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Abstract 16 

The continuous measurement of molecular hydrogen (H2) emissions from passively degassing 17 

volcanoes has recently been made possible thanks to the development of electrochemical 18 

sensors. We have used this technology to measure H2, along with SO2, H2O, and CO2, in the 19 

gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. 20 

The measurements were made at the crater rim between December 2010 and January 2011. 21 

Combined with data for the long-term SO2 emission rate for Erebus, they indicate a mean H2 22 

flux of 0.03 kg s
-1 

(2.8 Mg day
-1

). The observed H2 content in the plume is consistent with 23 

previous estimates of redox conditions in the lava lake (~0.9 log units below the quartz-24 
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fayalaite-magnetite buffer). These measurements suggest that H2 does not combust at the 25 

surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the 26 

signature of the high-temperature chemical equilibrium reached in the lava lake. We also 27 

observe a cyclical variation in the H2/SO2 ratio with a period of ~10 min. These cycles 28 

correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted 29 

as signs of a pulsatory magma supply at the top of the magmatic conduit.      30 

 31 

Keywords: Mt Erebus, hydrogen, magma redox conditions, lava lake, magma degassing.   32 

     33 

 34 

Introduction 35 

Hydrogen is one of the most abundant trace species in volcanic emissions (Oppenheimer et al. 36 

in press) and is an essential participant in key redox reactions that take place in magmatic 37 

gases, e.g.: 38 

H2 + ½O2 = H2O (1) 39 

and 40 

H2S + 2H2O = SO2 + 3H2 (2) 41 

At Erebus volcano, emissions to the atmosphere result from the sustained supply of gas via 42 

the persistently active lava lake and surrounding fumaroles. Gas composition measured in the 43 

plume provides important insights into the redox conditions of the lava lake (assuming 44 

thermodynamic equilibrium between the gas phase and the melt). Following recent chemical 45 

modeling (Burgisser and Scaillet 2007) arguing for an evolution of the oxidation state of an 46 

ascending magma, measurement of redox-sensitive volcanic gas species such as hydrogen 47 

assumes particular significance.    48 
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 49 

The recent development of highly portable and readily deployed multi-species gas sensing 50 

systems (Shinohara 2005; Aiuppa et al. 2005; Aiuppa et al. 2006; De Vito et al. 2007) has 51 

enabled  measurements of volcanic gas ratios for extended periods, in some cases 52 

operationally (Aiuppa, Bertagnini, et al. 2010; Aiuppa, Burton, et al. 2010). Such “multi-gas” 53 

approaches complement ultraviolet and infrared spectroscopic applications (Oppenheimer 54 

2010) to enable measurement of abundances and fluxes of a range of gas species. However, 55 

until very recently, there has not been a practical means for extended surveillance of H2 56 

abundance in dilute volcanic plumes. Here we use a “Multi-GAS” instrument incorporating a 57 

specific hydrogen sensor to measure H2 in the plume emitted from the lava lake of Erebus 58 

volcano. Erebus is of particular interest because of the emerging evidence for redox change 59 

associated with magma ascent (e.g., Oppenheimer et al. 2011; Burgisser et al. in review). 60 

Despite challenging conditions at the rim of the summit crater, measurements were possible 61 

for several hours per day spanning a week. Our initial aims were to evaluate the performance 62 

of this instrument for continuous gas surveillance on Erebus, to assess implications of the 63 

measurements for lava lake redox conditions, and to identify any rapid variability in gas 64 

composition of the plume.  65 

    66 

Methodology 67 

The measurements were made between 6 December 2010 and 3 January 2011 using a 68 

purpose-built “Multi-GAS” instrument and a commercial CO2 and H2O infrared analyser (for 69 

intercomparison). The instruments were deployed intermittently at the crater rim of Erebus 70 

volcano at a site ~ 220 m vertically above and ~ 150 m horizontally from the active lava lake 71 

