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Abstract: In these years, the proliferation of unplanned WLANS is creating the
need of implementing different adaptation strategies for improving the network per-
formance under mutating and evolving interference scenarios. Many vendors pro-
pose undisclosed MAC/PHY optimization solutions, such as ambient noise immunity
schemes, dynamic tuning of operating channels and contention parameters, etc., rely-
ing on low-level implementations in the card hardware/firmware.

In this paper we envision a new solution for expressing and implementing high-level
adaptation policies in WLANS, in contrast to the current approaches based on vendor-
specific implementations. We exploit the hardware abstraction interface recently pro-
posed by the Wireless MAC Processor (WMP) architecture, and some flow-control
concepts similar to the Openflow model for defining MAC adaptation policies. A sim-
ple control architecture for disseminating and activating new policies among multiple
nodes is validated in an experimental testbed.

Keywords: Control architecture, Wireless MAC Processor, MAClet, distribution,
flow control

1. Introduction

In the last years it clearly emerged that, in order to support the increasing demand of
mobile traffic, a greater level of adaptability has to be supported by wireless local net-
works for exerting a fine-grained and smart control of the radio resources. On one side,
current technologies include several PHY layer enhancements, including multi anten-
nas, channel bonding capabilities, adaptive modulations, etc., for optimizing the channel
capacity according to the propagation and interference conditions. Dynamic spectrum
access and cognitive technologies are also suggesting a new networking paradigm, with
devices able to sense the environment and reprogram themselves in reaction to mutating
topologies, spectrum conditions, or application requirements [1, 2]. On the other side,
technical solutions for supporting device reconfigurations at layers higher than the PHY
(and in particular on the MAC layer, as considered in this paper), are also emerging for
supporting different MAC/PHY adaptation policies, such as ambient noise immunity
solutions, dynamic tuning of contention parameters, multiple virtual interfaces on the
same hardware [3], and so on. Most of these adaptation solutions are vendor-specific,
focused on a particular mechanism, and with a pre-defined low-level implementation in
the card hardware/firmware. An interesting problem is understanding if MAC adapta-
tion can be dynamic, supported over closed devices with undisclosed hardware internal
design, and defined on the basis of some mechanism-independent primitives. In fact,
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these features could make networks easily configurable for users and operators. As-
sume for example that a network operator wants to switch from contention-based to
time-division access in case of high load conditions. TDMA is obviously not supported
by commercial WiF'i cards, although overlay modules have been shown to emulate this
access mechanism over open source modified drivers [4]. Apart from the technical fea-
sibility of the new scheme, the operator should ask its associated stations to install
the TDMA overlay module, and should implement a decision module on its Access
Points and a signaling mechanism for asking its associated stations to run the overlay
TDMA module. The operator could also decide to force all the stations to disable
the rate adaptation scheme or to use the same ARF scheme, but it has no mean to
inject on-the-fly this abstract policy into the associated stations (without entering into
the card internals and modifying again the specific drivers). In this paper, starting
from the recent advances in the definition of new card architectures able to support
programmable MAC schemes, we consider the possibility to program and disseminate
adaptation policies in a wireless local network. Our solution has some similarities with
the Openflow model [5], which apply similar concepts to the wired domain, i.e. making
the router forwarding policies programmable by means of open API, without requiring
manufacturers to disclose the internals of the switch fabrics. In our wireless scenario,
programming the forwarding policies is more complex because the unconfined nature
of the wireless medium makes the selection of the best possible (real or virtual) net-
work interface strictly related to the relevant medium access rules. Indeed, customized
medium access rules can help in providing isolation or coordination among multiple
links. We prove how the joint definition of control policies for traffic flow classifica-
tion and medium access can be exploited by our Control Architecture in a real testbed
referring to common home networking scenarios.

2. Related Work

Programmability and code mobility in the wireless communications has been explored
along several directions [6], with particular attention to sensor networks [7, 8] as a
solution for distributing upgrades. In this same field, [9] introduced a protocol for
distributing the code, while [10] faced the problem of efficient distribution by replacing
the concept of binary with interpreted code. These works limit programmability above
the MAC layer and in any case differ from our vision, since the code is system-specific
and no abstraction is used for simplifying its definition.

