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Abstract. We propose a setup comprising an arbitrarily large array of static
qubits (SQs), which interact with a flying qubit (FQ). The SQs work as a quantum
register, which can be written or read out by means of the FQ through quantum
state transfer (QST). The entire system, including the FQ’s motional degrees of
freedom, behaves quantum mechanically. We demonstrate a strategy allowing
for selective QST between the FQ and a single SQ chosen from the register.
This is achieved through a perfect mirror located beyond the SQs and suitable
modulation of the inter-SQ distances.
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1. Introduction

A prominent paradigm in quantum information processing (QIP) [1] is to employ flying
qubits (FQs) and static qubits (SQs) as the carriers and registers of quantum information,
respectively [2]. Key to such an idea is the ability to write and read out the information content
of a SQ by means of a FQ. By this, here we mean that an efficient quantum state transfer (QST)
between these two types of qubits must be possible on demand. In this picture, control over
memory allocation appears to be a desirable if not indispensable requirement. For instance, one
can envisage the situation where only one or a few SQs are available, e.g. because the remaining
ones are encoding some information to save. On the other hand, one may need to carry away
only the information saved in certain specific SQs. Alternatively, only a restricted area of the
register of SQs may be interfaced with some external processing network where one would
like to eventually convey information or from which output data are to be received. In such
cases, the ability of selecting the exact location where the information content of the FQ should
be uploaded or downloaded is demanded. Ideally, according to the schematics in figure 1, one
would like the FQ to reach the specific target SQ, then fully transfer its quantum state to this and
eventually fly away. Evidently, this picture is implicitly based on the assumption that, firstly, the
motional degrees of freedom (MDOFs) of the FQ are in fact fully classical and, secondly, these
can be accurately controlled. Despite its simplicity, although interesting research along these
lines is being carried out mostly through the so-called surface acoustic waves (see e.g. [3] and
references therein), such an approach calls for a very high level of control.

If set within a fully quantum framework, the most natural situation to envisage is the one
where the FQ, besides bearing an internal spin, moves in a quantum mechanical way and hence
propagates as a wave-like object. Such a circumstance substantially complicates the dynamics
in that, besides the complex spin–spin interactions, intricate wave-like effects such as multiple
reflections between the many SQs occur as well. This appears to be an adverse environment to
accomplish selective QST: while ideally one would like to focus the FQ’s wave packet right on
the target SQ, the former is expected to spread throughout the SQs’ register. Thus, not only is
it non-trivial what strategy would enable selective QST but even the mere possibility that this
could occur can be questioned.

In this work, we consider a paradigmatic Hamiltonian memory read-out model where the
FQ propagates along a one-dimensional (1D) line comprising a collection of (fixed) spatially
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Figure 1. Selective QST between an FQ and a register of SQs. The FQ reaches
the target SQ, exchanges its information content with it and eventually leaves the
register.

Figure 2. Sketch of the setup in the case of one (a), two (b) and arbitrary N
(c) SQs. The FQ f incomes from the left with a given wave vector k, undergoes
multiple scattering between the SQs and the perfect mirror and eventually moves
away from the register with the same k.

separated non-interacting SQs and couples to them via contact-type spin–spin Heisenberg
interactions (see figure 2). We start with a single SQ and prove that a unitary swap between
the itinerant and static spins is unattainable. The insertion of a perfect mirror along the 1D line,
however, makes it possible. At the same time, since the transmission channel is suppressed there
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is no uncertainty over the final path followed by the FQ. Next, we find that even for a pair of
SQs this can be achieved with either of the two SQs through an ad hoc setting of distances
and coupling strengths. Surprisingly enough, this means that Feynman paths entering multiple
reflections can combine so as to effectively decouple one SQ while enabling at the same time a
unitary swap involving the other one. Even more surprisingly, the working principle behind this
phenomenon is such that it is naturally generalized to the case of an arbitrarily large register of
SQs, as we rigorously prove.

