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Abstract

This paper focuses on the energy budget in the calculation of unsteady free-surface flows on moving grids with and without using the
‘arbitrary Lagrangian–Eulerian’ (ALE) formulation or hydrostatic-pressure assumption. The numerical tool is an in-house general-pur-
pose solver for the unsteady, incompressible and homogeneous Navier–Stokes equations in a Cartesian domain. An explicit fractional-
step method and co-located finite-volume method are used for the second-order accurate integrations in time and space. The test cases
are nonlinear and linear irrotational standing waves, which allow to characterise the impacts of an ALE or Eulerian formulation with
moving grids by comparison with the anticipated energy conservation. The study is also extended to viscous waves for varying wave-
height-to-water-depth and basin aspect ratios. The Eulerian viewpoint produces marked overdamping as early as in the first wave period
for the range of relative wave heights g0/h > 0.01, where g0 is the wave semi-amplitude and h is the undisturbed water depth. The hydro-
static calculations misrepresent the evolution of the potential and kinetic energies for h/L > 0.1, where L is the basin length, with spurious
modes arising from different initial conditions.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The moving interface between water and atmosphere is a
key feature in environmental hydraulics. The numerical
techniques representing the free-surface motion are influ-
enced by the way the domain discretisation is performed,
and a wealth of contributions has been dealing with this
topic in the past decades.

Based on the broad classification given by [1], three
major groups can be identified. The first one (so-called
fixed-grid Eulerian techniques) draws a computational
domain that includes both interfacing fluids, cover them
with a single mesh and then evaluate the emptiness or full-
ness of the cells with mass-less tracers [2] or an appropriate
scalar [3]; such approach is able to handle highly-distorted
shapes, but the information on the interface position is not
immediately available from grid points stored as geometric
0045-7930/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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variables. The second one (so-called front-fixing tech-
niques) solves the equations on a fixed domain for the
aqueous domain by employing a time-dependent mapping
into body-fitted curvilinear co-ordinates. The third one
(so-called front-tracking techniques) creates a mesh for
the aqueous domain only, let the boundary be displaced
in compliance with the governing equations, and periodi-
cally regenerates the whole grid so that the interface is
always a gridline (references are listed later on); the inter-
face position is thus directly computed within the time-inte-
gration cycle but, on the downside, an excessive grid
distortion can corrupt the computational accuracy in the
interior domain. (So far, this approach has been tested with
single-valued surfaces, although its amplification to over-
turning waves has been envisioned and is an area of current
research [4].) The formulation used in this paper belongs to
the latter group. Numerical techniques blending the fea-
tures of different approaches have also been devised – for
example in [5], where a split-merge mechanism is applied
to the near-surface computational nodes.
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To take into account the computational effects of trans-
lating grids which adjust to the free-surface motion, the
governing equations in the continuum can be written
according to the so-called Arbitrary Lagrangian–Eulerian

(ALE) approach. Instances of ALE handling found in the
literature review can be grouped into three main categories.
The first tack proceeds from the straightforward applica-
tion of the relative-motion kinematics to the evaluation
of time derivatives, as done for instance in [6]. The second
one more extensively proceeds from the co-ordinate trans-
formations theory, allowing the transformed co-ordinate
system to depend on time and yielding the relevant differen-
tial equations, as found in [7,8]. The third one recalls the
integral formulation of the governing equations, as done
by [9,10]. In particular, combinations between the ALE
approach and finite-volume techniques are reported in
[6,8,9,11–15].

Three-dimensional models have been used for predicting
free-surface flows for a long time now. Based on scaling
arguments, the earlier ones invoked the hydrostatic-pres-
sure assumption (hydrostatic 3D models) in order to sim-
plify the vertical Navier–Stokes equation and avoid the
computational burden caused by the pressure–velocity
decoupling in incompressible fluids (among others [16–
18]). Whereas this is quite a sensible approximation in shal-
low and nearly regular domains, in several environmental
applications the scaling assumptions may locally fail, for
example, on account of the domain shape where significant
vertical accelerations can easily be induced by closing
boundaries. The importance of these limitations is wit-
nessed by a number of later models, developed until
recently, considering the full vertical momentum balance
at an increased computational cost (fully-3D models), some
of which extended previous hydrostatic 3D models; see
[6,19–23].

Based on this research, it has been acknowledged that,
when dealing with moving-boundary problems, the ALE
formulation is an improvement over the purely Eulerian
one, and that (irrespective of the interface handling) using
the hydrostatic-pressure assumption beyond ‘certain limits’
produces inaccurate results. Still, an ad hoc numerical
study may be purposeful firstly to study the trends with
which simplified approaches cause increasingly significant
inaccuracies, and secondly to identify the conditions in
which numerical simulations should strictly include an
ALE approach and complete pressure handling. Further,
whereas previous work has widely recognised that the Eule-
rian formulation with moving grids generates artificial
mass sources and fictitious velocities, to our knowledge
its impact on energy conservation in prolonged unsteady
calculations has not been given quantitative evidence and
characterised.

To address these points, we performed the analysis of
the energy budget in periodical, linear as well as nonlinear,
irrotational standing waves, which is particularly appropri-
ate since energy dissipations and differences in the oscilla-
tion period may be arguably caused by the inappropriate
use of the standard Eulerian formulation and/or hydro-
static-pressure assumption. Moreover, we extended the
numerical experiments to viscous standing waves to locate
a point of compromise between model complexity and
accuracy of results. The waves considered here are linear
as well as nonlinear. While the benchmark set regards only
one restricted class of waves, the results may have a bearing
on other time-dependent free-surface flows.

Here, the tool is an in-house general-purpose numerical
model based on the finite-volume and fractional-step meth-
ods, to solve the complete unsteady, incompressible, free-
surface and homogeneous Navier–Stokes equations on
moving grids in the Cartesian space.

This article is structured as follows: in Section 2, we
review the analytical governing equations in integral forms,
paying special heed to the free-surface handling, ALE
approach and hydrostatic 3D simplification; in Section 3,
we introduce the numerical schemes and algorithms to inte-
grate in time and space; in Section 4, we benchmark and
comment the results obtained for the selected standing
waves. In Section 5, we draw the conclusions.

2. Physical and analytical model

This section deals with the unsteady incompressible 3D
Navier–Stokes equations relative to a homogeneous fluid
in a free-surface domain. Cartesian axes are indicated as
xi with the x3-axis orientated vertically upwards. The sum-
mation convention on repeated indexes is used throughout
the paper.

2.1. Free-surface modelling

The fluid domain is thought of as a field of water col-
umns in the horizontal plane (x1,x2) with a single particle
in contact with the atmosphere (single-valued free surfaces).
The locus of fluid elements laying on the free surface at a
moment t, F(x1,x2,x3, t) = 0, thus takes the form

F ðx1; x2; x3; tÞ ¼ gðx1; x2; tÞ � x3; ð1Þ

where the height function g defines the instantaneous sur-
face level.

The condition DF/Dt = 0 gives the evolutionary equa-
tion to the interface (the free-surface kinematic boundary

condition) which can be written as

og
ot
þ uj

og
oxj
¼ u3; j ¼ 1; 2 ð2Þ

and, alternatively, as

og
ot
� ujnj

n3

¼ 0; j ¼ 1 . . . 3; ð3Þ

where uj and nj are the j-th components of the velocity vec-
tor and of the outward-pointing unit vector normal to the
free-surface element, respectively. Eqs. (2) and (3) are re-
lated by the description of the normal unit vector in terms
of minus the normalised gradient of F:
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ni ¼ �
oF
oxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oF
oxj

oF
oxj

s !�1

; i; j ¼ 1 . . . 3: ð4Þ

Eq. (3) shows the straightforward relation between the lo-
cal rate of change of the free-surface position and the local
normal velocity and is used here as a governing equation.
Among the reviewed literature, this expression has only
been preferred by [5,13].

