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Dynamics of spontaneous emission in a single-end photonic waveguide
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We investigate the spontaneous emission of a two-level system, e.g., an atom or atomlike object, coupled to a
single-end, i.e., a semi-infinite, one-dimensional photonic waveguide such that one end behaves as a perfect mirror
while light can pass through the opposite end with no backreflection. Through a quantum microscopic model
we show that such geometry can cause nonexponential and long-lived atomic decay. Under suitable conditions,
a bound atom-photon stationary state appears in the atom-mirror interspace so as to trap a considerable amount
of initial atomic excitation. Yet this can be released by applying an atomic frequency shift, causing a revival of
photon emission. The resilience of such effects to typical detrimental factors is analyzed.
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I. INTRODUCTION

A major, if not distinctive, line in quantum electrodynamics
(QED) is to study how geometric constraints affect the
interaction between atomic systems and the electromagnetic
(EM) field. On the one hand, this can bring a deeper insight
into the related physics. On the other hand, phenomena that
spontaneously do not occur in nature can become observable
this way. Spontaneous emission (SE) is an elementary process
in QED. One normally associates this with an exponential
decay of a quantum emitter (QE) to its ground state ac-
companied by an irreversible release of energy to the EM
vacuum (we will often use the term “atom” to refer to the QE,
even though this need not be, necessarily, an actual atom).
However, free-space SE can be significantly affected—even in
its qualitative features—by introducing geometric constraints,
forcing the EM field within a certain region of space [1–3] or a
lattice structure (see, e.g., [4]). Cavity QED has embodied for a
long time the traditional test bed for investigating such effects.
Nowadays, growing technologic capabilities to effectively
confine the EM field within less than three dimensions and
making it interact with a small number of atoms are opening
the door to yet unexplored areas of QED. In particular, a variety
of experimental implementations of one-dimensional (1D)
photonic waveguides coupled to few-level systems have been
developed. These include photonic-crystal waveguides with
defect cavities [5], optical or hollow-core fibers interacting
with atoms [6], microwave transmission lines coupled to super-
conducting qubits [7], semiconducting (diamond) nanowires
with embedded QDs (nitrogen vacancies) [8–10], or plasmonic
waveguides coupled to QDs or nitrogen vacancies [11] (see
Ref. [12] for a more comprehensive list). Interestingly, even
free-space setups employing tightly focused photons have the
potential to embody effective 1D waveguides [13].

In most cases, the number (even at the level of a single
unity) and positioning of such atomlike objects can be
accurately controlled. Besides major applicative concerns to
study such 1D systems (e.g., some of them can work as
highly efficient single-photon sources), these developments
are fostering a renewed interest in their fundamental quantum
optical properties. Peculiar effects can take place, such as giant
Lamb shifts [14] or the ability of an atom to perfectly reflect

back an impinging resonant photon due to the destructive
interference between spontaneous and stimulated emission
[15]. The latter effect is at the heart of attractive applications
such as single-photon transistors [16] and atomic light switches
[17].

To capture certain features of their physical behavior, it
often suffices to model 1D photonic waveguides as endless.
In reality, of course, one such structure is terminated on both
sides, each end typically lying at the junction between the
waveguide itself and a solid state or air medium. Therefore
light impinging on either end always undergoes some par-
tial backreflection owing to refractive-index mismatch. Yet,
mostly prompted by the wish to realize efficient single-photon
sources, the latest technology is now attaining the fabrication
of single-end, quasi-1D structures. For instance, this can be
achieved by tapering the waveguide toward one end so as to
make this almost transparent, while the opposite end is joined
to an opaque medium [9,10]. The system thus behaves as being
semi-infinite. Equivalently, it can be regarded as an infinite
waveguide with a perfect mirror (embodied by the opaque
end). Given this state of the art, a thorough knowledge of the
emission process of an atom in such a configuration is topical.
While the analogous problem in three-dimensional (3D) space
has been studied extensively [2], first insight into the SE of
a QE in a semi-infinite 1D waveguide has been acquired
only recently through semiclassical [18,19] and quantum
models [20]. Unlike the two-dimensional (2D) or 3D cases,
the peculiarity of this 1D setup is that the entire amount of
radiation emitted by the atom and backreflected by the mirror is
constrained to return to the emitter, and hence has a significant
chance to reinteract with it . As is typical in such circumstances,
due to multiple reflections, the atom-mirror optical path length
becomes crucial and resonances are introduced in the system.
This is witnessed by very recent studies (although not focusing
on SE), where the waveguide termination was shown to
drastically benefit microwave-single-photon detection [21],
atomic inversion schemes [22], and processing of quantum
information encoded in QEs [23] and photons [24].