2. Read-out of a single static memory qubit

Consider the case where a single memory static qubit SQ1 lies on the x-axis close to position
x = 0. To read out the quantum information stored in SQ1 (or write it there), an FQ f is injected
along the axis with momentum k, say from the left-hand side. We model the f –SQ1 interaction
as a contact-type spin-dependent scattering potential having the Heisenberg coupling form. The
system Hamiltonian can thus be expressed as Ĥ = p̂2/2 + V̂ , where p̂ is the momentum operator
of f (its mass being set equal to 1 for simplicity) and

V̂ = G(σ̂ f · σ̂ 1)δ(x) (1)

is the coupling potential with the associated strength G.5 Here, x is the spatial coordinate of f ,
while σ̂ f and σ̂ 1 are the spin operators of qubits f and SQ1, respectively, i.e. σ̂ = (σx , σy, σz)

with σ̂β=x,y,z having eigenvalues ±1/2 (we set h̄ = 1 throughout). We ask whether or not, when
f will emerge from the scattering process, the internal degree of freedom (i.e. the spin) of the
two qubits has been exchanged according to the mapping

ρ f 1 → ρ
(swap)
f 1 = Ŵ f 1ρ f 1Ŵ †

f 1, (2)

where ρ f 1 is the (joint) input spin state of f and SQ1, while Ŵi j is the usual swap two-
qubit unitary operator exchanging the states of qubits i and j [1]. While there are, in fact,
counterexamples [4, 5] showing that this is impossible6, we give next the general proof that such
a swap operation cannot occur. For this purpose, let us define |9±

〉 f 1 = (|↑↓〉 f 1 ± |↓↑〉 f 1)/
√

2,
where for each qubit, either flying or static, | ↑〉 and | ↓〉 stand for the eigenstates of σ̂z with
eigenvalues 1/2 and −1/2, respectively (from now on, we omit particle subscripts whenever
unnecessary). The state |9−

〉 is the well-known singlet, while the triplet subspace is spanned by

{| ↑↑〉, |9+
〉, | ↓↓〉}. Using the identity σ̂ f · σ̂ 1 = (Ŝ

2

f 1 − σ̂
2
f − σ̂

2
1)/2, where Ŝ f 1 = σ̂ f + σ̂ 1, the

interaction Hamiltonian can be written as V̂ = (G/2)(Ŝ
2

f 1 − 3/2)δ(x), entailing [Ĥ , Ŝ
2

f 1] = 0
[5–7]. Within the singlet (triplet) subspace, the effective interaction is thus spinless and reads
V̂s = −(3G/4)δ(x) [V̂t = (G/4)δ(x)]: the problem is reduced to a scattering from a (spin-
independent) δ-barrier. For a δ-potential step 0δ(x) and a particle incoming with momentum
k, the reflection and transmission probability amplitudes r (0)(γ ) and t (0)(γ ), respectively, are
found through a textbook calculation to be

r (0)(γ ) = t (0)(γ ) − 1 = −iγ /(1 + iγ ), (3)

5 The assumption of the δ-shaped potential is a standard one, and for the present setup it relies on the usually met
condition that the FQ’s wavelength is significantly larger than the characteristic SQ size.
6 In [5], it was proven that, given the initial spin state | ↑↓〉 f 1, the scattering process between f and SQ1 can never
lead to 〈σ̂1z〉 = 1/2. Owing to the conservation of σ̂ f z + σ̂1z , this is equivalent to stating that the transformation
| ↑↓〉 f 1 → | ↓↑〉 f 1 is unattainable.
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where we have introduced the rescaled parameter γ = 0/k. These functions allow to calculate
the reflection coefficient for the singlet and triplet sectors as

rs = ts − 1 = r (0)(−3g/4) (singlet), (4)

rt = tt − 1 = r (0)(g/4) (triplet), (5)

where we have set g = G/k. Evidently, |rt| 6= |rs| for any G 6= 0. This is the very reason which
forbids one from using the above scattering process for implementing any unitary gate on the
spin degree of freedom of f and SQ1, hence, in particular, the swap gate (2) enabling perfect
writing/read-out of SQ1. Observe indeed that, once the orbital degree of freedom of the FQ are
traced out, the final spin state ρ ′

f 1 of the joint system f –SQ1 can be related to the initial one ρ f 1

(in general, mixed) through the completely positive, trace-preserving map [1]

ρ f 1 → ρ ′

f 1 = T̂ f 1ρ f 1T̂ †
f 1 + R̂ f 1ρ f 1 R̂†

f 1, (6)

where the first contribution refers to the f -wave component emerging from the right of the
1D line (transmission channel), while the second contribution to the one emerging from
the left (reflection channel). The Kraus operators [1, 10] T̂ f 1 and R̂ f 1 describing these two
complementary events are provided, respectively, by the transmission and reflection operators
of the model, namely