In addition to the kinematic boundary condition, the
free-surface dynamic boundary condition prescribes that
forces are in equilibrium across the air–water interface
[25,26]. Surface tension and external shearing actions are
not considered in the following applications. Therefore,
in the assumption that the atmospheric pressure is uni-
formly zero over the interface for all t’s, the component
of the stress vector normal to the interface yields the pres-
sure boundary condition:

p ¼ 2m
oun

on
;

where the pressure symbol implies division by the fluid den-
sity q; un = ujnj is the fluid velocity normal to the interface;
and m is the kinematic viscosity. For the time being, the
normal velocities are assumed to be known: see Section
3.2.3 for further details.

In addition, when m 6¼ 0, the stress-vector components
tangential to the free surface yield the Neumann-type con-
ditions for the tangential velocities us and ut:

ous

on
¼ � oun

os
;

out

on
¼ � oun

ot
;

where si and ti are two chosen orthogonal unit vectors on
the osculating plane normal to ni, and us = ujsj, ut = ujtj.
(The subscript to t avoids confusion with the symbol for
time.) When m = 0, null normal derivatives are imposed.

Hereinafter, the F subscript indicates on-surface
variables.

2.2. Pressure decomposition

Leaning on Expression (1), the pressure field p is split
into the sum of the modified pressure q [25] and hydrostatic
pressure, dependent on the surface position, as follows:

pðx1; x2; x3; tÞ ¼ qðx1; x2; x3; tÞ þ qg½gðx1; x2Þ � x3�; ð5Þ

where g is the acceleration of gravity. Expression (5) im-
plies single-valued free surfaces and a bottom supporting
the water column [27]. On the free surface, of course, q � p.

2.3. Integral governing equations: the Eulerian viewpoint

The equations governing the motion of an infinitesimal
fluid particle at (x1,x2,x3, t) are given by Newton’s second
law of motion, the incompressibility constraint and the
kinematic boundary condition (3). From the Eulerian point
of view and using Formula (5), the first two respectively
read
oui

ot
þ o

oxj
uiuj � m

oui

oxj

� �
þ oq

oxi
þ g

og
oxi
¼ 0; i; j ¼ 1 . . . 3;ð6Þ

ouj

oxj
¼ 0; j ¼ 1 . . . 3: ð7Þ

The Eulerian integral equations can be recovered after inte-
grating the differential counterparts on a fixed control vol-
ume V with boundary S and invoking Green’s lemma. For
later convenience, we delay the application of the lemma to
the modified-pressure term until Formula (31). The govern-
ing set is thus readZ

V

oui

ot
dV þ

Z
S

uiuj � m
oui

oxj

� �
nj dS þ

Z
V

oq
oxi

dV

þ g
Z

S
gnidS ¼ 0; i; j ¼ 1 . . . 3; ð8ÞZ

S
ujnj dS ¼ 0; j ¼ 1 . . . 3; ð9ÞZ

SF

og
ot

dS �
Z

SF

ujnj

n3

dS ¼ 0; j ¼ 1 . . . 3: ð10Þ

The variable g in the last term of Eqs. (8) is, of course, the
quote of the interfacial point above each surface element
dS. The kinematic boundary condition (10) is integrated
over that portion of domain boundary which belongs to
the free surface.

2.4. Integral governing equations: the ALE viewpoint

The ALE formulation of the integral equations is best
thought of as the enforcement of the conservation princi-
ples in a volume whose boundary is allowed to move free
from a priori ties to the fluid motion, i.e. arbitrarily [28].
This handling retains the intermediate tone between an
Eulerian approach, where the volume is fixed in space,
and a Lagrangian approach, where the volume changes
solely on account of the motion of the fluid elements con-
tained inside.

The relevant integral equations can be either written
from scratch [10,29–32], or derived from Eqs. (8)–(10)
[9,11] by superimposing the effects of the arbitrary motion
of the domain V = V(t) by the relationship [9]:

o

ot

Z
V

/dV ¼
Z

V ðtÞ

o/
ot

dV þ
Z

SðtÞ
/wjnj dS;

j ¼ 1 . . . 3; ð11Þ

where / is a generic variable and wi is the displacement
velocity of a boundary element.

Therefore, applying Formula (11) to the local-inertia
term in (8) results in the momentum equations

o

ot

Z
V

ui dV þ
Z

S
uiðuj � wjÞ � m

oui

oxj

� �
nj dS

þ
Z

V

oq
oxi

dV þ g
Z

S
gni dS ¼ 0; i; j ¼ 1 . . . 3; ð12Þ
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which represent the dynamical equilibrium of the fluid en-
closed in a volume whose boundary undergoes arbitrary
displacements in time. We shall refer to the ui-field as the
absolute velocity and to the (ui � wi)-field as the relative

velocity between fluid elements and moving boundaries.
The ALE viewpoint does not affect the free-surface

equation (10), as the interface is assumed to move only
on account of material displacements rather than arbitrary
actions.

To maintain a consistent space representation, the vol-

ume- or space-conservation law links the rate of volume
change and boundary velocity wi of each control volume
together [8,10,29–32,11,14]:Z

S
wjnj dS ¼ dV

dt
; j ¼ 1 . . . 3: ð13Þ
2.5. Hydrostatic assumption and 3D equations

The well-known hydrostatic 3D equations stem from the
Navier–Stokes equations by assuming that the effects of the
remaining terms upon the modified-pressure gradient are
negligible in the vertical equation. The vertical scalar equa-
tion thus reduces to

oq
ox3

¼ 0;

whereby the modified-pressure field takes the free-surface
value q(x1,x2,g, t), and the pressure distribution p becomes
hydrostatic according to Formula (5). Hence, the vertical
momentum equation is replaced by Stevin’s law, while
the equations on axes i = 1,2, devoid of the modified-pres-
sure gradient term, allow the computation of the horizontal
motion field.

3. Numerical model

3.1. Space discretisation and integration

The model can deal with a structured grid of non-over-
lapping hexahedral cells, non-orthogonal and clustered in
special regions when necessary. They are numbered with
the p,q, r discrete co-ordinates, which mimic the Cartesian
co-ordinates x1,x2,x3 and span over the ranges 1 . . .Np,
1 . . .Nq, 1 . . .Nr, respectively.

The faces shared by the (p,q, r) cell and the neighbouring
cells having indices (p + 1,q, r), (p � 1,q, r), (p,q + 1, r),
(p,q � 1, r), (p,q, r + 1) and (p,q, r � 1) orderly take the
names ‘east’, ‘west’, ‘north’, ‘south’, ‘up’ and ‘down’ and
subscripts E, W, N, S, U, D.