In Ref. [20], through a stationary approach suited to atom-
photon 1D scattering [15] it was shown that quasibound states
can emerge in a single-end waveguide coupled to an atom.
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Indeed, it is known that an atom can behave as a perfect mirror
itself [13,15,17]; hence effective cavities with atomic mirrors
can be formed [25].

Here we study the SE of a two-level system coupled to
a semi-infinite waveguide through the analysis of a fully
quantum model and a purely dynamical approach. We find
that nonexponential emission with long time tails occurs in
general. This can feature photon-reabsorption signatures and
even excitation trapping, where the latter means that full atomic
decay to the ground state is inhibited due to the emergence of
an atom-photon bound state. We explain such effects in detail
and illustrate the corresponding output light dynamics thanks
to a nonperturbative analysis of the system’s time evolution,
resulting in a closed delay differential equation governing the
entire SE process.

The present paper is structured as follows. In Sec. II we
introduce our model and explain the method we used to tackle
the SE dynamics. Some assumptions that we make are justified.
In Sec. III, after working out the delay differential equation
governing the atomic excitation time evolution, some typical
examples of the entailed dynamics are shown. In particular,
we illustrate the inhibition of a full atomic decay to the
ground state. In Sec. IV this peculiar effect is demonstrated
by working out analytically the excitation amplitude at large
times. We also provide a physical explanation by showing that,
correspondingly, within the mirror-atom interspace a bound
state is formed whose overlap with the initial state matches
the asymptotic excitation amplitude. In Sec. V we illustrate
the dynamics of the output light exiting the waveguide and
show an interesting method to induce an emission revival
corresponding to a full release of the trapped excitation. In
Sec. VI we analyze how resilient these phenomena are to
typical detrimental effects occurring in this type of setups. In
Sec. VII we finally draw our conclusions. The work ends with
three appendixes, where some technical details are supplied.

II. MODEL AND APPROACH

We consider a 1D semi-infinite waveguide along the x
axis, whose only termination lies at x = 0. The waveguide
is coupled at x = x0 to a two-level atom, whose ground and
excited states |g〉 and |e〉 have a frequency splitting ω0. Thus
x0 is the distance between the atom and the waveguide end,
the latter behaving as a perfect mirror. We sketch the entire
setup in Fig. 1. The waveguide supports a continuum of
electromagnetic modes, each with associated wave vector k,
frequency ωk , and annihilation (creation) operator âk (â†

k),
obeying the bosonic commutation rule [âk,â

†
k′ ] = δ(k − k′).

In the case of an infinite waveguide, for each k > 0 two
orthogonal standing modes are possible with spatial profiles
∝ cos(kx) and ∝ sin(kx), respectively. In our case, given
that the waveguide terminates at x = 0, only the sinelike
modes are to be accounted for. Thereby, the atom is dipole
coupled to mode k with strength gk ∝ sin(kx0). By neglecting
counter-rotating terms, the Hamiltonian reads

Ĥ = ω0|e〉〈e| +
∫ kc

0
dk ωkâ

†
kâk +

∫ kc

0
dk(gk σ̂+âk + H.c.),

(1)

FIG. 1. (Color online) Setup. A semi-infinite waveguide, whose
end lies at x = 0, coupled to a two-level system at x = x0.

where σ̂+ = σ̂
†
− = |e〉〈g| and kc stands for a cutoff wave vector

depending on the specific waveguide. The total number of
excitations is conserved since [Ĥ ,|e〉〈e| +

∫
dk â

†
kâk] = 0. As

we will focus on the atomic SE, the dynamics occurs entirely
within the one-excitation sector of the Hilbert space. Thus at
time t the wave function is of the form

|$(t)〉 = ε(t)|e〉|0〉 + |g〉
∫

dk ϕ(k,t) a
†
k|0〉, (2)

where |0〉 is the field vacuum state, ε(t) is the atomic excitation
probability amplitude, and ϕ(k,t) is the field amplitude in the k
space (the normalization condition |ε(t)|2 +

