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SUMMARY. Formulation of structural optimization problems usually leads to the individuation of
one or more objective functions to be minimized under different constraints. Many multi-objective
evolutionary algorithms are approached by a Pareto-compliant ranking method, where no a priori
information on the problem is needed and the concept of non-dominated solutions is used. In this
paper a constraint handling technique based on the concept of hypervolume indicator is presented.
Initially proposed to compare different multi-objective algorithms hypervolume indicator is the only
single set quality measure to reflects the dominance of solution’s sets. The constraint handling
technique proposed use an extension of stochastic ranking approach for single-objective optimization
problem to multi-objective ones. The extension proposed use the hypervolume indicator to compares
different solutions and is tested on a structural constrained multi-objective problems. Results show
the suitability of the proposed approach.

1 INTRODUCTION
Formulation of structural optimization problems usually leads to the individuation of one or more
objective functions to be minimized under different constraints.
Let us defines a general multi-objective constrained optimization problem as:
zggi}gar{fl(x)vfé(x)a"'7fm(x)}; fj R > R ] € {172,...,771} (l)
subject to: g;(x) <0 gi : RPT— >R 1€{1,2,...,p}

the objective funtion f; assigns to each variables vector x a corresponding objective value f;(x)
and, without loss of generality is assumed that f;(x) € R. The functions g; are constraints that the
variables vector has to satisfy. The feasible region I' is defined by:

I'={x e R""|g;(x) <0} (2)

the usual output of this problems is a set of incomparable variables vectors that belong to feasible
region I'. Usually two variables vectors for unconstrained multi-objective are considered incompara-
ble using the notion of Pareto optimality. A solution is said to be Pareto optimal for a multi objective
problem if all other solutions have a higher value for at least one of the objective functions, or else
have the same value for all objectives. If we consider two solutions x; and x2 the solution x4 is said
to dominate the other solution xs, if both the following conditions are true:

a) the solution x; is no worse than x5 in all objectives

fi(x1) < fi(x2) for all j=1,m 3)
b) the solution x; is strictly better than x2 in at least one objective

fi(x1) < fj(x2) for at least one jel,m 4)



If any of the above conditions is violated, the solution x; does not dominate solution x2.

Typically, there is an entire curve or surface of Pareto points or non-dominated points and the
shape of this curve indicates the nature of the tradeoff between different objectives.

For single objective problems different approaches was used. Penalty methods used to transform
the constrained problem into an uncostrained one [1], constrains are considered as additional ob-
jectives [2], constraints violations are used to introduce a rank in the solutions [3]. The classical
extension to constrained multi-objective problems, [4], [5], assumes that feasible solutions always
dominate unfeasible solutions. For unfeasible solutions is then introduced a nondominated ranking
using the overall constraint violation [4] or a more complex technique where a nondomination check
of constraints violation is performed, [5].

Choosing always feasible solutions could be defined as overpenalization, [3] and, especially
when the feasible region is disjointed, could drive the search to local optima.

To overcome these difficulties other approaches try to use a combination of objective function
values and constraint violation values, [6], using an adaptive balancing between them in different
stages of search.

In the present work the stochastic ranking proposed by [3] for single objective constrained op-
timization problems is extended to multiobjective ones using the concept of hypervolume indicator
(71, [8].

The paper is organized as follows: after presenting the basic of stochastic ranking and of hyper-
volume indicator, the proposed multi-objective extension is illustrated. Then, the results for a typical
structural constrained multi-objective problem are discussed.

2 HYPERVOLUME INDICATOR

The hypervolume indicator H (or S-metric), first introduced by Zitzler et al. [7], is the only
known unary quality measure that is compliant with the concept of Pareto-dominance, i.e, whenever
a set of solutions dominates another set, its hypervolume indicator value is higher. Thanks to this
characteristic was used to to compare the performance of different multiobjective algorithms and
more recently also as criterion guidance for multiobjective optimization algorithms itself.

In the present work a binary quality indicator Iz p based on hypervolume indicator is used, [9]. A
binary quality indicator could be defined as real-valued function that compares two set of solutions of
a multi-objective problem, could then be seen as a continous extension of Pareto dominance concept.
To preserve characteristics of Pareto dominance the indicator has to be dominance preserving:

assigned Xi,Xg

x1 dominate xz = Igp(x1,%X2) < Igp(xa2,X1)

. )]
assigned X1i,Xs,X3
x1 dominate x2 = Igp(xs,x2) < Igp(xs,x1)
When only two solutions are compared the indicator [z p is defined as:
Inp(x1,X2) =
x2 dominate x1 = H(x2)— H(x1) (6)

X2 notdominate x1 = H(x1 + x2)— H(x1)

Iy p represents the volume of space dominated by x5 but not by x;. In figure 1 is represented
the Iy p indicator for two objectives. In figure 1a x3 and x2 are not comparable, in figure 1b x2



dominates x.
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Figure 1: I p indicator for two objective, left no dominance between x; and xs, right xo dominates
X1

Using Iy p is possible to assign a fitness I’ to each solution according to the contribution to the
optimization objectives:

F(x) =Y Tup(xi,%j) @)
i#]
The algorithm ACORy, with Lévy [10] perturbation was applied as underlying optimization al-
gorithm.

3  MULTIOBIJECTIVE STOCHASTIC RANKING APPROACH

The central idea of stochastic ranking [3] is to obtain a right balance between considering con-
straint violation and considering fitness value in the search process. If the correct balance is achieved
the search is driven toward the optimum value in the feasible region using not only informations
made available by feasible solutions but also by unfeasible ones.