R̂ f 1 = rs5̂
(s)
f 1 + rt5̂

(t)
f 1, T̂ f 1 = ts5̂

(s)
f 1 + tt5̂

(t)
f 1, (7)

where 5̂
(s)
f 1 = |9−

〉 f 1〈9
−
| and 5̂

(t)
f 1 = Î f 1 − 5̂

(s)
f 1 are the projector operators associated with the

singlet and triplet subspaces, respectively, of the f –SQ1 system. Note that in the computational
basis {|α f α1〉} (α f , α1 =↑, ↓), a matrix element 〈α′

f α
′

1|R̂ f 1|α f α1〉 yields the probability
amplitude that, given the initial joint spin state |α′

f α
′

1〉, f is reflected back and the final spin

state is |α f α1〉 [8, 9] (an analogous statement holds for T̂ f 1). Via the identities (4) and (5),
one can easily verify that equation (7) immediately entails the proper normalization condition
T̂ †

f 1T̂ f 1 + R̂†
f 1 R̂ f 1 = Î f 1. Furthermore, expressed in this form it is now easy to see why the

mapping (6) is never unitary: in fact for this to happen, R̂ f 1 and T̂ f 1 should be mutually
proportional, i.e. rs(t) = ξ ts(t). This is impossible since it requires rs/ts = rt/tt, which can be
fulfilled only if rs = rt (conflicting with |rs| 6= |rt| proven above).

A strategy to get around this hindrance is to insert a perfect mirror at x = 0 beyond the
SQ located at x = x1 at a distance d1 as sketched in figure 2(a) (this is inspired by [9], where,
however, a somewhat different system was addressed). First of all, such a modified geometry
suppresses the transmission channel eliminating the uncertainty in the direction along which f
propagates after interacting with SQ1. Specifically, in the presence of the perfect mirror we have
T̂ (m)

f 1 = 0 and equation (6) thus reduces to

ρ f 1 → ρ ′

f 1 = R̂(m)

f 1 ρ f 1 R̂(m)†
f 1 , (8)

where now the reflection matrix R̂(m)

f 1 is always unitary R̂(m)†
f 1 R̂(m)

f 1 = R̂(m)

f 1 R̂(m)†
f 1 = Î f 1. More

interestingly, equation (8) allows for the perfect swap gate (2) to be implemented. To see this,
observe that since the squared total spin is still a conserved quantity as in the no-mirror case,
the problem reduces to a spinless particle scattering from a spinless barrier 0δ(x − x1) and a
perfect mirror which, via a simple textbook calculation, gives the reflection amplitude

r (m)(γ ) = −
[
iγ + (1 − iγ )e2ikd1]/[1 + iγ (1 − e2ikd1)

]
(9)
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Figure 3. Plots of the functions g̃(kd1) in equation (13) (panel (a)) and h(kd1) in
equation (16) (panel (b)), which set the conditions for perfect swap between
f and the static memories. Either function is periodic of period π . Note,
in particular, that as the optical distance kd1 approaches nπ (n = 1, 2, . . .)
condition (13) can be satisfied only in the asymptotic limit of infinite spin–spin
coupling. Moreover, there is a threshold gth = 1 (dashed line in panel (a))
that g must exceed to ensure the existence of values of kd1 allowing for the
implementation of the swap gate.

(recall that γ = 0/k). Therefore, a reasoning fully analogous to the previous case leads to

R̂(m)

f 1 = r (m)
s 5̂

(s)
f 1 + r (m)

t 5̂
(t)
f 1 (10)

with

r (m)
s = r (m)(−3g/4) (singlet), (11)

r (m)
t = r (m)(g/4) (triplet). (12)

Observe that R̂(m)

f 1 is unitary because r (m)(γ ) has unit modulus. To work out the conditions
for realizing an f –SQ1 swap gate (2), we use the fact that this unitary can be written as
Ŵ f 1 = −5̂

(s)
f 1 + 5̂

(t)
f 1. Evidently, R̂(m)

f 1 can be made coincident with Ŵ f 1 (up to an irrelevant

global phase factor) if and only if r (m)
s = −r (m)

t . This identity is fulfilled provided that g and
kd1 are related to each other according to the function

g = g̃(kd1) =
2

3

(√
3 + 4 cot2kd1 − cot kd1

)
(13)

which is plotted in figure 3(a). Interestingly, g̃(kd1)> 1 means that g must exceed the threshold
gth = 1 to ensure occurrence of the swap. To summarize, in the presence of a single SQ and
for a given spin–spin coupling strength, for any 0 < kd1 < π (see figure 3(a)) there always
exists a corresponding coupling constant G > k ensuring the occurrence of the f –SQ1 swap.
Conversely, as long as G is strictly larger than k, there are always two distinct values of kd1

enabling the perfect swap between f and SQ1.
Before concluding this section, we point out that, based on the form of r (m)