∫
dk |ϕ(k,t)|2 =

1 holds). Using Eqs. (1) and (2) and the bosonic commuta-
tion rules, the time-dependent Schrödinger equation ∂t |$〉 =
−iĤ |$〉 yields the coupled differential equations:

ε̇(t) = −iω0ε(t) − i

∫ kc

0
dk gk ϕ(k,t), (3)

∂tϕ(k,t) = −iωkϕ(k,t) − ig∗
kε(t). (4)

In line with standard approaches for tackling similar sys-
tems [12,15], we shall make two main assumptions. First, the
photon dispersion relation can be linearized around the atomic
frequency as ωk ' ω0 + υ(k − k0), where υ = dω/dk|k=k0 is
the photon group velocity and k0 is such that ωκ0 = ω0. More-
over, to simplify our calculations we approximate the integral
bounds as

∫ kc

0 dk →
∫ ∞
−∞ dk. These approximations, including

the exclusion of the counter-rotating terms mentioned earlier,
are valid because we will focus on processes where only
a narrow range of wave vectors around k = k0 is involved.
Hence, wave vectors which are far from k0 (including k < 0
and k > kc that are unphysical) have negligible effect. In the
following, we will set gk =

√
*υ/π sin kx0, where * is the

atomic SE rate if the waveguide were infinite (no mirror). This
assumption will be justified a posteriori shortly.

III. SPONTANEOUS EMISSION DYNAMICS

Next, we study the system’s dynamics when the atom and
field are initially in |e〉 and |0〉, respectively. The initial condi-
tions thus read ε(0) = 1 and ϕ(k,0) = 0 for any k. We start by
removing the central frequency ω0 from Eqs. (3) and (4), via
the transformation ε(t) → ε(t)e−iω0t ,ϕ(k,t) → ϕ(k,t)e−iω0t .
Equation (4) is thus integrated in terms of the function ε(t) as
ϕ(k,t) = −i

√
*υ/π sin kx0

∫ t

0 ds eiυ(k−k0)(s−t)ε(s). Replacing
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this into Eq. (3) gives

ε̇(t) = −*υ

π

∫ t

0
ds ε(s)e−iυk0(s−t)

∫
dk sin2(kx0)eiυk(s−t).

(5)

The integral over k is easily calculated as a linear combination
of δ(s − t ± td ) and δ(s − t), where td = 2x0/υ is the time
taken by a photon to travel from the atom to the waveguide
end and back (see Fig. 1). Once this is used to carry out the
integration over s, we end up with a delay differential equation
(DDE) for ε(t) with associated time delay td :

ε̇(t) = −*

2
ε(t) + *

2
eiφε(t − td )θ (t − td ) , (6)

where θ (t) is the Heaviside step function while the phase φ =
2k0x0 is the optical length of twice the atom-mirror path (see
Fig. 1). DDEs typically occur in problems where retardation
effects are relevant, such as in the case of two distant QEs in
free space [26] and a single emitter embedded in a dielectric
nanosphere [27]. A similar equation was recently obtained in
Ref. [21] by working in real space. The first term on the right-
hand side of Eq. (6) describes a standard damping at a rate *.
The second term, instead, indicates that atomic reabsorption of
the emitted photon can occur at times t ! td . At earlier times,
such a reabsorption term is null since the photon has not yet
performed a round trip between the atom and the mirror. Also,
it vanishes in the limit td → ∞, since the waveguide then effec-
tively becomes infinite and, as expected, the atom undergoes
standard, namely, fully irreversible SE at a rate * according
to |ε(t)|2 = e−*t . This justifies our parametrization of the
coefficients gk , introduced at the end of the previous section.

Equation (6) can be solved iteratively by partitioning the
time axis into intervals of length td . By proceeding similarly
to Ref. [26] we obtain its explicit solution as

ε(t) = e− *
2 t

∑

n

1
n!