The pressure and velocity unknowns are allocated in
the cell centroids, while the surface positions are allocated
in the centroids of the U-faces of the near-surface cells (co-
located arrangement). Conveniently, in a computational
domain with a single-valued interface, the vertices and
centroids of the cells can be physically aligned along
verticals.
Some notational manipulation is convenient to discre-
tise the governing equations (9), (10), (12) and (13). Firstly,
since control volumes are bounded by polygonal faces, sur-
face integrals can be substituted with the summation of the
integrals over the polyhedron’s faces (with symbol Sf)Z

S
/dS ¼

X
f

Z
Sf

/dS;

where / is a generic variable and the summation index f

spans over the faces.
Secondly, the absolute-, displacement- and relative-

velocity fluxes across a boundary element take the follow-
ing symbols:

dU ¼ ujnj dS; dX ¼ wjnj dS; dW ¼ ðuj � wjÞnj dS

with face-integrated fluxes accordingly indicated as Uf, Xf,
Wf.

Finally, after introducing two shorthand symbols for the
volume- and dface-averaged values

�/ ¼ 1

V

Z
V

/dV ; /̂f ¼
1

Sf

Z
Sf

/dS;

and after noting that the convection terms can be written asZ
S

uiðuj � wjÞnj dS ¼
Z

S
ui

dW
dS

dS ¼
X

f

Sf

d
ui

dW
dS

����f ;
the governing equations (12–13) and (9–10) are orderly
written with renewed symbols as

o

ot
V ui þ

X
f

Sf

d
ui

dW
dS
� m

coui

on

 !
f

þ V
oq
oxi
þ g

X
f

SðiÞf ĝf ¼ 0;

i ¼ 1 . . . 3; ð14ÞX
f

Xf ¼
dV
dt
; ð15ÞX

f

Uf ¼ 0; ð16Þ

o

ot
SF ĝF �

UF

n3

¼ 0; ð17Þ

where SðiÞf ¼ niSf is a face projection onto the plane normal
to the xi-direction, and UF is the absolute flux on the free
surface.

By unfolding the time derivatives of Eqs. (14), Eq. (15) is
inserted into them [8], thus giving the combined equations

V
oui

ot
þ ui

X
f

X f þ
X

f

Sf

d
ui

dW
dS
� m

coui

on

 !
f

þ V
oq
oxi

þ g
X

f

SðiÞf ĝf

¼ 0; i ¼ 1 . . . 3 ð18Þ

with a newly-arisen second term that can be called a ‘cell-
divergence term’.



660 G. Lipari, E. Napoli / Computers & Fluids 37 (2008) 656–673
For computational ease, the momentum convective
terms undergo the approximation [33]X

f

Sf

d
ui

dW
dS

�����
f

�
X

f

Sf bui f

ddW
dS f ¼

X
f

bui f Wf ;

compatible with a second-order accurate spatial
discretisation.

In the above equations, the dface-averaged values are
linked to the volume-averaged unknowns by additional lin-
ear relationships expected to conform with the second-
order spatial accuracy. We used the linear formula

/̂f jpqr ¼ kf
�/j

a
þ ð1� kf Þ�/jb; ð19Þ

wherein the subscripts A, B denote the indices of the cells
sharing face f, and the kf coefficient is calculated on the seg-
ment joining the cell centroids and intersecting the face.

Additionally, the discrete second derivatives require for-
mulae to handle face-averaged normal gradients. In the
finite-volume spirit, the midpoint evaluation of the normal
derivative on a face f can be worked out on a new control
volume centred on the f-face centroid and having volume
Wf and boundary Af [34]. Such a companion control vol-
ume associated to each face can be drawn by shifting the
face in point normally twice, inwards and outwards, so
far apart as to reach the centroids of the neighbouring cells
(see Fig. 1 for a simpler two-dimensional example). There-
fore, the expression of the face-averaged normal derivative
isco/
on

�����
f

¼ nfj

co/
oxj

�����
f

¼ nfj

W f

Z
W f

o/
oxj

dW ¼ nfj

W f

Z
Af

/mj dA

¼ 1

W f

X
s

nfjmsjAfs/̂fs: ð20Þ

Here, the indexes j and s span over the Cartesian compo-
nents and over the faces of the companion cell related with
face f, respectively; nf is the direction of differentiation, i.e.
the normal unit vector to the face f of the primary cell; ms is
the normal unit vector to each s-th face in the companion
(p+1,q)
(p,q)

Fig. 1. A companion control volume (shaded) to compute the averaged
second-derivative on the ‘east’ face of a primary computational cell in a
finite-volume fashion (two-dimensional grid).
cell; Afs is the s-th face area in the companion cell; and, fi-

nally, b/fs is the face-averaged value of / there. Owing to
the construction of the companion cells, b/fs does coincide
with the cell-centred unknown / in one neighbouring cell.

On exemplifying with the ‘east’ face of the cell (p,q) in a
two-dimensional orthogonal uniformly-spaced grid, after
some algebra the previous formula becomesco/
on

�����
e

¼ 1

W e

X
s

nejmsjAes/̂fs ¼
1

W e

ðAee/̂ee � Aew/̂ewÞ

¼ Aee

W e

ð/̂ee � /̂ewÞ ¼
Aee

W e

ð�/pþ1;q � �/p;qÞ; ð21Þ

where AEE, AWE and WE are respectively the east- and west-
face areas and volume of the companion cell centred on the
E-face of a primary computational cell. Also, AEE = AEW.

Moreover, b/ee – the average of / over the east face of
the cell WE – is the volume-averaged unknown /pþ1;q (see
Fig. 1); and likewise for b/ew. Since the ratio AEE/WE is
equal to the distance between the centroids of the cells
(p + 1,q) and (p,q), one thus retrieves the standard sec-
ond-order accurate finite-difference centred formula in an
orthogonal uniform grid.

The overall spatial accuracy of the numerical schemes is
verified in Section 4.1.

3.2. Time discretisation and integration

The simulated time-span is covered by steps of length
Dt. Time derivatives have been discretised with a Euler
scheme, giving a second-order accurate approximation at
time Dtðnþ 1

2
Þ. The terms containing spatial derivatives

and the geometry are evaluated at level nþ 1
2
, in line with

[12]. The symbol jnpqr is put at the right-hand side of any
quantity evaluated in the cell (p,q, r) and time level n.
(No confusion with the unit vector n should arise owing
to the superscript position.)

The spatial-derivatives terms in the discretised momen-
tum equations are written more compactly by posing

Cijnpqr ¼
X

f

bui f Wf

��n
pqr

;

Dijnpqr ¼ �m
X

f

Sf

coui

on f

�����
n

pqr

;

Eijnpqr ¼ uijnpqr

X
f

X f jnpqr;

Gijnpqr ¼ g
X

f

SðiÞf ĝf jnpqr ð22Þ

and grouping those into

Hijnpqr ¼
1

V jnpqr

ðCijnpqr þ Dijnpqr þ Eijnpqr þ GijnpqrÞ;

whence the momentum equations to be integrated in time
and space are

uijnþ1
pqr ¼ uijnpqr � Dt Hi þ

oq
oxi

� �����nþ
1
2

pqr

; i ¼ 1 . . . 3: ð23Þ
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The incompressible pressure–velocity decoupling is over-
come by a fractional-step method [35,36] that is ALE-
adapted as described in following subsections.