s(t) , when the
optical distance kd1 is an integer multiple of π (i.e. kd1 = nπ ) the above coefficients reduce to
r (m)

s = r (m)
t = −1 and hence R̂(m)

f 1 = − Î f 1 independently of the coupling strength. This situation
is indeed equivalent to moving the mirror to SQ1’s location: the chance for the FQ to be found
at such a position then vanishes and its spin is thus unable to couple to the SQs. More generally,
the property that two objects whose optical separation is an integer multiple of π behave as if
they were at the same place will be exploited repeatedly in this work.
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Figure 4. The first-order (a) and the second-order (b) Feynman paths contributing
to equation (15).

3. Two static qubits

In addition to SQ1 and the perfect mirror, the setup now comprises a further SQ, dubbed SQ2,
located on the left of 1 at a distance d2 from it as shown in figure 2(b). Hence, the spin–spin
coupling term in Ĥ now reads

V̂ = G
∑
i=1,2

(σ̂ f · σ̂ i)δ(x − xi), (14)

where x1 = −d1 and x2 = −(d1 + d2). We aim to implement either a f –SQ1 or a f –SQ2 swap
operation, i.e. either the unitary Ŵ f 1 ⊗ Î2 or Î1 ⊗ Ŵ f 2, respectively (note that in any case we
require one of the two SQs to be unaffected). Analogously to the single-SQ case, the mirror
suppresses the transmission channel and thereby one can define a unitary reflection operator
R̂ f 12 within the eight-dimensional (8D) overall spin space that fully describes the interaction
process output. In the spirit of scattering matrices combination via the sum over different
Feynman paths [13], the scattering operator R̂ f 12 results from a superposition of all possible
paths, the first of which are sketched in figure 4. The overall sum is obtained in terms of a
geometric series as

R̂ f 12 = R̂ f 2 + T̂ f 2( Î f 12 − R̂(m)

f 1 R̂ f 2 ei2kd2)−1 R̂(m)

f 1 T̂ f 2 e2ikd2, (15)

where although not shown by our notation, while it involves qubits f and SQ1(2), each reflection
or transmission operator on the right-hand side is intended as an extension to the present 8D
spin space. Also, note that R̂(m)

f 1 is a function of kd1.
The present setup ensures QST between f –SQ1 and f –SQ2, respectively, in the regimes

f − SQ1 QST : kd2 = h(kd1), g = g̃(kd1), (16)

f − SQ2 QST : kd1 = nπ, g = g̃(kd2), (17)
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where n = 1, 2, . . ., while h(kd1) = π − arg[r (m)
s (g̃)]/2 is a periodic function of period π plotted

in figure 3(b). Condition (17) is easily understood: we have already discussed (see the previous
section) that when kd1 = nπ the optical distance between SQ1 and the mirror is effectively zero;
hence, it is as if the mirror lies at x = x1 so as to inhibit the f –SQ1 coupling. We are thus left
basically with the same setup as the one in the previous section, which shows that if condition
g = g̃(kd2) is fulfilled (cf equation (13)), then R̂ f 12 = Î1 ⊗ Ŵ f 2.

To prove equation (16), which is key to the central findings in this paper, it is convenient
to introduce the coupled spin basis arising from the coupling of σ̂ f , σ̂ 1 and σ̂ 2. We define
Ŝ f i = σ̂ f + σ̂ i (i = 1, 2) and the total spin Ŝ = σ̂ f +

∑
i=1,2 σ̂ i . It is then straightforward to

check that equation (14) can be expressed as

V̂ = (G/2)
∑
i=1,2

(Ŝ
2

f i − 3/2)δ(x − xi) (18)

and thus [Ĥ , Ŝ
2
] = 0 (owing to [Ŝ

2

f i , Ŝ
2
] = 0). Also, [Ĥ , Ŝz] = 0. Note, however, that neither

Ŝ
2

f 1 nor Ŝ
2

f 2 is conserved since [Ŝ
2

f 1, Ŝ
2

f 2] 6= 0. Using now the coupling scheme where σ̂ f

is first summed to σ̂ 1,7 the coupled basis reads B f 1 = {|s f 1; s, m〉}, where s f 1, s and m =