(Figure 1). The measurements were mostly made at the “Pump Site” situated on the northern 72 
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rim of the summit crater since this is where prevailing winds tend to carry the plume (Zreda-73 

Gostynska et al. 1997; Ilyinskaya et al. 2010). Both instruments were powered by a 12 V DC 74 

battery, which sustained 6–10 h of unattended operation.  75 

 76 

The commercial instrument was a LI-COR
® 

LI-840 CO2 and H2O analyser. It is a non-77 

dispersive infrared gas analyzer equipped with a dual wavelength, infrared detection system 78 

allowing measurements of CO2 and H2O gas species in the range of 0–3000 ppmv and 0–80 79 

pptv (parts per thousand), respectively. The accuracy was better than 1.5% for both species 80 

and cross sensitivity is < 0.1 ppmv CO2/pptv H2O for H2O and <0.0001 pptv H2O/ppmv CO2 81 

for CO2.  82 

 83 

The “Multi-GAS” CO2, H2, SO2 sensor consists of a series of electrochemical sensors and a 84 

nondispersive infrared (NDIR) sensor through which the sampled gas is circulated (via a 85 

miniature 12 V rotary pump) (Aiuppa et al. 2011). The H2, H2S and SO2 sensors produce an 86 

electrical current as a response of the target gas entering the electrolyte and oxidizing or 87 

reducing the electrode. This current is proportional to the concentration of the target gas in the 88 

total gas volume.  The electrochemical sensor for SO2 (City Technology, sensor type 3ST/F) 89 

has a calibration range of 0–30 ppmv, an accuracy of ±2%, a repeatability of 1% and a 90 

resolution of 0.5 ppmv. The electrochemical sensor for H2 (City Technology, sensor type 91 

3HYT) has a calibration range of 0–500 ppmv, an accuracy of ±5% a repeatability of 2% and a 92 

resolution of 2 ppmv. The NDIR CO2 sensor (model Gascard II) is calibrated for 0–3000 93 

ppmv with an accuracy ±2% and a resolution of 0.8 ppmv. In addition to the gas sensors, 94 

temperature and relative humidity (RH) sensors (Galltec) are mounted in the instrument, 95 

providing  a  measuring range of 0–100 % RH and an accuracy of  ±2%. All sensors were 96 

housed inside a weatherproof box, with the ambient air sampled via Teflon tubing connected 97 
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to a HEPA filter fed through an inlet in the box. The sampled gas was dispersed via an outlet 98 

similarly fed through a hole in the case. The sampled gas was heated to ~30°C on its way 99 

through the first hose to prevent freezing and other problems related to the low ambient 100 

temperatures (below –25°C).    101 

 102 

An on-board data-logger card in the “Multi-GAS” instrument captured measurements at a rate 103 

of 0.5 Hz while the LI-840 output was logged at 1 Hz via a netbook PC. Both instruments 104 

were always started simultaneously. The Multi-GASinstrument was recalibrated using 105 

standard gas mixtures in the laboratory (accurately measured by gas chromatography) before 106 

and after the campaign and showed very little drift. 107 

 108 

Data Processing 109 

Mixing ratios of SO2, H2O, CO2 and H2 in the gas phase are retrieved (in ppmv) directly from 110 

the laboratory-calibrated sensors using the “840-500” software for the LI-840 and in-house 111 

software (developed at INGV Palermo) for the multi-gas instrument. The raw data collected 112 

by both instruments show a good correlation between all measured species. The good 113 

agreement between the CO2 measurements obtained by the multi-gas instrument and those 114 

obtained by the LI-840 furthers our confidence in the accuracy of the multi-gas instrument 115 