First attempts to demonstrate advanced MAC programming interfaces leveraged
the openness of SoftMAC drivers on off-the-shelf 802.11 hardware [11, 12, 4]: though
they enable the configuration of MAC registers including contention window(s), slot
time, and transmit power, they do not allow precise time-constraint scheduling of
customized frame, as such operations require changes in proprietary firmwares. The
opensource firmware [13] released for Broadcom cards changed a bit the situation and
led to challenging demonstrations [14] but requires deep skills in assembly coding and
it is still far away from the flexibility requirements needed by active networking and
code mobility. The research community tried circumventing these issues by resorting to
fully programmable designs based either on Software Define Radios (SDRs) or FPGA
circuits [15, 16]: however the former prohibit the implementation of time-constraint
protocols because of high latencies, while the extreme versatility offered by the latter
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clashes with the needs for offline reloading of Verilog and C compiled code.

A first step towards the definition of a simple Application Programming Interface
for programming MAC schemes by re-using already developed functionalities is rep-
resented by [17, 18, 19]. Among these approaches we focused on the Wireless MAC
Processor (WMP) architecture [19] that has been implemented over an ultra-cheap com-

mercial card (by Broadcom), over which different access rules have been experimentally
validated (including TDMA, CSMA and multi-channel access schemes).

2.1 The Wireless MAC Processor

For abstracting the hardware capabilities and defining hardware agnostic programs to
be injected into the wireless cards, the WMP architecture implements a state machine
execution engine, called MAC engine, and a set of elementary actions and signals di-
rectly on the card. The MAC Engine is an executor of MAC Programs, specified in
terms of an high-level state machine that can be ported on different card systems. The
definition of the medium access control logic in terms of extended finite state machine
(XFSM) permits to conveniently control the actions performed on the hardware, as
a consequence of the MAC protocol logic, of events such as frame arrivals and timer
expirations, and of conditions on the card configuration registers. The set of events
generated and/or revealed by the card hardware, the set of actions coded in terms of
pre-defined firmware modules, and the set of card registers whose settings can be tuned
and verified, represent the device API that cannot be modified by the user.

The MAC program is coded into a transition table and loaded in a memory space
deployed on the hardware. Starting from an initial (default) state, the MAC engine
fetches the table entry corresponding to the state, and loops until a triggering event
associated to that state occurs. It then evaluates the associated conditions on the
configuration registers, and if this is the case, it triggers the associated action and
register status updates (if any), executes the state transition, and fetches the new table
entry for such destination state.

Since a MAC program is basically a list of labels specifying the events, actions and
conditions associated to each state transition, by defining a common set of labels for the
API (i.e. a machine language), the MAC program can be transported over data frames
from one node to another. In [20] it has been shown that a basic version of DCF can be
coded into 500 bytes only. By adding a simple header for controlling the loading and
activation of the new state machine on the card, code mobility can be easily supported
[20] in the so called MAClets (in analogy to the JAVA applets).

The MAC engine does not need to know to which MAC program a new fetched
state belongs, so that a code switching is achieved by moving to a state in a different
transition table and by updating the platform configuration registers (e.g. the operating
channel, the transmission power, etc.). The definition of code switching transitions are
logically independent of the MAC program definition. Therefore, rather than adding
them to the MAC program, the architecture allows to program the switching transitions
into a second-level state machine (meta state machine), whose states represent the MAC
program under execution.

3. Architecture

In this section we present our solution for expressing and implementing high-level net-
work policies in wireless local networks, in contrast to the current solutions based on
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Figure 1: Architecture detail about Policy Control (a) and the Control and Data Planes (b).

low-level configurations and vendor-specific implementations. Indeed, many systems
require to implement policies that are inherently dynamic and depend on temporal
conditions and external events, such as interference measurements, network topology,
load conditions, and so on. We present a control architecture for defining these poli-
cies and program wireless interfaces to follow them. Our control architecture has the
following features: i) it is based on the WMP API for collecting channel signals and
statistics, ii) it exploits frame classifiers for managing multiple virtual interfaces, iii) it
adopts meta-state machines for implementing reactive decisions. Specific control mes-
sages allow to configure the desired policy on the nodes and to coordinate the activation
of new policies.