−s, . . . , s are the quantum numbers associated with Ŝ
2

f 1, Ŝ
2

and Ŝz, respectively. As s f 1 = 0, 1
(singlet and triplet, respectively) the possible values for s are s = 1/2, 3/2. In the subspace
s = 3/2 only s f 1 = 1 occurs, while for s = 1/2, s f 1 can be both 0 and 1. It should be clear

now that given that s and m are good quantum numbers (Ŝ
2

and Ŝz are conserved) R̂ f 12 is
block diagonal in the basis B f 1: four blocks are 1D, each identified by one of the vectors
{|s f 1 = 1; s = 3/2, m = −3/2, . . . , 3/2〉}; two blocks are instead two-dimensional (2D), each
spanned by {|s f 1 = 0; s = 1/2, m〉, |s f 1 = 1; s = 1/2, m〉} and labeled by m = −1/2, 1/2. Due
to symmetry reasons, for fixed s the effective form of R̂ f 12 in each block is independent of
m. Let us first begin with the two s = 1/2 blocks. In light of the previous section, for both of
them, independently of the value of m, we can write R̂(m)

f 1 = r (m)
s |0〉〈0| + r (m)

t |1〉〈1|, where we

have introduced the concise notation |s f 1〉 = |s f 1; s = 1/2, m〉. As to R̂ f 2 = T̂ f 2 − Î f 2, one has
to solve an effective scattering problem in a 2D spin space in the presence of the spin-dependent

potential barrier (G/2)(Ŝ
2

f 2 − 3/4 − qs2)δ(x − x2), where s2 is the quantum number associated

with σ̂
2
2 and we have introduced the discrete function q j = j ( j + 1) (here, although s2 = 1/2,

we leave such a quantum number unspecified for reasons that will become clear later on). Such
a task can be carried out easily, as we show in the appendix. Next, by requiring condition (13),
which ensures that R̂(m)

f 1 implements a QST between f and SQ1 by setting r (m)
s = −r (m)

t and

plugging R̂(m)

f 1 and R̂ f 2 into equation (15), the matrix elements of R̂ f 12 in the s = 1/2 block

rs′

f 1s f 1 = 〈s ′

f 1|R̂ f 12|s f 1〉 are calculated as

r00 = −[g̃2qs2 − 2(2 − ig̃)r (m)
s e2ikd2 − ig̃(2 − iqs2 g̃)r (m)2

s e4ikd2]/1, (19)

r11 = −[ig̃(2 + iqs2 g̃) − 2(2 + ig̃)r (m)
s e2ikd2 + qs2 g̃2r (m)2

s e4ikd2]/1, (20)

r01 = r10 = 2i
√

qs2 g̃(1 − r (m)2
s e4ikd2)/1 (21)

7 See any basic textbook dealing with the sum of three angular momenta, e.g. [14].

New Journal of Physics 15 (2013) 043012 (http://www.njp.org/)

http://www.njp.org/


9

with

1 = −4 + ig̃(1 − r (m)
s e2ikd2)[2 + iqs2 g̃(1 + r (m)

s e2ikd2)] (22)

(for compactness of notation the dependence of g̃ on kd1 is not shown). To realize an f –SQ1

swap, i.e. R̂ f 12 = Î2 ⊗ Ŵ f 1, |s f 1 = 0〉 and |s f 1 = 1〉 must be eigenstates of R̂ f 12 with opposite
eigenvalues, namely r00 = −r11 must hold. Thereby, off-diagonal entries r01 must vanish, which
yields the condition r (m)

s = e−2ikd2 , i.e. kd2 = π − arg[r (m)
s (g̃)]/2 = h(kd1), according to our

definition of the h function (see above)8. By replacing this into equations (19) and (20), we
immediately end up with r00 = −r11 = 1.

Since for the 1D blocks s = 3/2, as mentioned, s f 1 can only take value 1 and the same
occurs for s f 2 as is easily seen. Hence, s f 1 = s f 2 = 1 and the interaction Hamiltonian is
given by V̂ = (G/2)

∑
i=1,2(qsf i − 3/2)δ(x − xi) ≡ (G/4)

∑
i=1,2 δ(x − xi), i.e. it is effectively

spinless. It should be clear then that the corresponding entry of R̂ f 12, denoted by r (3/2), can
be found from equation (15) through the formal replacements R̂ f 1 → r (m)

t and R̂ f 2 → rt (see
the previous section). The formerly introduced condition r (m)

t = −r (m)
s = −e−2ikd2 immediately

yields r (3/2)
= −1 (matching the value found for r11 as it must be given that they both correspond

to s f 1 = 1). This demonstrates that, up to an irrelevant global phase factor, the f –SQ1 swap
indeed occurs under condition (16). It is important to stress that this result is independent of the
value taken by rt. In other words, the same result is achieved by replacing (G/4)δ(x − x2) with
0δ(x − x2) with an arbitrary 0.