3.2.1. Grid motion and fluxes calculation

The volume-conservation law (15) yields the displace-
ments fluxes Xf as a result of the rate of change of the con-
trol volume sizes; this entirely accounts for the grid motion
without computing either the vertices velocities or other
displacement velocities [8,12]. Since the ‘lateral’ faces (E

through S) are upright and the cell vertices follow the sur-
face motion by vertical displacements, the displacements
fluxes Xf across the lateral faces are always zero, while
those across the top and bottom faces are computed with
the second-order accurate formula

X U jnpqr ¼
3V jnpqr � 4V jn�1

pqr þ V jn�2
pqr

2Dt
� X Djnpqr: ð24Þ

Eq. (24) is solved columnwise (keeping the indices p,q con-
stant with r stepping from 1 to Nr) with the conditions

X Djnpqr ¼
0; if r ¼ 1 ðat the bottomÞ;
�X U jnpqðr�1Þ; elsewhere:

(
ð25Þ

One can then compute the cell-divergence terms Eijnpqr from
(22) and, also, calculate the relative-velocity fluxes W in the
convection terms Cijnpqr from their definition

Wf jnpqr ¼ Uf jnpqr � X f jnpqr: ð26Þ
3.2.2. Fractional-step method: predictor step

Eqs. (23) are first solved devoid of the modified-pressure
term to obtain a fictitious vector field (pseudovelocity).

The spatial-derivative terms and the geometry informa-
tion in the momentum equations are explicitly advanced in
time with an Adams-Bashfort scheme. Therefore, the pre-
dictor-step equations are

uij�pqr ¼ uijnpqr � Dt
3

2
H ijnpqr �

1

2
Hijn�1

pqr

� �
; i ¼ 1 . . . 3; ð27Þ

where uij�pqr is the pseudovelocity. The stability of explicit
schemes with moving grids, discussed in [37], will be com-
mented in Section 4.2.

3.2.3. Fractional-step method: corrector step

A velocity potential (pseudopressure) is needed to correct
the pseudovelocity field into a vector field that respects
both the mass conservation and dynamical equilibrium of
time level n + 1. Since here the predictor equation is expli-
cit in time, the pseudopressure is the modified pressure
times Dt, rather than a derived variable of its own. The
pseudovelocity correction is easily found from the difference
between Eqs. (23) and (27)

uijnþ1
pqr ¼ uij�pqr þ Dt

oq
oxi

����nþ
1
2

pqr

; i ¼ 1 . . . 3; ð28Þ
while the pseudoflux correction naturally derives from the
fluxes of (28):

Uf jnþ1
pqr ¼ Uf j�pqr þ DtSf

coq
onf

�����
nþ1

2

pqr

: ð29Þ

A Poisson-like equation for the modified pressure is then
derived by working out the divergence of both sides of
(28) in a finite-volume sense, i.e. summing up each Expres-
sion (29) relevant to the faces of a cell. Thence, in order to
obtain a mass-conserving uijnþ1

pqr -field, the fulfilment of the
continuity Eq. (16) yieldsX

f

Sf

coq
onf

�����
nþ1

2

pqr

¼ � 1

Dt

X
f

Uf j�pqr; ð30Þ

which is to be solved in terms of cell-centred values �q after
having used Formula (20).

At this stage, the free-surface interface maintains the
previous position rigidly. A new through-flow is allowed
by specifying the Dirichlet-type boundary condition for
the (face-averaged) modified pressure over the U-faces of
all surface cells – see Section 2.2:

q̂uj
nþ1

2
p;q;Nr

¼ 2m
doujnj

on u

�����
nþ1

2

pqNr

; j ¼ 1 . . . 3:

The resulting on-surface modified-pressure gradients thus
drive absolute fluxes across the free surface according to
Formula (29), which are to be eventually converted into
the interface’s material displacement. The boundary condi-
tions elsewhere are provided á la Neumann by Formula
(29) in terms of the difference between the assigned bound-
ary fluxes at level nþ 1;Uf jnþ1

pqr (zero on impervious, rigid
walls [38]), and the computed pseudofluxes Uf j�pqr.

In the present calculations, Eq. (30) has been solved for
�qjnþ1=2

pqr iteratively with a L-SOR algorithm [39], which is
implicit along vertically-aligned cells and uses a four-colour

algorithm to sweep across the computational water col-
umns [40]. Inner iterations were stopped when the highest
relative increment among the cells fell below 10�12.

On so doing, the absolute fluxes at level n + 1 are then
retrieved from Expressions (20) and (29), thus allowing
one to work out the normal velocities ujnj at the interface
too. To retrieve the corrected absolute-velocity field in terms
of cell-centred pressure values, Formula (28) are rather cast
as though Green’s lemma had been previously applied to
the modified-pressure gradients of Eqs. (12). Hence

uijnþ1
pqr ¼ uij�pqr þ

Dt

V jnþ
1
2

pqr

X
f

SðiÞf q̂f jnþ
1
2

pqr ; i ¼ 1 . . . 3; ð31Þ

which need Formula (19) to convert the computed �q’s into
q̂’s. This closes the fractional-step method procedure.

3.2.4. Free surface step

The free surface is now allowed to move and reach the
equilibrium position field at level n + 1. The updated posi-
tions are obtained by solving the discrete form of Eq. (17)
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ĝjnþ1
pq ¼ ĝjnpq þ

Dt
2

Uujnþ1
pqNr
þ UujnpqNr

Sð3Þ
u
jpqNr

; ð32Þ

where the absolute fluxes Uujnþ1
pqNr

are known from the cor-
rector-step results (29). The projected areas Sð3Þ

u
jpqNr

at the
denominator are independent of time, since the cell vertices
follow the free-surface motion by vertical displacements
only. Therefore, the upper-face projections on horizontal
planes, or equally the water-column bases, do not change
while the free surface adjusts.

The surface quotes ĝjnþ1
pq are located at the centroids of

the on-surface faces, whereas the cell geometry is defined
through vertices: thence, the updated positions of the on-
surface vertices are calculated with a bilinear interpolation.
This procedure causes a minimal loss of volume whose
amount is smeared back uniformly over the whole free sur-
face, so as not to bias the surface gradients computed in the
first instance.

Finally, the adjusted water columns can be re-discretised
in any prescribed manner, and the geometric information
at level n + 1 can be calculated in turn.

This closes the time advancement across the (n + 1)-th
step.
3.2.5. Segregated-integration cycle in the fractional-step

method

To summarise, the description of the ALE-adapted frac-
tional-step algorithm is reported below:

(1) Given a solution from either the initial conditions or
the previous time levels, solve the space conservation
law to determine the grid-displacement fluxes and the
relative fluxes – like in Section 3.2.1;

(2) Solve the predictive equation (27) for the intermedi-
ate (starred) velocity field in a domain having the
interface temporarily treated as rigid – like in Section
3.2.2;

(3) Calculate the intermediate absolute fluxes across the
control volumes;

(4) Solve a Poisson-like corrective equation to obtain the
modified-pressure field in a domain with the rigid
interface – like in Section 3.2.3;

(5) Correct the intermediate fluxes and velocities into the
final divergence-free fluxes and velocities – after Eqs.
(29) and (31);

(6) Update the free-surface quotes based on the through-
surface fluxes – using Eq. (32) – displace the on-sur-
face cell vertices, and then regenerate the whole grid
– like in Section 3.2.4;

(7) Re-compute all the geometric variables (volumes,
areas, interpolation coefficients).

Step 1 alone embodies the essence of the ALE approach,
whereby the computational overheads compared to a tradi-
tional Eulerian solution are effectively minimal (on the
order of 1% CPU time). Steps 2–5 are peculiar to the frac-
tional-step segregated integration; those are replaced by the
formulation of Section 3.2.6 in the case of hydrostatic
assumption.