(
*

2
eiφ+ *

2 td

)n

(t − ntd )nθ (t − ntd ), (7)

where the effect of multiple reflection and reabsorption events
is witnessed by the presence of the Heaviside step functions
(they add a new contribution to the sum at the end of each pho-
ton round trip). In Fig. 2 we plot the time evolution of the atom
excitation probability Pe(t) = |ε(t)|2 for different values of φ
for *td = 2 (a) and *td = 0.1 (b). In either case, the expected

FIG. 2. (Color online) Atomic excitation probability Pe(t) =
|ε(t)|2 vs time (in units of 1/*) in the cases*td = 2 (a) and*td = 0.1
(b) and for td = ∞ (i.e., no mirror; solid black line), φ = 2nπ (blue
dashed line),φ = π/2 + 2nπ (red dotted), andφ = (2n + 1)π (green
dash-dotted). In (a), only the range t ! td is shown; at earlier times
the behavior does not depend on φ and is the continuation of the black
solid line.

purely exponential decay occurring with an infinite waveguide
(i.e., the no-mirror case) is displayed for comparison. Such
behavior clearly takes place even in the present setup as long as
t < td (independently of φ and td ). As soon as t ! td , however,
the presence of the mirror starts affecting the atom in a way
that the dynamics is now strongly dependent on φ and td .
For *td of the order of 1, such as in Fig. 2(a), the behavior
of the atomic population can deviate sensibly from an
exponential decay: it exhibits one or more peaks of partial
atomic reexcitation and, eventually, a monotonic decay.
The phase φ affects both the positions of such re-excitation
peaks and the long-time behavior of Pe(t) [see Fig. 2(a)].
When instead *td + 1, such as in Fig. 2(b), Pe(t ! td ) drops
monotonically with the phase φ, simply affecting the atom’s
average lifetime. Indeed, in such regimes the solution to
Eq. (6) can be approximated as (see Appendix A)

ε(t) ' e− *
2 tθ (td − t) + e− *td

2

(
1 + eiφ *td

2

1 + *td
2

) t−td
td

θ (t − td ),

(8)

up to an irrelevant phase factor. The corresponding |ε(t)|2
decays monotonically since |1 + eiφ *td

2 | " |1 + *td
2 |.

IV. ATOM-PHOTON BOUND STATE

An interesting feature emerges for φ = 0. Figure 2 indeed
shows that, regardless of *td , such optical path length inhibits
a full excitation decay of the atom on the considered time
scales. Indeed, it can be shown that the atom holds a significant
amount of excitation even in the limit t → ∞. To show this,
we take the Laplace transform (LT) of Eq. (6) and solve the
resulting algebraic equation. This yields

ε̃(s) = 1

s + *
2 (1 − eiφ−std )

, (9)

where ε̃(s) is the LT of ε(t). Using the final value theorem, we
find the long-time limit [28]

ε(t → ∞) = lim
s→0

[sε̃(s)]

=
{(

1 + *td
2

)−1 for φ = 2nπ

0 for φ ,= 2nπ
. (10)

In the former case note that, in particular, the asymptotic
excitation increases when td is reduced, witnessing the crucial
presence of the mirror. The lower * the more significant is
the increase, i.e., the less uncertain is the atomic emitted light
wavelength, the more pronounced is the effect, suggesting an
interference-like mechanism behind the phenomenon. Such
inhibition of spontaneous emission can be interpreted as due
to a destructive interference between the different paths that the
emitted photon can take to exit the waveguide, or equivalently,
between the probability amplitudes of emitting the photon at
two different times. It is indeed the signature of a metastable
bound state established between the atom and the photonic
environment. The emergence of atom-photon bound states has
been demonstrated in other different scenarios such as gapped
photonic crystals [4] and superohmic baths [29].
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If existent, an atom-photon bound state |$b〉 = εb|e 0〉 +∫
dk ϕb(k)|g〉â†

k|0〉 must fulfill the normalization condition
〈$b|$b〉 = 1 and the time-independent Schrödinger equation
Ĥ |$b〉 = E|$b〉. With the replacement ∂t → −iE in Eqs. (3)
and (4), once the rescaled energy parameter q = (E − ω0)/υ
is introduced, we end up with the following equations for the
atomic and field amplitudes:

q εb =
√
*/(υπ )

∫
dk sin(kx0)ϕb(k), (11)

[q − (k − k0)]ϕb(k) =
√
*/(υπ ) sin(kx0)εb . (12)

Solving Eq. (12) for ϕb(k), we obtain that the squared
norm of the bound state is given by 〈$b|$b〉 = [1 +
*/(πυ)