3.1 Programmable Wireless Nodes and Policies

We assume that our programmable wireless nodes are composed by a WMP enriched
with the possibility of defining frame classifiers linked to different MAC programs.
Since the MAC Engine is able to switch from a MAC program to another, multi-
threading can be supported by opportunistically programming the switching events
(e.g. at regular timer expirations) in the meta state machine. This feature allows to
run simultaneously multiple access schemes over the same hardware (as multiple virtual
interfaces with different behaviors). A frame classifier is then required for multiplexing
the traffic between the available access schemes. The classifier can work on several frame
parameters, such as the QoS class, the source and destination MAC addresses, the frame
size, the frame type, the events occurring when processing the frame, etc. On top of the
WMP extended platform, a MAC adaptation policy can be programmed by loading a
meta state machine and the relevant MAC programs, as shown in figure 1-(a). The meta
state machine can specify a one-time switch from a given program to another, multiple
switching events from two or more programs, or even a periodic switch to a doze state
program for preventing the node from accessing the medium at regular time intervals.
The policy can be transported into MAClets that can (entirely or incrementally) code
elementary state machines and code switching conditions. Moreover, it also includes a
table mapping the traffic flows into the multiple running programs.

3.2 Control System

As in OpenFlow, we envision a system with a clear separation between the data plane
and the control plane. For configuring the data plane, i.e. the MAC programs and
the relevant traffic queues at each node, the control plane is responsible for: (i) col-
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lecting low-level information for estimating the network context; (ii) distributing and
configuring MAC programs; (iii) ensuring against network inconsistencies in medium
access rules. Figure 1-(b) shows how the control plane acts on the programmable nodes:
different MAC programs are loaded on the nodes and linked to different traffic queues
according to the policy programmed by a MAClet Controller. The policy is given by
a meta machine describing the switching conditions from a MAC program to another.
A MACIet manager is responsible of physically transmitting the relevant programs and
loading them on the nodes. MAClet Manager, MAClet Controller and MAClet Repos-
itories are the main components of the control plane. The MAClet Manager handles
MAClets at node-level and provides the node-level intelligence. The MAClet Man-
ager transmits and receives MAClet protocol messages to/from MAClet Controllers
and Managers. It upgrades the local repository and loads, runs, configures MAC pro-
grams over the WMP. The MAClIet Controller provides the network-level intelligence
on the basis of low-level data received from MAClet Managers; it commits locally com-
puted best response strategies or those decided by the operator. Different controllers
can work simultaneously on the same physical network. Finally the MAClet repository
stores some basic state machines to be composed into controller policies. A central
repository is available for each controller, while a local repository contains the most
recent or used MAC programs for a prompt availability at the node level.

3.3 Control Messages and Procedures

Policies distribution among wireless nodes is performed in three (cooperating) ways: (i)
the controller sends the MAClets to the MAClet Manager of each node via dedicated
unicast control messages (specifically acknowledged); (ii) the controller sends MAClets
in broadcast, by requiring that each MAClet Managers floods them into a a whole sub-
network; (iii) the MAClet Manager of a given node requests the current policy to its
neighbors. In order to avoid policy mismatching among the nodes, it is required to sup-
port a distribution protocol for disseminating the policy and a synchronization protocol
for coordinating the policy activation. Standard WLAN protocols assume the role of
default common protocols to be executed (eventually, on a pre-defined common channel)
for supporting a pre-shared communication policy. We assume that the default protocol
and configuration parameters are pre-loaded in each WMP with a bios state machine
(e.g. in our implementation, the bios machine is a legacy DCF working on channel 1).
Control messages are divided in Management, Action, Information, and Flow Control
Messages, as summarized in table 1. Management Messages allow registration of the
MACIet Managers to a given controller. Action Messages are used to send, load, acti-
vate, configure MAClets and their parameters, Information Messages carry on low-level
statistics from managers to controllers, whereas flow control messages are used by the
Controller to create, remove, and configure queues.

