di Paola et al. (2009),
Di Paola et al. (2011)) as well as in the context of non-
local heat conduction (see Borino, Di Paola and Zingales
(2011), Mongiovi and Zingales (2012)). In more details,
the use of spatial fractional order operators corresponds to
the presence of spatial multiple scale model with power-
law decay of spring stiffness in the context of non-local
elasticity or of thermal conductivity in case of non-local
thermodynamics.

A different scenario is involved in presence of fractional
derivative in time since, in this case the non-local ef-
fects correspond to a long-term memory of the consid-
ered dynamical system. Fractional-order time derivatives
of system’ state variables are involved, for example, in the
context of polymer viscoelasticity (Heymans and Bauwens
(1994)) in voltage-current relations of non-ideal capacitors
(see Carlson and Halijak (1964), Westerlund and Ekstam
(1994)) as well as in the context of second-sound effects
observed in thermal wave propagation in complex materi-



als (Sherief et al. (2010), Youssef and Al-Lehaibi (2010)).
Recently, the authors proposed a multiscale mechanical
model that corresponds, exactly to a fractional-order time
derivative to represent the rheologic behavior of fractional-
order materials (Di Paola and Zingales (2012); Di Paola
et al. (2012)). In more details in Di Paola and Zingales
(2012) a mechanical model corresponding, exactly, to a
fractional-order rheologic stress-strain relation with any
real exponent 0 < g < 1 has been proposed, whereas
a numerical assessment have been reported in Di Paola
et al. (2012). The mechanical model is represented by a
massless plate resting on massless Newtonian fluid that is
restrained by means of independent dashpots. The authors
termed this rheological model as Elasto-Viscous (EV), as
far as 0 < 8 < 1/2, and the corresponding material as
Elasto-Viscous one since the elastic phase prevail over the
viscous one at the beginning of the load history. As instead
1/2 < p < 1 the mechanical model is represented by
a massless shear-type indefinite column resting on a bed
of independent dashpots. In this case the authors termed
Visco-Elastic (VE) this kind of materials since the viscous
phase prevail on the elastic one.

In this paper the authors aim to provide mechanical ana-
logues of fractional-order differential equations in the con-
text of time-varying state variables. Indeed, the presence
of multiple order fractional differential operators will be
related to a proper mechanical model that corresponds,
exactly, to the original fractional differential equation.
Some numerical applications will be reported to assess the
validity of the model.

2. MULTIPHASE FHM

The time dependent behavior of a viscoelastic material
may be introduced starting from so-called relaxation func-
tion G(t) that is the stress history o(t) for an assigned
strain v(¢) = U(t) being U(t) the unit step function.
Alternatively the viscoelastic material may be character-
ized by the creep function J(t) that is the strain history
for the assigned stress history o(t) = U(t). In virtue of
the Boltzmann superposition principle the stress-strain
relations is expressed as

/Gt—rch /Gt—T Tydr (1)

Eq. (1) is valid if 7(0) = 0. Let us now suppose that from
experimental relaxation test G(t) is well fitted from
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where T'(+) is the Euler Gamma Function and C(8;),
B; are parameters depending of the material at hands.
Introducing Eq. (1) we get

- i c(8;) (“Dyin) (1) (3)

0<B;<1 (2)

where (CDgi 7) (t) is the Caputo’s fractional derivative of

order ;. Unless the case m = 1 in Eq. (2) or (3) for which
the inverse relationship to Eq. (3) is readily found as

90 = g5 (D670) (4)

where (DO_ # 10) (t) is the Riemann-Liouville fractional

integral, in all other case the inverse of Eq. (3) is not
so simple (Suarez and Shokooh (1995), Rossikhin and
Shitnikova (2001)). To illustrate difficulties emerging in
the evaluation of the inverse relationship (3) the simpler
case of m = 2 and f; = 0 (C(f1) = E) is taken into
consideration. In this case we get
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Such an equation is found by using Laplace transform, by
manipulating the algebraic equation in terms of Mittag-
Leffler functions and using inverse Laplace transform of
the so obtained equation. In fact the creep function of
the considered system may be obtained starting from the
following fractional differential equation

EJ(t) +C() (“D (1)) = U(®). (6)

The Eq. (6) is the equilibrium equation of the fractional
Kelvin-Voigt model forced by o(t) = U(t). Starting from
that equilibrium equation and by performing the Laplace
transform we obtain the following algebraic equation

B (s) + C(2)s™ () = © (7)

v(t) =

where .J(s) is the Laplace transform of the creep function
J(t). The solution of Eq. (7) is
A 1
J(s) = . 8
) = By C(G)s e (8)

It should be noted that the Eq. (8) could be obtained
starting from the relationship between the creep function
and relaxation function in the Laplace domain (Fligge
(1967)), according to which the following relationship
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G(s)J(s) = = (9)
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holds true.