4. An arbitrary number of static qubits

We now address the case where an arbitrary number N of SQs are present, the νth one lying
at x = xν in a way that dν = xν−1 − xν is the distance between the νth and (ν − 1)th ones (see
figure 2(c)). Hence, now

V̂ = G
N∑

i=1

(σ̂ f · σ̂ i)δ(x − xi). (23)

Again, we aim at implementing a selective swap between f and SQν (ν = 1, . . . , N ). Selective
QST is achieved for

ν < N : kdi 6=ν,ν+1 = niπ, kdν+1 = h(kdν), g = g̃(kdν), (24)

N : kdi<N = niπ, g = g̃(kdN ), (25)

where ni can be any positive integer. Regime (25) is immediately explained since it entails that
|xN−1|, namely the distance between SQN−1 and the mirror, is a multiple integer of π ; hence
the mirror behaves as if it lied at x = xN−1. All the SQs from SQ1 to SQN−1 are thus decoupled
from f . We, in fact, retrieve the case of one SQ at a distance dN from the mirror, where QST is
ensured by condition (13) (with the replacement d1 → dN ).

The case in equation (24) is explained as follows. The mirror is effectively positioned at
x = xν−1 since each kdi6ν−1 is a multiple integer of π . On the other hand, kdi>ν+1 = niπ holds

8 Strictly speaking, the solution is kd2 = nπ − arg[r (m)
s (g̃)]/2 for n = 1, 2, . . . (n integer). All these solutions are

physically equivalent. Lower values of n, i.e. n 6 0, are to be discarded since they would make kd2 negative.
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as well: the SQs indexed by i such that ν + 16 i 6 N behave as if they were all located at x =

xν+1. Thereby, effectively, V̂ = G
∑N

i=ν+1(σ̂ f · σ̂ i)δ(x − xν+1) + G(σ̂ f · σ̂ ν)δ(x − xν) (subject to
a hard-wall boundary condition at x = xν−1). Let σ̂ eff =

∑N
i=ν+1 σ̂ i be the total spin of the

N − ν SQs effectively located at x = xν+1 and seff the quantum number associated with σ̂
2
eff. For

N − ν even, seff = 0, 1, . . . , (N − ν)/2, while for N − ν odd seff = 1/2, 3/2, . . . , (N − ν)/2.
As, clearly, seff is a good quantum number, in each subspace of fixed seff an effective static
spin-seff particle lies at x = xν+1.9 By coupling this spin to f and SQν , we find that the total
quantum number can take values s = seff − 1, seff, seff + 1 (we can assume seff > 1 since the case
seff = 1/2 has been analyzed in the previous section). Among these, only s = seff is degenerate

since in the corresponding eigenspace either Ŝ
2

f ν or Ŝ
2

f e = (σ̂ f + σ̂ eff)
2 can take two possible

values, i.e. s f ν = 0, 1 and s f e = seff ± 1/2 (s f e is the quantum number associated with Ŝ
2

f e).
The reflection matrix for the system is thus block-diagonal, where each block corresponding
to either s = seff − 1 or s = seff + 1 is 1D, while a block corresponding to s = seff is 2D. In
the latter case, the corresponding reflection amplitudes in the basis {|s f 1; s, ms〉 = |s f 1〉} can
then be worked out in full analogy with the s = 1/2 subspace in the case of two SQs (see the
previous section). Hence, they are given by equations (19)–(21) under the simple replacements
s2 → seff, d1 → dν and d2 → dν+1. Thereby, f –ν QST occurs for r (m)

t = −r (m)
s = −e−2ikdν+1 ,

which holds provided that g = g̃(kdν) and kdν+1 = h(kdν). On the other hand, for s = seff − 1
(s = seff + 1), we have s f e = seff − 1/2 (s f e = seff + 1/2), while s f ν = 1. Hence, similarly to the
s = 3/2 case in the previous section, in either of these subspaces the interaction Hamiltonian has
the spinless effective form V̂ = (G/2)(qseff±1/2 − 3/4 − qseff)δ(x − xν+1) + (G/4)δ(x − xν). The
condition r (m)

t = −r (m)
s = −e−2ikdν+1 then ensures that in each case the corresponding overall

reflection amplitude equals −1 (see the comment at the end of the previous section). A swap
operation between f and SQν is therefore implemented.