To this aim in comparing two solutions is used an assigned probability Py to not consider con-
straint violations but only fitness values. The ranking of different solutions is obtained using a
bubble-sort-like procedure where two solutions are compared using a probability Py to not consider
constraint violations in solution’s ranking.

When Py = 0, constraint violation is always considered, overpenalization approach is used,
and for Py = 1 no constraint violation is considered, underpenalization approach is used. More
details are available in [3].

Using Iy p is possible to introduce a stochastic ranking also for multiobjective probles as re-
ported in Box 1, obviously if the number of objectives m = 1 the original stochastic ranking proce-
dure is recovered.

4 STRUCTURAL CASE STUDY

In order to test the proposed approach the optimization of a composite laminate for maximum
buckling loads and minimum weight was analyzed. Considering a rectangular composite plate sim-
ply supported and subjected only to normal compressive loads the plate buckles into m and n half
waves in the x and y direction, respectively, when the loads reach the values A\, N and Ay V.



Box 1 - MULTIOBJECTIVE STOCHASTIC RANKING

For each solution i in archive
For each solution j in archive
sample uin [0 1]
If z; and z; are feasible
oru < Py
compares F'(z;)andF(x;)
Else
compares violation(z;)andviolation(z;)
end for
end for
Take the first k solutions
Increase number of iterations
while termination not met

In the general case of laminate with multiple anisotropic layers and without any stacking se-
quence symmetry the problem doesn’t admit a simple solution. If we assume particular constraints
on the stacking sequences, i.e. plates for which the bending twisting coefficients are zero are so
small in respect to the other coefficients to be assumed zero, using the classical laminate theories
[12] the buckling load factor A\, could be found as:

’/T2 m4D11 + 2(D12 + 2D66)r2m2n2 + T4TL4D22
a? m2Ny + r2n2N,

Ap(m,n) = ®)

where a and b are the lamina dimensions; r = 7 the aspect ratio; IV, and N,, the applied loads;
D;; the bending stiffness of the composite plate depending from the assumed stacking sequence of
the laminate.

The smallest value of )\, over all possibles values of m and n represents the lowest value of
loads for which the buckling conditions are reached and hence the critical buckling load factor A.p.
According to [11] limiting the values of m and n to 1,2 gives a good estimation of critical buckling
load, so for an assigned plate geometry the first objective could be stated as:

max(f;) = max (min Xp(m,n); m,n€l, 2) )

According to the classical laminate theories [12] before the buckling condition is reached the
plane stress condition is assumed valid for each ply of the laminate. In the generic lamina k the
constituive equations could be expressed as:

Ozx Qu 912 @3 €xx
Oyy | = | Qa1 Qoz @as < | Cyy (10)
Tay Qa1 @3 Qs3 |, Yy

where Q; ; are the lamina stiffness components expressed in the plate reference axis. The bending
stiffness D;; of a plate made by n lamina could be now expressed as

SRR .
Dij =3 > Qi (5 — #i1) (1
k=1



Fiber directions Constraints No. design variables

P, =[0,45,90] symmetric, balanced 16
P, =0, 30, 60,90] symmetric 32
P; =0,15, 30,45, 60, 75, 90] symmetric 32

Table 1: Design problems analyzed.

where zj and zj_1 are the coordinate of the k lamina through the laminate thickness.

The terms Q, ; could be expressed knowing the fiber orientations ¢, and the elastic properties of
the material along the principal directions E¥,, E%,, G%,, V¥, of each lamina, [12].

The weight W is assumed proportional to the laminate thickness, hence the second objective
could be expressed as:

min(fy) = minsz (12)

The laminate strains are imposed to be less than allowable values for each lamina k, the con-
straints could be stated as:

(€)r < €& (13)

Eq. (9) is used to evaluate laminate strains for the composite plate.

For an assumed plate geometry the design variables are hence the elastic properties, the fiber
orientations and thickness of each lamina.

In this paper a laminate made by graphite epoxy lamina was considered, the elastic properties of
the material are: Ey; = 127.6 GPa; E9> = 13.0 GPa; G152 = 6.4 GPa; v15 =0.3.

The maximun ply thickness is ¢ = 0.254 mm.

The laminate has length ¢ = 0.508 m, width b = 0.254 m, and is made by 64 plies. Table
1 shows the different set of possible fiber orientations, the constraint adopted on the stacking se-
quence and the number of independent variables for each case analyzed in the present paper. The
continuous relaxation approach is adopted in the optimization algorithm, i.e. the discrete variables
are replaced by continuous ones and in the evaluation of the objective function are transformed in
the allowed discrete values. This choice is suitable due to the natural order in the design variables
space.

Figure 2: Nondominated fronts obtained for a typical run. Design problems P, Ps, Ps.

In Figure 2 are reported non dominated front, obtained for a typical run, for different design prob-
lems analyzed. The objective functions are normalized. The proposed algorithm was able to find



feasible individuals and solutions are well spread on the sub-optimal pareto front. Use of informa-
tions from unfeasible individuals helps algorithm to explore search space, avoiding the confination
effect due to overpenalization approach.

5 CONCLUSIONS

In the present work an extension to classical constraint handling technique used for single ob-
jective problems was used. The peculiar characteristic of fitness definition, using binary indicator,
and of constraint handling technique frees from the introduction of specialized operators to take into
account problem’s characteristics. The technique was applied to a structural optimization problems
and results are promising. Comparisons with other constrained multiobjective algorithms are needed
to better understand capabilities and limitations of the proposed approach.
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