3.2.6. Hydrostatic 3D algorithm

Eqs. (27), re-interpreted for i = 1,2 with unþ1
i replacing

u�i , yield the horizontal motion field, which allows the cal-
culation of the absolute fluxes across the lateral (upright)
faces. Such horizontal velocities and fluxes do not demand
further correction.

The absolute fluxes across the top and bottom faces are
then computed by solving the mass-conservation equation
(16) columnwise:

Uujnþ1
pqr ¼ �ðUejnþ1

pqr þ Uwjnþ1
pqr þ Unjnþ1

pqr þ Usjnþ1
pqr

þ Udjnþ1
pqr Þ ð33Þ

for r = 1 . . .Nr, with the conditions:

Udjnþ1
pqr ¼

0; if r ¼ 1 ðat the bottomÞ;
�Uujnþ1

pqðr�1Þ; elsewhere:

(
ð34Þ

This terminates with a request for free-surface displace-
ment at the top of each water column. Thus, on the domain
scale, the hydrostatic 3D model appears to enforce the
incompressibility constraint columnwise (or equivalently
layerwise), rather than cellwise as done by the fully-3D
model through the Poisson-like equation.

Further, the absolute fluxes UU and UD in each cell deter-
mine the vertical velocity components bu3 f jnþ1

pqr at the top

and bottom faces. The cell-centred values u3jnþ1
pqr are finally

retrieved by interpolation.

3.2.7. Moving-grid special issues

A first issue regards the interplay of the fixed-grid frac-
tional-step method and its ALE modification (Section
3.2.3) in step 3 of the integration cycle. In fact, the pseudo-
flux correction, Eq. (29), contains a time-level discrepancy
between either side which is solely caused by moving grids
and time-changing geometry.

There, the absolute fluxes at the left-hand side belong to
time level n + 1, whereas the gradients of the pseudopres-
sure belong to level nþ 1

2
. Therefore, the time level of the

geometry needed to derive those fluxes from the parent
equation (28) can fit only either term. Consequently, For-
mula (29) is, to this extent, ill-posed and does not yield a
‘perfectly’ mass-conserving motion field for time level
n + 1. To our knowledge, this point has been envisioned
only by [7].

A second issue regards the interplay of moving grids and
the free-surface adjustment (Section 3.2.4) in step 6 of the
integration cycle.

The grid generation redraws the division of the water col-
umn into Nr cells, whence it does disrupt the balance of the
absolute fluxes within the individual control volumes by
modifying the extension of their lateral faces. Moreover,
the space-conservation equation (24) cannot ever detect,
nor compensate for, this modification since the displacement
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fluxes Xf are invariably zero just across lateral faces (Section
3.2.1). This inaccuracy affects each subsequent time step
through Formula (26) and might cause errors to build up
over time. To our knowledge, this issue seems unreported.

Both considerations perhaps suggest that a precise frac-
tional-step correction could be attained by solving another
elliptic equation resembling (30), before delivering the
absolute fluxes to the next time step. Solving this point will
be addressed in subsequent work; for the time being, the
impact of these issues is deemed secondary with respect
to this paper’s aims, provided the free surface does not
undergo very rapid changes, like in the tests discussed later.

4. Standing waves results

Standing waves in a rectangular basin are used as bench-
marks. In spite of the solution’s two-dimensionality, we
solved effectively three-dimensional flows that are plane
in direction orthogonal to the wave, applying the free-slip
condition at the boundaries parallel with that plane. Since
the transversal dimension, x2, is of no consequence in plane
flows, we omit to mention it and only report the domain’s
horizontal and vertical sizes, along x1 and x3, respectively.
The same kind of omission applies to the number of cells in
the grid. We always solved waves having wavelength twice
as large as the basin length L; as the latter is always taken
as 10 m, the wavenumber k is 0.31416. Unless otherwise
stated, the undisturbed water depth h is equal to L.

Examples of linear and nonlinear irrotational motion are
discussed first. Then, in Section 4.4 we briefly display some
calculations of the three-dimensional motion obtained from
the superposition of two orthogonal waves à la Airy. In Sec-
tion 4.5, finally, we investigate viscous waves.

4.1. A nonlinear wave

The exact analytical solution of irrotational waves is
obtainable à la Stokes as a series of increasing-order contri-
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Fig. 2. Agnon–Glozman wave: energy conservation and ALE approach. Hist
DEr(t) = [E(t) � E(0)]/E(0). g0 = 0.45381 m, k = 3.14159 m�1. Bold line: unifo
butions in powers of the wave-steepness parameter g0k,
where g0 is the wave semi-amplitude. The first-order solu-
tion is given by Airy’s theory, based on a linearised form
of the free-surface equation; the higher the order, the more
complex is the process of deriving the solutions which even-
tually become unwieldy [26]. However, Agnon and Gloz-
man found that the deep-water wave with the special
steepness parameter g0k = 0.14257 behaves very nearly
periodically for thousand of periods up to the eighth-order
term of the power expansion [24].

Therefore, despite a complete analytical solution is not
available, the facts that the mechanical energy is conserved
and that the kinetic and potential energies convert period-
ically into one another enable one to monitor the behav-
iour of the computed energy. The bottom does affect the
steepness of a wave retaining the same properties, but
enough a deep basin allows exploiting the information con-
nected to that wave at any rate [Agnon, personal
communication].

To this end, we solved a wave with g0 = 0.45381 m. The
expected period having a steepness correction is 1.00253T,
where T is the first-order wave period. Hence, the deep-
water period 2p=

ffiffiffiffiffi
kg
p

is 3.5798 s, while the actual one, as
from Formula (36), is 3.5865 s. A time step of 10�4 s guar-
antees that the results are independent of it – see also Sec-
tion 4.2 for further discussion. The grid contains 32 � 64
cells.

The long-term behaviour of the computed energy is
shown in Fig. 2 through the relative change of mechanical
energy, [E(t) � E(0)]/E(0). As small free-surface instabili-
ties are known to build up and eventually generate growing
oscillations after several periods, applying a smoothing
function to the free-surface elevations is recommended
[41]. Here a filter

~gi ¼ agi�1 þ ð1� 2aÞgi þ agiþ1 ð35Þ

with as remarkably small a weight, a, as 5 � 10�5 can pre-
vent the onset of unbounded modes for at least 20 periods.
10 12 14 16 18 20

t/T

ory of the relative loss of the computed mechanical energy per unit mass,
rm grid; thin line: refined grid. Time in periods.



664 G. Lipari, E. Napoli / Computers & Fluids 37 (2008) 656–673
The content of mechanical energy as a whole is affected
by a deficit compared to the theoretically conserved value,
as also observed by [13]. Noticeably, when smoothing out
the free surface, the eventual outcome of the energy evolu-
tion is quite sensitive to the flow resolution achieved
through the grid configuration. In particular, on the one
hand, the relative energy deficit oscillates in a bounded
manner within the region of �0.9 ± 0.5% up to nearly 20
periods when vertically-refined water columns capture the
near-surface motion field more accurately. (The smallest
cell is 10 times as thin as the largest one.) The results
worked out on a uniform grid, also shown, on the other
hand, yield a loss of comparable magnitude up to four
wave periods, only to maintain a decaying trend and reach
a value up to six times as large near t = 20T.