5. Working conditions

Based on the above findings, in particular, equation (24), the following working conditions for
achieving selective writing/read-out of the static register can be devised. Firstly, one fixes once
for all the desired coupling strength g = g0 (provided that it exceeds the threshold value gth = 1,
equivalent to G = k; see figure 3(a)). Next, we choose one of the two different distances (in
units of k−1) that correspond to g = g0 according to the function g̃(kd) (see figure 3(a)). Let us
call such a distance da, which therefore fulfills g̃(kda) ≡ g0. A further distance db = h(kda)/k
(cf figure 3(b)) is then univocally identified. All the nearest-neighbor distances are set equal to
an integer multiple of π (in units of k−1) but the νth and (ν + 1)th ones, which are set to da

and db, respectively. In a practical implementation, such a tunable setting of nearest-neighbor
distances could be achieved by fabricating the setup in such a way that the FQ can propagate
along three possible paths instead of a single one (similarly to the geometry of the well-known
Aharonov–Bohm rings). If the paths have different lengths, the actual path followed by the FQ
can be chosen by means of tunable beam splitters, in fact setting the effective SQ–SQ distance.

In practice, unavoidable static disorder will affect the ideal pattern of nearest-neighbor SQ
distances. Through a proof-of-principle resilience analysis, we have assessed that, by assuming

9 Unlike a very spin-seff particle, in our case a given value of seff can exhibit degeneracies (e.g. for N = 3 the value
seff = 1/2 is two fold degenerate). Yet, such degeneracies do not play any role here and can, in fact, be ignored.
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Gaussian noise and in the case of a single SQ, an uncertainty in its position of the order of
about 10% yields a process fidelity above the 95% threshold. This witnesses an excellent level
of tolerance, in line with similar tests [9, 15]. Preliminary studies for the cases of two and three
SQs have been carried out as well, confirming comparable performances. A comprehensive
conclusive characterization of the effects of static disorder in the case of an arbitrary number
of SQs, however, requires a rather involved analysis and thus goes beyond the scope of this
paper.

6. Conclusions

We have considered a typical scenario envisaged in distributed quantum information, where
writing and read-out of a register of SQs is performed through an FQ. In a fully quantum
theory, the MDOFs of the FQ should be treated as quantum, which is expected to substantially
complicate the dynamics. By taking a paradigmatic Hamiltonian, we have discovered that, as
long as the f –SQ coupling is above a certain threshold value (i.e. G > k with k being the input
momentum of the FQ), for an arbitrary number of SQs selective QST can be achieved on demand
by tuning only two SQ distances.

Throughout, as is customary in scattering-based theories, we have assumed to deal with
a perfectly monochromatic plane wave for the FQ. In practice, clearly, this is a narrow-
bandwidth wavepacket centered at a carrier wave vector k0. A detailed resilience study of the
performances of our protocol in such conditions is beyond the scope of the present paper. Yet,
similarly to [9, 15, 16], it is reasonable to expect the gate fidelity to be only mildly affected
owing to the smoothness of the functions g̃(kd) and h(kd) (cf figure 3). In our model, we
assumed a Heisenberg-type spin–spin interaction. As already stressed, our attitude here was to
take this well-known coupling as a paradigmatic model to show the possibility that selective
writing/read-out is in principle achievable. However, there exist setups where the Heisenberg-
type coupling occurs so as to make them potential candidates for realizing our protocol. For
instance (see also [19]), this is the case for an electron propagating along a semiconducting
carbon nanotube [20] and scattered from single-electron quantum dots or molecular spin
systems featuring unpaired electrons, such as Sc@C82 [21]. Alternatively, one can envisage
a photon propagating in a 1D waveguide to embody the FQ in such a way that its spin is
encoded in the polarization degrees of freedom. A three-level 3-type atom could then work
as the SQ, where the {| ↑〉, | ↓〉} basis is encoded in the ground doublet, while each transition to
the excited state requires orthogonal photonic polarizations; see [22, 23]. Although similar, the
corresponding (pseudo) spin–spin coupling, yet, is not equivalent to a Heisenberg-type one. We
found some numerical evidence that this alternative coupling model could work as well, at least
in the few-SQ case. An analytical treatment, however, is quite involved and thus no definite
answer can be given. This is connected to the question of whether some specific symmetry
is a necessary prerequisite for such remarkable effects to take place (in passing, note that the
Heisenberg model conserves the squared total spin, which was crucial to carry out our proofs).
All these issues are the focus of ongoing investigations.