CO2 sensor. Response times of the different sensors vary slightly but are all rapid (timescales 116 

of seconds to approach maximum reading). Figure 2 shows an example of a typical dataset, 117 

recorded on 27 December 2010.  118 

 119 

In order to convert the raw mixing ratio data into reliable measurements, several processing 120 

steps were applied. Firstly, the difference in response time between sensors was corrected so 121 
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the time-series of volcanic gas ratios matched. Secondly, the sensor signal resulting from 122 

cross-sensitivity with other gases was subtracted.     123 

 124 

The differences in response time for the different sensors were corrected by finding the lag 125 

times from correlation analysis of the various time series. Laboratory tests were performed 126 

using a set of CO gas standards (from 7 to 500 ppmv) circulated through the Multi-gas 127 

instrument in order to determine the cross-sensitivity of the hydrogen sensor to other species.  128 

CO was a particular concern because of its abundance in the Erebus gas/aerosol plume 129 

(Oppenheimer and Kyle 2008). Mixed CO and H2 gas calibrations were also carried out. 130 

These tests revealed a constant but minor 4% cross sensitivity of the H2 sensor due to the 131 

presence of CO. Although we did not have a CO sensor in the Multi-gas instrument, we can 132 

estimate CO abundances point-by-point from measured CO2 abundance and using a CO2/CO 133 

molar ratio of 13 well-constrained by FTIR spectroscopy (Oppenheimer et al. 2009; Ilanko 134 

personal communication). At each point 4% of the estimated CO value was subtracted from 135 

the H2 signal to correct for the cross-sensitivity (Figure 3).    136 

 137 

Results 138 

Useful data were only acquired during favourable winds that resulted in grounding of the 139 

plume at the crater rim (figure 1b). We obtained 25 hours of good quality observations at a 140 

sample rate of 0.5 Hz over the 180 hours of data collection . The variable weather conditions 141 

and delays in stabilising the internal temperature of the “MultiGas” instrument were 142 

responsible for the limited collection time. It is worth noting that Strombolian eruptions of the 143 

nature occasionally observed at Erebus (Aster et al. 2003; Dibble et al. 2008) did not occur 144 

during the acquisition of this dataset – only the “passive” plume emitted from the lava lake 145 
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was sampled. Figure 4 shows scatter plots for measurements recorded during the last week of 146 

December 2010, which offered the best conditions for plume sampling.   147 

 148 

Results from six days of data yield a mean H2/SO2 molar ratio between 1.38 and 1.52 (Figure 149 

4a) with most days yielding a ratio close to 1.4, and the average ratio for the whole week 150 

being 1.44. Scatter plots for the CO2 and SO2 measurements yield CO2/SO2 molar ratios 151 

varying between 36 and 45 (Figure 4b), with the week’s average being 40. We neglect the 152 

CO2/SO2 ratio obtained for 3 January which shows much higher variability which we ascribe 153 

to contamination from nearby fumaroles. The intercept of first order linear regression through 154 

the scatter plots of H2 vs. SO2 and CO2 vs. SO2  should correspond to the atmospheric 155 

background H2 and CO2 abundances, respectively (since ambient SO2 is very low (less than 156 

10 pptv). In fact, we find values for ambient H2 between 1.06 and 0.42 ppmv and background 157 

CO2 values between 433 and 385. These are both good approximations to expected 158 

atmospheric background mixing ratios for the two gases. For instance, measurements from 159 

December 2010 at the South Pole weather station (available at http://www.esrl.noaa.gov/) 160 

indicate atmospheric abundances of 387.5 ppmv for CO2 and 0.54 ppmv for H2. This station is 161 

the closest Antarctic research station routinely measuring atmospheric gas abundances at 162 

altitude (2900 m a.s.l , c.f. the altitude of the Pump Site of ~ 3700 m). A test run using the 163 

“Multi-GAS” instrument on 7 December carried out near Lower Erebus Hut (2 km from the 164 

crater) also yielded stable H2 readings of ~0.5 ppmv though CO2 readings fluctuated with 165 

temperature drift during acquisition (CO2 values oscillated between 400 and 350 ppmv). 166 