By performing the Laplace transform of Eq. (8) we obtain
a solution which involves the one-parameter Mittag-Leffler
function Eg,(-) (Podlubny (1999), Mainardi (2010)), in
particular for quiescent system at t = 0 we obtain

o e ()
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In addition to Eq. (1) the Boltzmann superposition prin-
ciple in the stress-strain relations may be expressed as

~(t) = /0 J(t —7)do(T) = /0 Jt—7)o(r)dr (11)

and by replacing in the Eq. (11) the expression of J(t), re-
ported in Eq. (10), we get the deformation history reported
in Eq. (5). Moreover, Eq. (5) with simple mathematical
manipulations can be rewritten as

J(t) =

=~ =

(10)
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If B = 1 and C(B2) = p the model becomes a classical
Kelvin-Voigt model with creep function of the exponential

type.

In order to overcome the difficulty encountered for the case
of multiphase hereditary kernel expressed in Eq. (2) we will
take full advantage of the exact mechanical model already
found in Di Paola and Zingales (2012). This issue will be
addressed in the next section.

3. EXACT MECHANICAL MODEL OF FHM

In a previous paper (Di Paola, Zingales (2012)) it has been
shown, that exact mechanical models of viscoelasticity
may be found for the two intervals of §: 0 < 8 < 1/2,
B :1/2 < f < 1. In the former case the material
was labeled as Elasto-Viscous (EV) and the mechanical
model is depicted in Figure 1(a). While in the latter the
material was labeled as Visco-Elastic (VE) and is depicted
in Figure 1(b).
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Figure 1. Continuous fractional models.

The Elasto-Viscous case (0 < 8 < 1/2) is a massless indef-
inite viscous shear layer with a viscosity coefficient cg(2)
resting on a bed of independent springs characterized by
an elastic coefficient kg(z). By contrast the Visco-Elastic
case (1/2 < 8 < 1) is a massless indefinite elastic shear
layer characterized by a shear modulus ky (z) resting on
a bed of independent viscous dashpots characterized by
the viscosity coefficient cy (z). The subscripts E and V' in
k(z) and ¢(z) are introduced in order to distinguish the

predominant behavior (E stands for Elasto-Viscous, while
V' stands for Visco-Elastic). Moreover we define Gy and
1o the reference values of the shear modulus and viscosity
coeflicient.

As soon as we assume:

kp(z) = F(lGia)za; cp(z) = ﬁz*a (13)
with 0 <o <1 and f=(1—-a)/2, and
kv(z) = F(IG—Oa)ZQ; ey (z) = ﬁz’*a (14)

with 8 = (1 4+ a)/2, the stress o(t) at the upper lamina
and v(t) the corresponding normalized displacement (that
is the corresponding strain) reverts to a fractional law
expressed in Eq. (3) for m =1, f; = 5.
The governing equation for 0 < 8 < 1/2 of the mechanical
model depicted in Figure 1(a) is

0 0Y(z, t

5 | 250 = ks,

the constitutive law obtained for (0,t) = ~(¢) is that
obtained in Eq. (3) for m = 1, 8; = f provided the
coefficient C() = Cg(8) in the stress-strain relation is

given as
GoI'(B)2%8-1
Cog) - Gt
I'(2-28)(1-p)
with 7g(a) = —nel'(a) /T(—a)Gg and 8 = (1 — «)/2.
The equilibrium equation of the continuos model depicted
in Figure 1(b) is written as:
9 N )] .
P [k‘v(z)az =cv(2)7(2, 1)

the solution of such differential equation for z — 0 shows
that the stress o(t) at the top is related to the normalized
displacement «(¢) by means of a fractional derivate of order
B = (14+«)/2. The coefficient C'(5) = Cy(8) in the stress-

strain relation reads

_ 1-2p
Cv(B) = G{igi 2;))5(@ 1/2<p<1
(18)

with 7y () = —nol'(—a)/T'(a)Gp and = (1 + a)/2.

(15)

0<B<1/2  (16)

(17)
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4. MECHANICAL MODEL OF MULTIPHASE FHM

With the previous results we now may find the mechanical
model whose constitutive law is expressed in Eq. (3). We
order 3; in such way that

Ogﬁl<62<---67‘S1/2§ﬁ7'+1<"'<ﬁm§1 (19)

For such a material characterized by coeflicient 3; we have
that the massless lamina is sustained by r columns of
massless Newtonian fluid resting on a bed of independent
springs and m — r shear type elastic columns resting on
a bed of independent dashpots how it is described in
Figure 2.