MACIlet Manager registers at one or more MAClet Controllers when switched on;
then they periodically refresh their registration. The Manager informs to the Controller
about the platform capabilities (e.g. how many MAC programs can be run in parallel,
being a platform-dependent parameter). Control procedures are organized into three
phases: registration, loading, and activation, as shown in figure 2. These phases can
partially overlap each other (stations asynchronously register) or be merged (a single
message can carry the loading and the activation commands). The registration phase
creates or refreshes a virtual interface on the card and delegates its control to a MAClet
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Table 1: MAClet control messages

Controller. The access policies for the newly created virtual interface are then provided
and started by the MAClet Controller by means of the loading and activation com-
mands. The Control Plane also provides the primitives for programming the desired
synchronization and error recovery operations. Network-level policies require coordina-
tion among nodes. For example, the activation of a new program may require a common
reference signal for avoiding critical inconsistencies (such a temporary use of different
transmitting channels, mismatch in slot assignment, etc.) leading to disassociations or
other network errors. A new policy can be executed upon reception (if the command
does not specify an activation data), or at the occurrence of a the triggering event (such
as a control frame sent by the AP or the expiration of a (relative or absolute) timer.
While the relative timer is expressed as a function of a network synchronization event
(e.g. the next channel busy time), for using an absolute time reference the controller
has to rely on a time synchronization function. Different activation solutions based on
a 3-way handshake mechanism can also be defined in the distribution protocol.

4.

We implemented MAClet Manager and MAClet Controller as user-space applications,
in agreement with the hardware-agnostic nature of MAClet code. The two applications
build the control plane of a given network by embedding into UDP datagrams the
protocol messages reported in Table 1. Control messages are transported into UDP
packets, and can be unicast or broadcast. For example, MAClet action messages are
broadcasted to all stations and filtered by receiving MAClet Managers accordingly to

Implementation

Copyright (©) The authors www.FutureNetworkSummit.eu/2013 6 of 10



| MAClet Manager | i / | MAClIet Controller |

| MAClet Managet

frame P~ DCF - KESM

classifier| | " ] /"' Engine

p l MAClet Manager ‘
€ frame [» DCF =~ NESM

classifiet]| ’_D IS /’- Engine

WMP

Figure 3: Use case: a TV box (left) delivers HD video to an Internet enabled TV while both
communicates with Internet; a laptop (right) is connected to the internet via the AP.

the destination address. We reserved port number 1717 for the control plane protocol
messages.

Multiple virtual networks can be defined over the same programmable nodes. On
each virtual network, messages are exchanged according to the running MAC algorithm:
for this reason a default algorithm is always virtualized, even if for very short inter-
vals. This allows stations and their MAClet Controllers to load this default MAC, join
the virtual operator(s), start a control plane session with some MAClet Manager and
eventually switch to the right MAC. We use DCF as default.

The session between the MAClet Manager and a MAClet Controller can be estab-
lished upon a station joins a network. The communication between the MAClet Man-
ager and the hardware is based on the WMP Control interface [20], able to inject MAC
programs, activating a given program, collecting measurements from the corresponding
interfaces, etc., according to the messages received by the MAClet Controller.

With respect to existing WMP engines, the firmware running in our testbed and
deploying WMP on board of cheap off-the-shelf cards from Broadcom was carefully
designed to allow quick MAClet switching.

At this early stage of development we have not introduced any mechanism for au-
thenticating peers to each other and to control message integrity: we plan to imple-
ment a security sublayer by considering signatures and asymmetric cryptography which
should not be problematic given that our software runs in user spaces with (usually) not
constrained computational ability (e.g., smartphone or even better equipped devices).

5. [Experimental Results

To prove the effectiveness of the available API and control messages for defining dif-
ferent adaptation policies, we tested our implemented architecture in a real scenario.
Specifically, we considered a domestic infrastructure network, with an Access Point and
a given number of associated stations in radio visibility, as shown in figure 3. The TV
box, the Internet enabled TV, and the laptop usually require to be connected to the
Internet (for downloading data or software updates). Additionally, the TV box may
deliver a HD video to the smart TV. In such a case, according to the default DCF rules
for infrastructure networks, the same data need to be transmitted from the TV box to
the AP and from the AP to the smart TV, thus wasting bandwidth for the other nodes.
Although current DCF extensions include the possibility to setup a direct link, i.e. a
station to station data transfer without using the AP as relay, such a feature has to be
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Figure 4: Policy definition as a meta machine between two different threads (two virtual
interfaces) (a) and DLS timing (b).

supported by the TV box and smart TV and activated by the user.