Fig. 3 details Fig. 2 by plotting the domain-averaged
potential (P) and kinetic (K) energies with respect to the
undisturbed water level, as they evolve during the first
twelve periods starting from a quiescent state. Here, the
grid is refined in the vertical direction. Both energies are
always in phase opposition, the maxima of the kinetic
energy and the minima of potential energy are well-
behaved. The progression to the longer term appears to
consist in the slow accumulation of a residual kinetic
energy and reduction of potential energy – interestingly,
regardless of the interface smoother (35), that mainly
extends the lapse over which well-behaved results are
obtained. We leave it as a matter of future investigation
to determine how far this can be determined by the issues
noted in Section 3.2.7. For the time being, no additional
smoothing is needed for short enough calculations, like
those of the ensuing sections.

The solver’s spatial order of convergence is then
checked by halving the grid size using 16 � 16 upto
128 � 128 uniformly-spaced cells. The time step is 10�3 s,
and the free-surface smoother is turned off. Fig. 4a shows
the relative deficit of the mechanical energy [E(t) � E(0)]/
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Fig. 3. Agnon–Glozman wave: energy conservation and ALE approach. Ev
K = K(t), P = P(t). g0 = 0.45381 m, k = 3.14159 m�1. Bold line: kinetic energy;
E(0) at t = T/8 for each setting, which follows a second-
order convergence law. The temporal order of convergence
is shown in Fig. 4b, where the same test quantity is plotted
for four time steps decreasing from 0.1 to 0.01 s on grids
having 64 � 64, 128 � 128 and 256 � 256 uniformly-
spaced cells. The second-order convergence becomes fully
evident over the entire range of time steps with the finest
grid, where spatial/temporal error overshadowing is
avoided.

Finally, in order to highlight the difference between the
ALE and Eulerian approaches, the Agnon–Glozman wave
is simulated with the Eulerian equations in the 32 � 64 grid
too, while leaving the other integration specifications
unchanged. The Eulerian potential and kinetic energies of
Fig. 5 are clearly damped by a substantial spurious dissipa-
tion which reduces the mechanical energy by some 10% in 2
periods and 30% in just four periods. This indicates that the
spurious velocities generated by disregarding the grid
motion counter the achievement of the anticipated veloci-
ties and reduce the content of kinetic energy quite early.
The behaviour in viscous conditions is discussed in Section
4.5.

4.2. Linear wave in a deep basin

The first-order wave theory has then been used to test
the motion field in detail, as done by [9,21,23,32,42]. The
field solution can be found, for example, in [21]. The math-
ematical prerequisites of this solution are g0/h� 1 and
g0k� 1. The relevant dispersion relation is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k

tanh kh

r
; ð36Þ

which is here used as a convenient ‘shallowness index’ by
varying the basin depth and contrasting the computed
celerity with the value

ffiffiffiffiffi
gh
p

, which well applies to ‘shallow
waters’.
210186

T/t

olution of domain-averaged kinetic and potential energies per unit mass
thin line: potential energy. Time in periods, energy per unit mass in meters.
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Fig. 5. Agnon–Glozman wave: energy conservation and Eulerian approach. Evolution of domain-averaged kinetic and potential energies per unit mass
K = K(t), P = P(t). g0 = 0.45381 m, k = 3.14159 m�1. Bold line: kinetic energy; thin line: potential energy. Time in periods, energy per unit mass in meters.
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Here, the motion is driven by a wave with g0 = 0.1 m
(g0/h = 0.01). From Formula (36) the celerity c is
5.578 m/s and the period T is 3.586 s long. Since the shal-
low-water celerity is 9.905 m/s, the case proves suitable
for testing the fully-3D model (F3D, hereinafter) and, then,
observing the energy behaviour of the hydrostatic 3D
model (H3D) being ill-posed. The domain is discretised
with 20 � 20 uniform cells.

The time step is crucial to obtain an accurate kinetic
energy history as early as a few periods. Fig. 6 shows the
energy evolutions for Dt = 10�2,10�3,10�4 s, where the
largest time step brings about an appreciable reduction of
the kinetic-energy maxima and a rapid loss of conservative-
ness (about �4% at the second peak and �6.4% at the
fourth), which does not occur for Dt = 10�3 and 10�4 s.
Furthermore, the improvement between the two smallest
time steps is so small that the results for Dt = 10�3 s can
be considered virtually independent of it. As discussed in
[37], the mesh motion entails destabilising effects upon
the algorithm and requires a smaller time step than that
allowed by a conventional Courant stability limit. Here,
all the time steps correspond to Courant numbers below
0.1.

The velocity’s numerical and analytical vector fields at
their maximum kinetic energy content are displayed in
Fig. 7, showing an overall excellent agreement under the
appreciation allowed by graphics. The surface positions
at t = T/4, T/2 and 3T/4 are shown in Fig. 8, again with
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excellent agreement. Finally, the time evolution of the root-

mean-square errors are plotted in Fig. 9 for the u1-, u2-, u3-
velocities, which are calculated from

RMSEjn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
pqrV j

n
pqrðAj

n
pqr � N jnpqrÞ

2P
pqrV j

n
pqr

vuut ; ð37Þ
where A and N are the analytical and numerical solutions,
and the sum spans all the computational cells. Also shown
are the errors of the free-surface elevation g, obtained anal-
ogously from (37) after substituting the volumes V with the
areas of the horizontal projections of the upper faces, Sð3ÞU ,
and summing over the free-surface cells only. The surface
position incurs the largest loss of agreement in the first
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half-period, after which the index growth is far slower and
stays bounded. The u2-velocity normal to the wave plane is
supposed to be null at all times, and its well-bounded
RMSE gives an immediate appraisal of the numerical
errors.

The same wave motion has also been solved with the ill-

posed H3D equations (Section 3.2.6). In line with previous
studies [21,23], the velocity vector plots in Fig. 10 show
an unphysically amplified vertical motion along the water
columns. By continuity, a fairly stronger bottom stream
appears in the H3D results, which suggests that an applica-
tion to turbulent flows using wall functions may result in a
biased calculation of the bottom friction.

Turning to the energy features, Fig. 11 shows that the
expected content of the kinetic energy is severely overesti-
mated (up to more than four times as high); expectedly,
the wave period is underestimated down to the values pre-
scribed by the shallow-water celerity. Perhaps surprisingly
though, the performance of the H3D model is abnormally
sensitive to the initial conditions as far as both amplitude
and period are concerned; this is displayed in Fig. 12,
where the kinetic energy evolutions are shown starting
the calculations from T/8, T/4 and T/2. Spurious modes
appear there.

Although by deliberately focusing on the extreme of
a trend, this irrotational-wave analysis characterises
the consequences of using the unjustified hydrostatic
assumption on the computed energy budget. The valida-
tion of the properly applied H3D solver follows in Sec-
tion 4.3.
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4.3. Linear wave in a shallow basin

The domain is now 1 m deep (h/L = 0.1). The wave
semi-amplitude is 0.01 m (g0/h = 0.01). The shallow-water
celerity is 3.132 m/s, whereas Formula (36) yields
3.081 m/s (1.6% relative error), which correspond to wave
periods of 6.386 s and 6.490 s, respectively. Therefore, this
case is suitable for testing the H3D equations. The discret-
isation parameters are the same as in the previous wave.