At this stage we have r E'V liquid columns sustained by
external independent springs and m—r shear type columns
sustained by external dashpots. All these elements share
a common displacements ~y(t) at the top of each column
and then the load at the each lamina on the top has to
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Figure 2. Fractional multiphase hereditary material.

be calibrated in such a way that the displacement on the
top is equal for each column (compatibility condition) and
oW(t), the stress at each column, has to be such that
S oW(t) = o(t) (equilibrium of the top lamina).

Now the inverse relationship for the general case presented
in Eq. (3) may be solved with the proper tools of dynamical
systems. This issue will be addressed later on with the aid
of discretized model.

5. DISCRETIZATION OF MULTIPHASE FHM

The mechanical representation of fractional order opera-
tors discussed in previous section may be used to introduce
a discretization scheme that corresponds to evaluate frac-
tional derivative. How it has been shown in the previous
section the multiphase FHM has a mechanical equivalent
of r EV columns (8 € [0, 1/2]) and m — r VE columns

(6 € [1/2,1]).
5.1 The discretized model of EV column

By introducing a discretization of the z-axis as z; = jAz
into to the governing equation of the EV material in
Eq. (15) yields a finite difference equation of the form:
~ SE%J)T; = kg (27 (35, 1)
i=1,2,....7
(20)

so that, denoting k;( =k l)(z])Az and cE = cE (ZJ)/A,Z
the continuous model is discretized into a dynamlcal model
constituted by massless shear layers, with horizontal de-
grees of freedom vV (z;,t) = 7](1)( ), that are mutually in-
terconnected by linear dashpots with viscosity coefficients

c(b% and resting on a bed of independent linear springs kgz

The stiffness coefficient k‘%; and the viscosity coefficient

c%i of the ¢-th column reads:

(i) (2) —ay
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with oy = 1-— 2ﬂz

The equilibrium equations of the generic shear-layer of the
i-th model read:
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Figure 3. Discretized counterpart of the continuous model
Figure 1(a): EV column.

K2 () — e A0 (@) = e ),
k(z ()(t)+0§5‘3 A/ 1(t)_CEJArYJ)() O’
00, i=1,2,.

where 71" (1) = () and M (1) =31 (0) - %@ (1). By
inserting Eqgs. (21) in Egs. (22) at the limit as Az —
0, the discrete model reverts to Eq. (15). That is the
discretized model presented in Figure 3 represents a proper
discretization of the continuous EV counterpart. As soon
as z increase 79 (z, t) decay and lim,_.o 79 (z,t) = 0 it
follows that only a certain number, say n, of equilibrium
equation may be accounted for the analysis. It follows that
the system in Egs. (22) may be rewritten in the following
compact form:

(22)
j=1,2.

pg)A(i):y(i) + qg)B(i),y(i) = vo(t) (23)
where:
(4) (2)
(@ _ Mo a,~(+a), (@ _ GioA I—ay
Pe (1l — o) : 2 I'(l+«) :
(24)
In Eq. (23):
T ; i i . =
A" = [00) 4D .. D] =[100...0]
(25)

where the apex T means transpose. The matrices A® and
B are given as

17 —17% . 0
—17% 17 27 0
Al — 0 —27 . 0
0 0 (n—1)"" 4+n"
(26)
17 0 0 0
0 27% 0 0
B® — 0 0 37« 0 (27)
0 0 0 n- %

The matrices A and B are symmetric and positive
definite (in particular B() is diagonal) and they may be
easily constructed for an assigned value of «; (depending of
the derivative order ;) and for a fixed truncation order n.
Moreover Eq. (23) may now be easily integrated by using
standard tools of dynamic analysis how it will be shown
later on.



5.2 The discretized model of VE column

As the fractional order derivative of the s-th column (r <
s<n)is B = ﬂ‘(,s) € [1/2, 1] the mechanical description
of the material is the represented by the continuos model
depicted in Figure 4 and ruled by Eq (17).
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Figure 4. Discretized counterpart of the continuous model
Figure 1(b): VE column.