These estimates of the ambient mixing ratios of the two gases give further confidence in 167 

performance of the “Multi-GAS” instrument sensors.  While H2O was being recorded 168 

simultaneously by the LICOR and Multi-GASs instruments, rapid changes of the background 169 

http://www.esrl.noaa.gov/
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atmospheric humidity and possible influence of nearby low-temperature fumaroles precluded 170 

reliable retrieval of the lava lake plume’s water content.  171 

      172 

Further inspection of our dataset reveals small but clear variations in the retrieved gas ratios 173 

which appear cyclical. Figure 5 shows the evolution of the H2/SO2 ratio for part of a 10 h run 174 

on 3 January 2011 together with the corresponding pseudo-periodogram obtained using a 175 

continuous Morlet wavelet transform analysis of the time series. The pseudo-periodogram 176 

shows a strong transform modulus with a cycle of 8 to 12 min. Similar pseudo-periodograms 177 

have been produced for all the time series for which data are presented in Figure 4, and all 178 

reveal cycles with periods of 7 to 14 min. In addition, some pseudo-periodograms show 179 

weaker signal strength at a shorter period of 3 to 5 min. Pseudo-periodograms were produced 180 

for the CO2/SO2 ratio time-series and reveal similar periodicities.  This periodicity is the more 181 

remarkable since it suggests preservation of a source signature despite the passage of the 182 

plume within the crater (from the lava lake to the Pump Site). Time series of the SO2/H2 and 183 

SO2/CO2 ratios were constructed using background H2 and CO2 atmospheric values 184 

determined by the intersection of the linear regression with the H2 or CO2-axis for each day 185 

(Figure 4) except when that intercept was higher than the lowest measured H2 or CO2 value, 186 

in which case this lowest H2 or CO2 value was used as the background.      187 

 188 

Discussion 189 

Volcanic H2 contribution to the Antarctic atmosphere 190 

We have estimated the H2 flux from Erebus volcano using the average SO2 flux of 0.71 ± 0.3 191 

kg s
-1 

(Sweeney et al. 2008) and the measured H2/SO2 ratio. Using dual-wide field of view 192 

UV spectroscopy, Boichu et al. (2010) reported an SO2 flux varying cyclically from 0.17 to 193 
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0.89 ± 0.2 kg s
-1

. Oppenheimer et al. (2005) measured an average SO2 flux of 0.86 ± 0.2 kg s
-1

 194 

by traversing beneath the horizontal plume using a simple ultraviolet spectrometer system, 195 

and Sweeney et al. (2008) estimate was a decadal mean SO2 flux. Using our mean H2/SO2 196 

ratio of 1.44 (equivalent to a H2/SO2 mass ratio of 0.045) we estimate the mean H2 flux at 197 

Erebus volcano as 0.03 kg s
-1 

(2.8 Mg day
-1

).      198 

This estimated H2 flux from Erebus represents a significant contribution to the local 199 

atmospheric chemistry and the single largest recorded point source of H2 to the Antarctic 200 

atmosphere. For context, the global anthropogenic emission of H2 from the use of fossil fuels 201 

is estimated at 5 to 25 Tg a
-1

 (Novelli et al. 1999). The Erebus source amounts to ~1 Gg a
-1

 of 202 

H2 corresponding to 0.004 to 0.02 % of the total global anthropogenic emission. For 203 

comparison the hydrogen flux at Mt Etna has been estimated at ~0.00065 Tg a
-1 

(Aiuppa et al. 204 

2011). Mont Erebus hydrogen flux is therefore 1.6 time greater than Etna’s while its SO2 flux 205 

is 71 time smaller.   206 

Oxidation state of the Erebus lava lake 207 

Based on a mean bulk plume SO2/H2O ratio of 0.023 obtained by FTIR spectroscopy 208 