Suppose now that the ADSL provider, that is the owner of the home AP, wants
to define a MAC adaptation policy according to which when two associated stations
exchange a data volume higher than a given threshold, a direct link is activated between
the two stations (for that data flow), while other traffic flows continue to be sent to
the AP. The policy can be specified by programming a meta state machine as indicated
in figure 4-(a), where two state machines (namely, the DCF and the direct link (DLS)
one) are composed in a more complicated machine switching from one program to
another according to the frame classifier output (DCF_PKT or DLS_PKT) and to
the expiration of some timers. The two programs behave as different virtual interfaces
and can even work on different channels. This is the reason of the switching timers,
introduced for keeping the association to the AP even in absence of traffic flows for the
AP. In our current implementation, Thg is 890 ms and Tpor is 6 ms. The switching
to DLS is enabled only when the packet counter of the station-to-station data flow
overcomes a given threshold.

The policy is defined in the MAClet Controller and sent to the TV box and smart
TV nodes by means of the MAClet distribution and synchronization protocol. Figure
3 shows the effect of this adaptation policy in terms of inter-node traffic flows (from
scenario 1 to scenario 2): the TV box classifier routes video frames through the virtual
interface that runs DLS (the red line), addressing them directly to the smart TV. The
remaining traffic is sent to the AP, which then routes it towards the Internet (blue
lines).

MAClIet setup compairson
60 T T T T T

7 | DLS DLS-CH DLS-CH-NO-BK

S s0f 1

H

<

Sl |

= e Wmmu 'Y”““MTWWJ T
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Figure 5: Throughput comparison under legacy DCF, DLS, and two versions of DLS++.

We set-up a testbed in our laboratory with two client stations acting as the TV
box and smart TV (with a station-to-station traffic flow) and the AP equipped with a
MACIlet Controller and the envisioned policy. A third client was statically set to the AP
channel with a legacy DCF protocol. We repeated the policy loading and activation test
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periodically, by programming the AP to alternatively send (to the two programmable
clients) the DCF-DLS MAClIet and the legacy DCF MACIet at regular intervals of 1
minute. We tested three slightly different versions of the DCF-DLS MACIet: both the
programs working on the same channel 6; the DLS program working on on channel
11; the DLS program working on the secondary channel 11 with a channel contention
window set to 0. Figure 5 shows the throughput results of the client station sending
saturated UDP traffic to the second client under the three settings (labeled, respectively,
as DLS (direct link setup), DLS-CH (direct link with channel switch), DLS-CH-NO-
BK (direct link on a different channel without backoff). Starting from legacy DCF,
the clients switch to the different DCF-DLS configurations at 1, 3, and 5 minutes, and
come back to standard DCF at 2, 4 and 6 minutes. From the figure it is evident that
the customized direct-link access may bring dramatic improvements, especially when it
is managed on a secondary channel without backoff (from about 12 Mbps of the normal
DLS case to about 38 Mbps under the DLS without backoff).

6. Conclusions

This paper proposes a control architecture to handle MAClets over programmable wire-
less nodes in order to implement dynamic adaptation policies in WLANs. Our frame-
work extends the Wireless MAC Processor abstractions with frame classifiers, meta
state machines and control messages, for effectively specifying and disseminating high-
level hardware-independent policies. According to our vision, the proposed solution is
an example of wireless software-defined network, where end users, network administra-
tors and service providers can manage traffic flows over virtual and physical interfaces
with customized access rules for mitigating the interference, reducing channel wastes
and improving the overall network performance. Differently from the solutions currently
explored in the wired domain, the introduction of state-dependent programs allow to
natively implement reactive mechanisms, able to reprogram the node behaviors at the
occurrence of pre-defined critical events.
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