By introducing a discretization of the z-axis in intervals
Az in governing equation of the VE materials in Eq. (17)
yields a finite difference equation of the form:

AN s Ay (25, 1) s .
s kﬁ)(zj)sz =i ()7 (25, 1)
that corresponds to a discretized mechanical representa-

tion of fractional derivatives. The mechanical model is rep-
resented by a set of massless shear layers with state vari-

ables v(*)(z;, t) = ’yj(s)(t) that are mutually interconnected

(28)

by linear springs with stiffness kzgfj) = k$)(zj, t)/ Az rest-
ing on a bed of independent linear dashpots with viscosity

coefficient cg/‘?; = cﬁf)(zj, t)Az. Springs and dashpots are

given as:
G e 77(5)
S eV I PR R Rl LY AN O
Vi T-a,) Nz Vi INQ! +as)zj @ (29)

with ay = 28, — 1.
The set of equilibrium equations reads:

S — R 2l = o100,

CS;’.Y('S) + k\(/sg)‘—1A'Y]('i)1 - kS;AVj =0,

71=1,2,...,00, s=7r+1,2,...,n.
(30)

So that, accounting for the contribution of the first n shear
layers the differential equation system may be written as:

pS)B(s)ﬁ(s) + qS)A(S)'y(s) = vol®)(t) (31)
where
(s) (s)
() _ M peee. o) GoT A (e
L N I h A S N G
(32)

while v®), v and the matrices A®®) and B(®) have already
been defined in sect. 5.1. Compatibility condition of the
upper lamina reads v(*)(0,t) = y(t), Vs : 0 < s < n; while
equilibrium equation reads >.»_, ¢(*) = o(t) being o(t)
the external stress of the upper lamina.

6. EXAMPLES

The observations reported in previous section lead to con-
clude that, whatever class of FHM material is considered,
the time-evolution of the material system may be obtained
by the introduction of a proper set of inner state variables,
collected in the vector «(¢) and ruled by a set first-order
linear differential equations. In this perspective the me-
chanical response of the FHM may be obtained in terms
of the vector «(t) by means eigenvectors of the differential
equations system reported in Eq. (22) for EV materials or
in Eq. (30) for VE materials.

In this section three examples are reported, one is a
fractional Kelvin-Voigt model with EV Spring-Pot (5 =
Be = 0.4), the second case consist in a Kelvin-Voigt
model with VE Spring-pot (8 = By = 0.6), then the last
case is fractional Kelvin-Voigt model with critical value
of B8 = 0.5. The stiffness of the elastic spring is denoted
with K. The following numerical examples are obtained
for o(t) = U(t).

K
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Figure 5. Fractional Kelvin-Voigt model.

6.1 The case of Kelvin-Voigt with EV Spring-Pot

In this section the fractional Kelvin-Voigt model depicted
in Figure 5 is investigated. In particular the Spring-Pot
connected in parallel with the spring is of Elasto-Viscous
type, for which the coefficient 5 € [0,1/2]. The discretized
model is reported in Figure 6. The governing equation is

Figure 6. Discretized fractional EV Kelvin-Voigt model.

reported in Eq. (23). However, to take into account for
the presence of elastic spring connected in parallel with
the EV Spring-Pot the matrix B = B becomes:



I+ = 0 0 0
4
N 0 27 0 0
B= 0 0 3 0 (33)
0 0 0 ...n%

Therefore the differential equations system which governs
the equilibrium is rewritten in the following compact form

pEAY + qpBy = va (). (34)

As customary we first solve the homogeneous case, that is
as o(t) = 0. We introduce a coordinate transformation in
the form: _

B'/?y =x (35)
and premultiplying by B=/2 a differential equation for
the unknown vector x is obtained as:

peD X+ qgx = Vo (t) (36)
where v = B~1/2y and D is the dynamical matrix D=
B~1/2A B~1/2 given as

qr2® 0
qE +K K+(JE
452" (2 0
K+qE 1

Oh
Il

3\ %

0 -z 0
=)

0 0 1+

n [e3
L o <n — 1> _
(37)
that is D is symmetric and positive definite and it may be
obtained straightforwardly once n and « are fixed. Let d
be the modal matrix whose columns are the orthonormal
eigenvectors of D that is
"DP = A; TR =1 (38)
where I is the identity matrix and A is the diagonal matrix
collecting the eigenvalues :\j > 0 of D.

In the following we order S\j in such a way that 5\1 < 5\2 <

.-+ < A,. As we indicate y(t) the modal coordinate vector,
defined as

x(t)=@y(t);  y(t)=2"x(t) (39)
and we substitute in Eq. (36) a decoupled set of differential
equation is obtained in the form:

(40)

-equation

peAY +qpy = vao(t)
where v = ®7v = #TB~1/2y = $Tv. The j
of Eq. (40) reads:
¢1,]

pEJ

Uitpjy;=—%o0(t); j=123,...n (41)
where p; = qE/pES\j > 0 and ¢y ; is the gt element of

the first row of the matrix ®. The solution of Eq. (41) is
provided in the form:

P15

y;(t) = y;(0)e7P7* +
DEA;

t
/ e PitTo(r) dr  (42)
0

where y;(0) is the j*" component of the vector y(0) related
to the vector of initial conditions ~(0) as:

y(0) = @"B/24(0).