Indeed, unlike the deep basin of Section 4.2, the marked
agreement of the two models is confirmed by the visual
analysis of the vector plots at t = T/4 of Fig. 13. Consis-
tently, the kinetic-energy amplitude and wave period from
the H3D prediction are in much closer agreement with the
F3D results than in the deep basin (Fig. 14). The aforemen-
tioned dependence on initial conditions vanishes as well
(not shown). The comparison of the F3D and H3D perfor-
mances with a wider range of aspect ratios h/L is reported
in Section 4.5 for viscous waves.
4.4. Three-dimensional motion induced by superimposed Airy

waves

A three-dimensional irrotational motion field can be
induced by the superimposition of two orthogonal small-
amplitude waves in a box domain 10 � 10 � 10 m large.
Here, two waves, twice as long as the sides, have semi-
amplitude g0 = 0.1 m, while a uniform 20 � 20 � 20 grid
and Dt = 10�3 s have been used. The solver works in
F3D-ALE mode here.

Fig. 15 shows the evolution of the domain-averaged
kinetic energy per unit mass along two periods. The period-
icity is again closely respected, with amplitudes slightly
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increasing as discussed previously with respect to the solu-
tion of plane flows.
Finally, Fig. 16 displays the surface positions at quarters
of period. The surface is mildly undulated at t = T/4,3T/4
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Fig. 15. Superimposition of two orthogonal Airy waves. Time evolution of the domain-averaged kinetic energy of the wave motion, K = K(t). g0/h = 0.01.
Time in periods, energy per unit mass in meters.

Fig. 16. Superimposition of two orthogonal Airy waves. Surface positions in the 3D irrotational motion, g = g(x1,x2, t). (a) t = T/4; (b) t = T/2; (c)
t = 3T/4; (d) t = T. The vertical scales in (a) and (c) are one tenth of the others’. Isolines show the hydrostatic level g = 0. Grid spacing reflects the domain
discretisation. Lengths in meters.
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instead of being flat as a result of the retained nonlinearity
of the free-surface equation, whereas the positions at t = T/
2,T are quite regularly antisymmetric as expected.
4.5. Linear and nonlinear waves with viscosity

We considered plane viscous waves having viscosities m
of 5 � 10�3 and 5 � 10�2 m2/s and ratios g0/h varying
between 0.001 and 0.2. The thickness of the Stokes viscous
layer at the walls is of order of ð2m=xÞ

1
2, where x is the wave

frequency, whereby a uniform grid of 128 � 128 cells is
adequate to solve the flow close to the wall. Also,
Dt = 10�3 s. No interface smoother is necessary. The above
viscosities correspond to Reynolds parameters based on the
wave celerity and basin depth of nearly 1.12 � 104 and
1.12 � 103.

Modelling the contact points between wall and free sur-
face requires particular attention, in that they should be
allowed to follow the free surface while adhering at the wall
at the same and one time. Here, following [43], we applied
the slip condition at the wall sides of the near-surface cells
and the ordinary no-slip condition elsewhere.

The mechanical energy in a small-amplitude viscous
wave is expected to decay as

hEðtÞi ¼ Eð0Þe�2a t
T ; ð38Þ

where h 	 i implies the average over the cycle of oscillation
completed at t; a is the sum of the moduli of decay account-
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Fig. 17. Viscous standing waves: dimensionless damping time, t0/T, and relative wave heights, g0/h. Open symbols: ALE approach; full symbols: Eulerian.
Diamonds: m = 5 � 10�3 m2/s (Re = 1.12 � 104); circles: m = 5 � 10�2 m2/s (Re = 1.12 � 103). Axes in log scale.

Table 1
Viscous standing waves: ratios of hydrostatic- over fully-3D results for the
wave period and kinetic energy maximum, as functions of the basin aspect
ratio h/L

h/L 0.05 0.1 0.2 0.5 1 R2

TH3D/TF3D 0.997 0.984 0.942 0.764 0.563 0.994
– 0.984 0.942 0.764 0.556 –

KðT4 ÞH3D=KðT4 ÞF3D 1.007 1.029 1.124 1.817 4.312 1.000
– 1.033 1.132 1.822 4.288 –

R2 are the coefficients of determination of a linear (periods) or quadratic
(energies) trendline. g0/h = 0.01. Figures in Roman face: m = 5 � 10�3 m2/
s; italics: m = 10�6 m2/s.
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ing for frictional effects at the wall and free-surface bound-
ary layers and in the body of the fluid. The irrotational
behaviour is retrieved for a = 0.

The closed-form expression of the wall-friction modulus
for standing waves in a rectangular basin is a0 ¼ vðmT Þ

1
2B�1,

where B is the domain width, normal to the wave motion; v
is a function taking the specific expression v ¼ ½1þ
ðp� khÞ= sinhðkhÞ�Bk=2p

1
2 when wall friction at lateral walls

is neglected in the way of our computational domain [44].
The inner-fluid modulus a00 is 2mTk2. Both contributions
outweigh that from the free surface if the latter is clean, like
herein. Thereby, the chosen viscosities yield a � a0 + a00 =
1.275 � 10�2, 4.638 � 10�2, respectively.

Based on Formula (38), the quantity �ln[hE(T)i/E(0)]/
2a should yield the dimensionless probing time t/T = 1.
Fig. 17 thus shows the values t0/T worked out with the com-

puted residual energy ratio hE(T)i/E(0) and the theoretical
modulus of decay for different g0/h’s as obtained from
either the ALE or the Eulerian solver. Little algebra shows
that the positive departures from the anticipated unity indi-
cate enhanced damping. The ALE results are thus virtually
insensitive to viscosity and are within phase by 2% and 7%
for amplitude ratios of g0/h = 0.05 and 0.1 respectively; the
deviation is bound to increase for larger ratios, since the
wave loses the linearity for which the above estimates hold.
Conversely, the Eulerian results show contained differences
for ratios g0/h 6 0.01 only; the overdamping grows rapidly
with increasing g0/h and is larger the smaller the viscosity.

Finally, Table 1 indicates the departure of the H3D
results from the F3D ones when simulating a series of vis-
cous waves with g0/h = 0.01 and increasing basin aspect
ratio h/L. The losses of agreement in the wave periods
and kinetic-energy maxima at t = T/4 are detailed therein.
The wave-period ratio decreases very nearly linearly, while
that of the kinetic-energy maxima increases quadratically;
both departures from unity, however, are contained within
a few percent for h/L 6 0.1. The differences obtained with a
viscosity of either 10�6 or 5 � 10�3 m2/s are immaterial and
are in line with the irrotational results of Section 4.2.

5. Conclusions

Numerical experiments were carried out to clarify the
energy features of commonly-adopted modelling options,
such as the Eulerian/ALE viewpoints and the fully-3D/
hydrostatic-pressure approximations, when simulating
unsteady free-surface motions with regenerated (moving)
grids and a 3D solver based on the finite-volume and
time-explicit fractional-step methods. The solver is sec-
ond-order accurate in time and space. We focussed on irro-
tational as well as viscous standing waves having relative
wave heights g0/h in the range 0.001–0.2, so as to deal with
both linear and nonlinear cases. Standing waves are partic-
ularly suitable for such purposes, in that – the other discret-
isation parameters being kept equal – the higher the wave
amplitude, the more relevant the ‘cell-divergence term’
peculiar to the ALE momentum equations; and, also, in
that the basin aspect ratio can be changed to let the prob-
lem be described with the hydrostatic approach to a good
approximation. Moreover, standing waves are a simple
and fundamental flow, wherein the mechanical interplay
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of the free-surface displacement and inner motion field is
immediately appreciable.