∫
dk sin2(kx0)/(k − k0 − q)2]|εb|2. Calculating the

integral over k through standard contour-integration methods
and imposing the normalization condition yields

|εb|2 =
(

1 + *td

2
cos[2(k0 + q)x0]

)−1

. (13)

We now replace ϕb(k) as given by Eq. (12) in Eq. (11),
making use again of contour integration, so as to end up with
a consistency equation for the rescaled energy parameter:

q = − *

2υ
sin[2(k0 + q)x0]. (14)

It is now easy to show that q = 0, i.e., E = ω0. We start by
noticing that we can find a value of k that makes the left-hand
side of Eq. (12) vanish, namely, k = k0 + q. This then entails
sin[(k0 + q)x0] = 0, that is, (k0 + q)x0 = nπ (n is an integer),
implying that also the right-hand side of Eq. (14) vanishes,
so that q = 0 and φ = 2k0x0 = 2nπ . In conclusion, for φ = 0
(mod 2π ) a bound state |$b〉 having energy E = ω0 arises,
which significantly overlaps the excited state (the overlap
being 〈e 0|$b〉 = εb). This explains why full atomic decay to
the ground state is inhibited: the projection of the excited state
onto the bound state does not couple to the traveling photons,
so that, at long times, |e 0〉 → |$b〉〈$b|e 0〉 + (field terms)
and ε(t → ∞) = |εb|2. As is easily checked [30], the amount
of atomic excitation corresponding to this overlap remains
confined within the interval 0 " x " x0, shared between the
atom and photonic field.

This is interpreted as follows. As mentioned, an atom
on resonance with a traveling photon behaves as a perfect
mirror [15,17]. Thus, just like in a standard Fabry-Perot
interferometer, one expects a field standing wave to arise
within 0 " x " x0 when the emitted wavelength matches x0.
This agrees with the findings in Ref. [20], which were however
derived in the strong coupling limit. Our k-space approach thus
allows proof that a bound state is indeed created and works
out explicitly its exact form.

V. OUTPUT FIELD DYNAMICS

So far we have focused on the atomic excitation dynamics.
A natural way to experimentally test this is to measure the
light emitted through the free, i.e., nonreflective, end of the
waveguide. It is then important to study the entailed dynamics
of such output light. The real-space field annihilation operator

FIG. 3. (Color online) Output field intensity vs t ′ = t − d/υ in
arbitrary units for φ = 2nπ under an applied frequency shift .(t)
(this is plotted in the insets in units of *). (a) *td = 2 and a steplike
.(t). (b) *td = 0.1 and a sinusoidal .(t). In either case, a revival
of the photon emission occurs when the frequency shift is switched
on. Note that, in line with Eq. (17), at t = td the intensity exhibits a
discontinuity [particularly visible in (a)].

at position x > 0 can be expressed as

Ĉ(x) =
√

2
π

∫
dk âk sin kx, (15)

where the prefactor stems from the normalization constraint∫ ∞
0 dx Ĉ†(x)Ĉ(x) =

∫ ∞
0 dk â

†
kâk . Once applied to the state in

Eq. (2), this yields Ĉ(x)|$(t)〉 = ψ(x,t)|g〉|0〉, where

ψ(x,t) =
√

2
π

∫
dk ϕ(k,t) sin kx (16)

can be interpreted as the real-space field amplitude. The square
modulus of ψ(x,t) can be measured via the local photon
density, which is ∝ 〈$(t)|Ĉ†(x)Ĉ(x)|$(t)〉 = |ψ(x,t)|2. We
assume that a photon detector lies at position x̄ = x0 +
d, where d > 0 is the atom-detector distance. Hence (see
Appendix B)

ψ(x̄,t) =
√

*

2υ
eik0d [ε(t ′)θ (t ′) − eiφε(t ′ − td )θ (t ′ − td )] (17)