Solution of the differential equation system in Eq. (34) may
be obtained as the modal vector y(t) has been evaluated
by solving Eq. (42) with the aid of Eqs. (35) and (39) as

y(t) = B2y (). (44)
As we are interested to a relation among the shear stress
and the normalized transverse displacement of the upper

lamina we must evaluate the first element of vector ~(t)
that is obtained as:

(43)

() = vy (). (45)

For quiescent system at ¢ = 0 and forcing the model
with o(t) = U(t) the solution y(¢) obtained from Eq. (45)

becomes:
n

—e Pit]. (46)

+QE

6.2 The case of Kelvin-Voigt with VE Spring-Pot

In this section the fractional Kelvin-Voigt is characterized
for the presence of VE Spring-Pot connected in parallel
with elastic stiffness. The discretized model is depicted
in Figure 7. Modal analysis of the differential equations

Figure 7. Discretized fractional VE Kelvin-Voigt model.

system representing the behavior of this fractional model
is quite similar to previous section. In this case the
equilibrium equations system in compact form becomes

pvBY + qv Ay = vo(t). (47)
where the matrix B is defined in Eq. (27), while the matrix
A becomes:

K
I 0
qv
R —17% 1T 2T 0
A= 0 e 0
. 0 0 (n—1)"% +n"%]




In this case we substitute v = B~/?x in Eq. (47) and we
perform premultiplication by B~1/2:

pvk +quDx = Vo(t) (49)
where D = B~Y/2AB~1/2 is the dynamical matrix defined

as:
M _<2> 0
qv 1

[Nl

wf}
|

(50)

: : . .n .
0 0 o1+ ( )
L n—1/ 1
The dynamical equilibrium equation in modal coordinate
reads: R
pvy +avAy =vo(t) (51)
so that equilibrium of j** Kelvin-Voigt represented by
Eq. (51) is given as:
0;Yj +yj = OLs
qv A

(52)

olt); Jj=1,2,3,...n

where §; = pv/qvj\j > 0.

The solution in terms of modal coordinates are obtained
in integral form as:

P15

(1) = y;(0) e7¥/% 4
y]() y]() 6qu/\j

t
/ ef(th)/‘;jo(T) dr. (53)
0

The stress-strain relations between shear stress o(t) and
normalized displacement () may be obtained as in pre-
vious section (see Egs. (42) and (45)).

For quiescent system at ¢ = 0 and forcing the model with
o(t) = U(t) the solution «(t) becomes:

n (;52
1,7 -4
= —L 1-e %}.

(54)
S v

v(t)

The particular case in which fractional Kelvin-Voigt model
consists by perfect spring and Spring-pot with § = 0.5 may
be studied either starting from Eq. (46) or from Eq. (54).

In Figure 8 the results for o(t) = U(t), Go = no = 2,
K = 20Gy, n = 750, Az = 0.05 and different values of
B8 =04, 0.5, 0.6, are contrasted with solution reported in
Eq. (10) evaluated by Mathematica.

7. CONCLUSIONS
Inverse relationship of simpler counstitutive law o(t) =
c(p) (CDg+’y) (t) is readily found in the form ~(t) =
c(p)t (D_fo') (t). Finding the inverse relationship of

ot) =31, C(6)) (CDOﬁi’y) (t) is a very hard task unless
the case m = 2 that involves two parameters Mittag-

Leffler functions. For m > 2 no exact solutions may be
found. Recently it has been shown that exact mechanical
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Figure 8. Creep test of EV and VE Kelvin-Voigt model:
comparison between the exact and approximate solu-
tion.

c(B) (CDg+’y) (t) is represented by
indefinite mechanical models constituted by massless fluid
resting on a bed of springs (0 < f < 1/2) or by
massless shear type column resting on a bed of dashpots
(1/2 < B < 1). Springs and dashpots decrease with
power-law related to the fractional order derivative (.
With the aid of these mechanical models the problem of
finding the strain history for an assigned stress history
may be faced by using standard tools of dynamic analysis
of mechanical systems. It is shown that in the general case
a(t) = X252, C(B)) (CDgi'y) (t) the mechanical model
is massless plate interconnecting m columns r of them
are fluids sustained by independent springs. While the
remaining m — r are shear type columns resting on a bed
of independent dashpots. Discretization of the two kind of
columns and eigenanalysis of each column leads to a simple
problem that may be implemented in computer codes.

models of o(t) =
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