(Oppenheimer et al. 2009), we can convert the mean “Multi-GAS”-measured H2/SO2 ratio to 209 

an H2/H2O ratio of 0.033. From this ratio we can calculate the corresponding oxygen fugacity 210 

based on the redox reaction in Equation [1] as follows.  211 

  212 

  213 

  214 

and where  fi is the fugacity of the i
th

 species, γi the fugacity coefficient of the i
th

 species, Pi is 215 

the partial pressure of the i
th

 species, xi the mole fraction of the i
th
 species and P is the total 216 

gas pressure.   217 
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  218 

  219 

At atmospheric pressure, the fugacity of a gas is equal to its partial pressure (assuming ideal 220 

behaviour) therefore γH2O/γH2 = 1. The equilibrium constant can be calculated as follows: 221 

  222 

  223 

  224 

  225 

Where ΔG is the change in Gibbs’ free energy, ΔH the change in enthalpy, and ΔS the change 226 

in entropy of the system. CP is the heat capacity which can be fit by a function of the form: CP 227 

= a + bT + cT
-2

 + dT
-0.5

 with a, b, c and d representing Maier-Kelly coefficients specific for 228 

each substance and obtained here from the Supcrt92 software (Johnson et al. 1992). At T = 229 

1273K (the most widely accepted temperature of the lava lake), K= 3.72.10
-8

, the logfO2 is 230 

equivalent to QFM–0.92 (using a H2/SO2 ratio of 1.44, and where QFM refers to the quartz-231 

fayalite-magnetite buffer). Using the obtained oxygen fugacity and prior measurements 232 

(Oppenheimer et al. 2009), we can recalculate the composition of the Erebus plume to include 233 

H2 and the expected abundance of H2S (Table 1, first column). Note that, in the Table, H2S is 234 

estimated based on the gas redox properties (calculated using the “Dcompress” software from 235 

Burgisser et al. (in review)) though it has not been detected at Erebus despite multiple 236 

attempts (Oppenheimer and Kyle 2008).  237 

The oxidation state of the phonolite magma in the persistent lava lake of Erebus volcano has 238 

been estimated by several techniques. Kelly et al. (Kelly et al. 2008) used mineral chemistry 239 

to estimate an oxidation state of ΔlogQFM = –0.9 (using the QUILF program and a 240 

temperature of 1000°C). Oppenheimer & Kyle (2008) and Oppenheimer et al. (2011) used the 241 
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CO2/CO ratio obtained using FTIR spectroscopy (and the same temperature) to estimate the 242 

oxidation state at ΔlogQFM = –0.9 to –0.88. Both of these estimates are very similar to our 243 

mean ΔlogQFM = –0.92. It should be noted however that our new estimate of the oxidation 244 

state is not entirely independent as we used the SO2/H2O ratio previously measured by FTIR 245 

spectroscopy in our calculation.  246 

 247 

The presence of H2 in the volcanic plume suggests that H2 is not burning at the interface 248 

between the lava lake and the atmosphere as has been observed, for instance, at Kīlauea’s lava 249 

lake (Cruikshank et al. 1973). The correspondence of computed redox conditions for the lava 250 

lake also indicates that the H2 abundance at the crater rim corresponds to the high-temperature 251 

equilibrium with the lava lake as hypothesized by Martin et al. (2009), and experimentally 252 

verified at Etna by Aiuppa et al. (2011).  If any H2 is oxidizing in the plume (e.g., to form 253 

HOx radicals) it is only in very small amounts.  254 

Periodicity and magma supply to the lake 255 

From the time-series, the H2/SO2 molar ratio varies mostly between 1 and 2 for all six days 256 

while the CO2/SO2 molar ratio varies mostly between 25 and 50. These upper and lower 257 

values can be attributed to two end-member compositions associated with a periodic dynamic 258 

behavior of the lake (Table 1) recognised in the lava lake surface motion and other gas ratios 259 