It is worth mentioning that in a recent work [24], Ping et al proposed a protocol for
imprinting the quantum state of a ‘writing’ FQ on an array of SQs and retrieving it through
a ‘reading’ FQ at a next stage [24]. There, information is intentionally encoded over the entire
register, which has some advantages, while MDOFs are in fact treated as classical. Significantly
enough, here we have shown that the inclusion of quantum MDOFs can allow for control over
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local encoding/decoding. In line with other works [16–18], such an apparent complication
appears instead to be a powerful resource to carry out refined QIP tasks.
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Appendix. Derivation of R̂ f 2 in the basis {|sf 1〉}

Here, we derive the matrix elements of the operator R̂ f 2 in the degenerate subspace s = s2

(which is s = 1/2 in the case of N = 2 SQs), namely all the reflection coefficients r̄s′

f 1s f 1 =

〈s ′

f 1|R̂ f 2|s f 1〉 in terms of the basis B f 1 = {|s f 1 = 0, 1〉}, where |s f 1〉 = |s f 1; s = s2, m〉. In line
with the main text, we give the proof without specifying s2 (which can thus be any positive

integer or semi-integer number). The Hamiltonian reads Ĥ = p̂2/2 + V̂ with V̂ = (G/2)(Ŝ
2

f 2 −

3/4 − qs2)δ(x) (we have set x2 = 0 since the result is evidently independent of x2). The key task

is to work out the matrix representation of Ŝ
2

f 2 in the basis of eigenstates of Ŝ
2

f 1, B f 1 = {|s f 1 =

0, 1〉}. We first observe that in the present s = s2 subspace s f 2 = s2 ± 1/2. Accordingly, the
scheme where f is first coupled to 2 leads to the alternative basis B f 2 = {|s f 2 = s2 ± 1/2〉} such

that Ŝ2
f 2|s f 2 = s2 ± 1/2〉 = qs f 2|s f 2 = s2 ± 1/2〉. Thereby, in the basis B f 2, Ŝ

2

f 2 has the diagonal
matrix representation diag(qs2−1/2, qs2+1/2). The transformation matrix between the two basis
can be calculated through 6 j coefficients [14] (see footnote 6) as

〈s f 2|s f 1〉 = (−1)s2+1
√

(2s f 1 + 1)(2s f 2 + 1)

{
s2 1/2 s f 2

1/2 s2 s f 1

}
. (A.1)

Using these then yields Ŝ
2

f 2 in the basis B f 1 as

〈0|Ŝ
2

f 2|0〉 = −
3

8
+

qs2

2
, 〈1|Ŝ

2

f 2|1〉 = −
7

8
+

qs2

2
, (A.2)

〈0|Ŝ
2

f 2|1〉 = 〈1|Ŝ
2

f 2|0〉 =

√
qs2

2
. (A.3)

Next, in close analogy with [11, 12], we search for a stationary state |9s′

f 1
〉 = ϕs′

f 10(x)|0〉 +

ϕs′

f 11(x)|1〉 such that Ĥ |9s′

f 1
〉 = (k2/2)|9s′

f 1
〉, where s ′

f 1 = 0, 1 labels the initial spin state (prior
to the interaction process). Each function ϕ has the form

ϕs′

f 1s f 1(x) = (δs′

f 1s f 1e
ikx + r̄s′

f 1s f 1e
−ikx)θ(−x) + t̄s′

f 1s f 1e
ikxθ(x). (A.4)
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The unknown coefficients, including {r̄s′

f 1s f 1}, i.e. the entries of R̂ f 2, can be found by imposing
the continuity condition of ϕs′

f 10(x) and ϕs′

f 11(x) at x = 0 and the two constraints

1ϕ′

s′

f 1,0
(0) = G

√
qs2 ϕs′

f 1,1(0), (A.5)

1ϕ′

s′

f 2,1
(0) = −Gϕs′

f 1,1(0) + G
√

qs2 ϕs′

f 1,0(0), (A.6)

where 1ϕ′

s′

f 1,s f 1
(0) is the jump of the derivative at x = 0. With the help of equations (A.2)

and (A.3), equations (A.5) and (A.6) can be straightforwardly obtained from the Schrödinger
equation by integrating it across x = 0 and then projecting onto |0〉 and |1〉 [12]. By solving the
linear system in the cases s ′

f 1 = 0, 1, we thus end up with

r̄00 = 〈0|R̂ f 2|0〉 = qs2 g2/1s2, r̄11 = −ig(2 + iqs2 g)/1s2, (A.7)

r̄01 = 〈0|R̂ f 2|1〉 = 〈1|R̂ f 2|0〉
∗
= 2i

√
qs2 g/1s2, (A.8)

where 1s2 = −4 + 2ig − qs2 g2.
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