Firstly, a nonlinear irrotational periodical wave com-
puted with the Eulerian viewpoint delivered a substantial
spurious dissipation of mechanical energy. This is pre-
vented to a large extent by solving the correct ALE equa-
tions at reduced computational overheads, which also
significantly improves the expected periodical transfer
between the potential and kinetic energies. The Eulerian
solver produces overdamped standing waves also when
the fluid viscosity is taken into account and a wider range
of relative wave semi-amplitudes g0/h is investigated. The
mechanical-energy contents probed at as early as the first
period are consistently smaller than those expected theoret-
ically; in particular, less viscous flows yield worse results
than more viscous ones do, since in the former case the
erroneous dissipation induced by the Eulerian modelling
takes a larger proportion of the whole damping. The
ALE solver, on the contrary, reproduces the wave damping
accurately, and the departure from the theoretical anticipa-
tion for higher waves is ostensibly due to nonlinearity
which, in fact, is not accounted for by the theory itself.
The results obtained using either viewpoint only collapse
for fairly small wave semi-amplitudes, g0/h 6 0.01,
whereby the ALE approach appears to be more than an
option even when expecting moderate grid displacements.

Secondly, we studied the consequences of neglecting the
non-hydrostatic pressure by solving the fully- and hydro-
static 3D equations for irrotational waves à la Airy.
Increasing-depth waves make the hydrostatic assumption
deliberately ill-posed and exalt the features of how the
hydrostatic 3D results depart from the fully 3D ones: in
fact, the peaks of the kinetic energy are overestimated
and occur at as fast a frequency as to match the ‘‘shallow
water” celerity, regardless of viscosity. Further, unexpected
oscillation modes arise in the kinetic-energy time evolution
when the initial time is changed. The approximate H3D
approach is certainly computationally less expensive than
the F3D one, as it does not require solving the Poisson-like
equation, elliptic in type and computationally time-
demanding. (Although our estimates are not general since
they depend on source-code details, we experience that
the Poisson-like equation solution can take from 50% up
to 80% of the runtime needed to sweep the entire time-step-
ping cycle, depending on whether multigrid convergence
accelerators are used.) On the other hand, the F3D accu-
racy outperforms the H3D one in all circumstances. How-
ever, the warnings issued for ill-posed cases should not
discourage the convenient application of the hydrostatic
3D model whenever its basic assumptions are reasonably
well respected. The range h/L 6 0.1 found here appears
to be less strictly limiting than in the ALE/Eulerian choice.
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[10] Demirdžić I, Perić M. Finite volume method for prediction of fluid
flow in arbitrary shaped domains with moving boundaries. Int J
Numer Methods Fluids 1990;10:771–90.

[11] Zhang H, Reggio M, Trepanier JY, Camarero R. Discrete form of
the GCL for moving meshes and its implementation in CFD schemes.
Comput Fluids 1993;22:9–23.

[12] Lesoinne M, Fahrat C. Geometric conservation law for flow
problems with moving boundaries and deformable meshes and their
impact on aeroelastic computations. Comput Methods Appl Mech
Eng 1996;112:71–90.

[13] Mayer S, Garapon A, Sorensen LS. A fractional step method for
unsteady free-surface flow with applications to non-linear wave
dynamics. Int J Numer Methods Fluids 1998;28:293–315.

[14] Smith RW, Wright JA. An implicit edge-based ALE method for the
incompressible Navier–Stokes equations. Int J Numer Methods
Fluids 2003;43:253–79.

[15] Apsley DD, Hu W. CFD simulation of two- and three-dimensional
free-surface. Int J Numer Methods Fluids 2003;42:465–91.

[16] Casulli V, Cheng RT. Semi-implicit finite difference methods for
three-dimensional shallow water flow. Int J Numer Methods Eng
1992;15:629–48.

[17] Casulli V, Stelling GS. Numerical simulation of 3D quasi-hydrostatic
free-surface flows. J Hydraul Eng 1998;12(7):678–86.

[18] Stansby PK. Semi-implicit finite volume shallow-water flow and
solute transport solver with k–� turbulence model. Int J Numer
Methods Fluids 1997;25:285–313.

[19] Casulli V. A semi-implicit finite difference for non-hydrostatic, free-
surface flows. Int J Numer Methods Fluids 1999;30:425–40.

[20] Stansby PK, Zhou JG. Shallow-water flow solver with non-hydro-
static pressure: 2D vertical plane problems. Int J Numer Methods
Fluids 1998;28:541–63.



G. Lipari, E. Napoli / Computers & Fluids 37 (2008) 656–673 673
[21] Jankowski JA. A non-hydrostatic model for free surface flows. Ph.D.
thesis, University of Hannover, Germany, 1999. Available from:
http://www.hydromech.uni-hannover.de/Mitarbeiter/JANKOWSKI/
diss.html [last accessed 22.04.07].

[22] Casulli V, Zanolli P. Semi-implicit numerical modeling of nonhydro-
static free-surface flows for environmental problems. Math Comput
Modell 2002;36:1131–49.

[23] Koc�yigit MB, Falconer RA, Lin B. Three dimensional numerical
modelling of free surface flows with non-hydrostatic pressure. Int J
Numer Methods Fluids 2002;40:1145–62.

[24] Agnon Y, Glozman M. Periodic solutions for a complex Hamiltonian
system: new standing water waves. Wave Motion 1996;24:139–50.

[25] Batchelor GK. An introduction to fluid dynamics. Cambridge,
UK: Cambridge University Press; 1967.

[26] Wehausen JV, Laitone EV. Surface waves. In: Flügge S, editor.
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[39] Ferziger JH, Perić M. Computational methods for fluid dynam-
ics. Berlin, Heidelberg, New York: Springer; 2001.

[40] Rosenfeld M, Kwak D, Vinokur M. A fractional step solution
method for the unsteady incompressible Navier–Stokes equations in
generalized coordinate systems. J Comput Phys 1991;94:102–37.

[41] Longuet-Higgins MS, Cokelet ED. The deformation of steep surface
waves on water. I. Mass transport in water waves: a numerical
method of computation. Proc Roy Soc London, Ser A 1976;350:1–26.

[42] Ramaswamy B. Numerical simulation of unsteady viscous free
surface flow. J Comput Phys 1990;90:396–430.

[43] Robertson I, Sherwin SJ, Graham JMR. Comparison of wall
boundary conditions for numerical viscous free surface flow simula-
tion. J Fluids Struct 2004;19:525–42.

[44] Keulegan GH. Energy dissipation in standing waves in rectangular
basins. J Fluid Mech 1959;6:33–50.

http://www.hydromech.uni-hannover.de/Mitarbeiter/JANKOWSKI/diss.html
http://www.hydromech.uni-hannover.de/Mitarbeiter/JANKOWSKI/diss.html

	The impacts of the ALE and hydrostatic-pressure approaches on the energy budget of unsteady free-surface flows
	Introduction
	Physical and analytical model
	Free-surface modelling
	Pressure decomposition
	Integral governing equations: the Eulerian viewpoint
	Integral governing equations: the ALE viewpoint
	Hydrostatic assumption and 3D equations

	Numerical model
	Space discretisation and integration
	Time discretisation and integration
	Grid motion and fluxes calculation
	Fractional-step method: predictor step
	Fractional-step method: corrector step
	Free surface step
	Segregated-integration cycle in the fractional-step method
	Hydrostatic 3D algorithm
	Moving-grid special issues


	Standing waves results
	A nonlinear wave
	Linear wave in a deep basin
	Linear wave in a shallow basin
	Three-dimensional motion induced by superimposed Airy waves
	Linear and nonlinear waves with viscosity

	Conclusions
	Acknowledgements
	References