(Oppenheimer et al. 2009). The terms “top” and “bottom” of the cycle are adopted here to 260 

echo previous literature; the “Top of cycle” refers to high SO2/CO2 ratio, faster lake motion 261 

and higher lake level, and, as shown in Figure 5, corresponds to high SO2/ H2. The “top of 262 

cycle” composition is calculated using an H2/SO2 ratio of 1 and SO2/H2O gas ratios of 0.0242 263 

from the “mixed plume” composition of Oppenheimer et al. (2009) while the “Bottom of 264 

cycle” composition is calculated using an H2/SO2 ratio of 2 and SO2/H2O gas ratios of 0.0218 265 

from the “conduit gas” composition of Oppenheimer et al. (2009). The difference between the 266 
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two end-member compositions is quite significant in term of redox state, representingQFM-267 

0.65 at the “top of the cycle” and QFM-1.16 at the “bottom of the cycle” (assuming no change 268 

in temperature).  269 

Considering that the “tops” of the cycles are marked by an increase in lake level, surface 270 

motion and SO2 flux, Oppenheimer et al. (2009) and Boichu et al. (2010) suggested that they 271 

are associated with the arrival of foaming magma batches in the lava lake (still exsolving 272 

water at near atmospheric pressure). We now observe that the “top” of the cycle is 273 

consistently associated with significantly more oxidized conditions (log fO2=QFM–0.65) than 274 

the “bottom” of the cycles (log fO2=QFM–1.16). If the “top” of the cycles is indeed 275 

associated with the influx of rising magma batches, then these batches appear to be releasing 276 

gas whose composition is a relic of chemical equilibrium acquired at some depth. This 277 

signature may be preserved as a result of rapid ascent of the magma batch (i.e., fast with 278 

respect to the kinetics of redox reactions such as [1] and [2]). The dichotomy we identify 279 

between the oxidized “top” and reduced “bottom” of the cycles therefore provides further 280 

empirical evidence for redox stratification in the Erebus plumbing system as discussed in 281 

Oppenheimer et al. (2011) and Burgisser et al. (in review), and as hypothesized from a more 282 

general standpoint by Burgisser and Scaillet (2007).  283 

 284 

Conclusion 285 

In-situ measurements of the gas plume emitted from the lava lake of Erebus volcano by means 286 

of a multi-gas sensing instrument indicate that the hydrogen abundance in the magmatic gas 287 

phase is around  1.6 mol%. These measurements constrain the oxidation state of the lava lake 288 

to ~QFM–0.9 log units, consistent with previous estimates; provide strong evidence that 289 

hydrogen burning is not prevalent at the surface of the lake; and that hydrogen is at least 290 
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largely kinetically inert in the gas/aerosol plume rising in the crater. The hydrogen flux to the 291 

atmosphere from the summit of Erebus is estimated at 2.8 Mg d
-1

. A strong ~10 min 292 

periodicity in the proportions of H2 and other species in the plume infers corresponding redox 293 

state variations, and points to a pulsatory supply of magma to the top of the lava lake. The 294 

more oxidized signature of the magma periodically entering the lake provides strong 295 

empirical evidence of a redox stratification in the shallow plumbing system, as has been 296 

hypothesized by previous numerical models.  297 

 298 
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Tables 377 

Table 1: Estimated composition of the Erebus plume in mol% and in molar ratio. The 378 

CO2/CO and SO2/H2O molar ratios are obtained from Oppenheimer et al. (2009). The H2/SO2 379 

and CO2/SO2 molar ratios are obtained from the “MultiGas” instrument measurements and the 380 

SO2/H2S molar ratio is calculated using the “Dcompress” software from Burgisser et al (in 381 

review). The “Top of cycle” composition correspond to the “mixed plume” composition of 382 

Oppenheimer et al. (2009) while the “Bottom of cycle” composition correspond to the 383 

“conduit gas” composition of Oppenheimer et al. (2009).    384 

    385 

Figures 386 

Figure 1: a) Typical field operating conditions of the Licor 840 and multigas sensor at the 387 

crater rim. Gases are pumped through both instruments via a narrow hose connected to a 388 

particle filter to avoid contamination of the instrument. b) View of Erebus (looking north) 389 

under optimal plume sampling conditions on 26 December 2010. Turbulent airflow results in 390 

grounding of the plume allowing for easy sampling. 391 

 392 

Figure 2: Example of time series for gas mixing ratios obtained from both instruments (the 393 

multi-gas sensor and LI-840). This 1-h-long time series is an extract from a 10-h-long run 394 

acquired at the crater rim on 27 December 2010. All gas species are reported in ppmv.   395 

 396 

Figure 3: a) Hydrogen time series (red) and aligned time series (corrected for instrumental 397 

offset between sensors) of the estimated hydrogen counts from cross sensitivity with CO gas 398 

(in blue) estimated as 4% of the CO2 signal from which a constant background atmospheric 399 

value of 387.5 ppmv is subtracted and whose residual is divided by 13 (from measured 400 
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CO2/CO ratio in Oppenheimer et al. 2009). The dotted black line represents the residual of the 401 

H2 time series after removal of the H2 counts due to CO cross-sensitivity. b) H2 and SO2 time 402 

series after correction of H2 from atmospheric background concentration and CO cross-403 

sensitivity and after alignment of both times series from correction of an offset calculated 404 

using the maximum correlation factor between the time series.        405 

 406 

Figure 4: A: H2-SO2 and B: CO2-SO2 Scatter plots from six days of sampling of the Erebus 407 

plume under favourable conditions a) 26 December 2010, data recorded from 11:20 to 16:33 h 408 

UTC. b) 28 December 2010, data recorded from 02h16 to 10h01 UT. c) December 29
th

 2010, 409 

data recorded from 11h07 to 13h58 UT. d) December 30
th

 2010, data recorded from 06h25 to 410 

11h45 UT. e) December 31
st
 2010, data recorded from 04h10 to 06h12 UT. f) January 03

rd
 411 

2011, data recorded from 22h42 to 01h32 UT. Regression lines are shown in red and 412 

corresponding parameters displayed on the lower right corner of each plot.             413 

 414 

Figure 5: Morlet Wavelet transform pseudo-periodogram computed from a 3 h time series of 415 

the H2/SO2 ratio obtained from a 10 h long run of the MultiGas instrument on 3 January 2011. 416 

Note the strong transform modulus emerging steadily at a period of ~10 min. The central 417 

diagrams shows a 3 h time series of the evolution of the H2/SO2 ratio in which ~10 min cycles 418 

(600 sec) can be observed. The lower diagram shows the evolution of the SO2/H2 and 419 

SO2/CO2 ratios for the first 1400 sec (~23min) of a time series obtained from an 8 h long run 420 

of the MultiGas instrument on 26 December 2010. This lower diagram shows 3 cycles of ~8 421 

min each.  422 

 423 



 
mol% 

  Mean Top of cycle Bottom of cycle 

CO2 44.00 34.86 47.25 

H2O 47.84 57.62 43.37 

SO2 1.10 1.39 0.94 

CO 3.30 2.61 3.54 

HCl 0.46 0.56 0.42 

HF 1.16 1.39 1.05 

H2 1.58 1.39 1.89 

OCS 0.01 0.01 0.01 

H2S 0.55 0.16 1.53 

  mol/mol 

CO2/CO 13.33 13.33 13.33 

SO2/H2O 0.02 0.02 0.02 

H2/SO2 1.44 1.00 2.00 

CO2/SO2 40.00 25.00 50.00 

SO2/H2S 2.01 8.72 0.62 

log(fO2) at 1000°C -11.90 -11.63 -12.14 

Delta QFM -0.92 -0.65 -1.16 
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