=
√

2
*υ

eik0d ε̇(t ′)θ (t ′), (18)

where t ′ = t − d/υ, and the last equality follows from Eq. (6).
Equation (18) shows that the time evolution of the atomic
excitation (once the time delay d/υ is accounted for) can in fact
be obtained by integrating the output field amplitude over time.
The latter can be retrieved from the field intensity in the special
cases φ = 0,π , in which the phase of ε is constant, while in
general homodyne techniques will be required. Clearly, for
φ = 2nπ , which ensures the formation of the atom-photon
bound state (see previous section), the atom cannot fully decay
to the ground state and thus less than one photon exits the
waveguide on average. An interesting simple method exists,
though, to force the trapped excitation to be released. At a
time long enough that the unbound excitation has left the
waveguide, an atomic frequency shift . is applied (this is
routinely implemented through local fields). As this changes
the atomic frequency ω0 and thereby the corresponding k0,
φ is modified as well. This suppresses the bound state and
necessarily compels the trapped excitation to leak out as light.
In Fig. 3, we model the frequency shift switch as a smooth
time function .(t) [in a way that in Eq. (1) ω0 → ω0 + .(t),
while in Eqs. (6) and (18) ε̇(t) → ε̇(t) + i.(t)ε(t)] and plot the
resulting numerically computed output field intensity against
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time. Clearly, as soon as .(t) ,= 0 a spontaneous emission
revival takes place, witnessing that release of the bound-state
excitation has been triggered. For *td + 1 [Fig. 3(b)], the
initial emission (when . is still zero) is almost negligible
because in such regimes most of the energy is trapped within
the bound state [cf. Eq. (10) and Fig. 2(b) for φ = 0].
Interestingly, in such a case the system responds quickly to
applied frequency shifts, which can be understood as follows.
We start by observing that a nonzero value of . is equivalent
to an appropriate phase shift φ → φ + δφ. When the phase is
shifted from the value 2nπ , the bound state is suppressed and
the photonic emission revived. From the approximate solution
of Eq. (8), one can see that after a transient 'td the emission
rate stabilizes to a fixed value. If later the phase is restored to
the bound-state value, Eq. (8) again indicates that the system
ceases to emit after a further transient time 'td , occurring in
a small unwanted excitation loss ∼*td . Hence, when *td + 1
these transients have a minor effect so as to allow for a
satisfactory degree of control over the atomic emission.

As a result, the shape of .(t) is closely reflected in the
temporal profile of the light intensity, as shown in Fig. 3(b)
in a paradigmatic case. Such effect has the potential to be
harnessed to emit single-photon pulses directionally and with
controllable temporal profiles, which can be of concern to
a variety of fields, especially in connection with quantum
information technologies. The method outlined here shares
some similarities with earlier cavity QED proposals for the
deterministic generation of single photons, which typically
require the use of more than two internal atomic levels
combined with adiabatic transfer techniques [31]. In contrast,
in our setup the existence of a metastable bound state allows
for the control of the atomic emission without the need for
extra degrees of freedom and through the simple application
of a classical field detuning the atom.

VI. RESILIENCE TO DETRIMENTAL EFFECTS

To assess the experimental observability of the central
phenomena presented so far, we have refined the model to
account for detrimental factors. In addition to the waveguide
modes, we allow for an extra atomic coupling to a reservoir of
external nonaccessible modes at a rate *ext. Also, we assume
that the guide is terminated at x = 0 with a nonideal mirror of
reflectivity R < 1. Moreover, we introduce (inhomogeneous)
phase noise on the atom by adding a small white-noise
stochastic term to the excited-state frequency as ω(t) = ω0 +
η(t). Here, η(t) is a Gaussian-distributed random variable such
that 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = 2δω δ(t − t ′) (〈· · ·〉 stands
for the ensemble average), where δω represents the associated
dephasing rate. The corresponding excitation probability
Pe(t) = 〈|ε(t)|2〉 in such nonideal conditions can be predicted
through a semi-analytical procedure (see Appendix C).

The first photon reabsorption peak of Pe(t) occurring for
*td ∼ 1 [cf. Fig. 2(a)] is rather robust to dissipation into
external modes (expected to be the major detrimental factor
affecting such a specific feature). As shown in Fig. 4(a), a
“shoulder” is still visible even with *ext = * (even higher
values ensure that SE significantly departs from the mirrorless
case). As for the resilience of the bound-state effects, which
are stronger for *td + 1 [cf. Fig. 2(b)], Fig. 4(b) shows that in

FIG. 4. (Color online) Robustness of Pe(t) = 〈|ε(t)|2〉 vs time for
φ = 2nπ . We have studied the dynamics of the excitation amplitude
via Eq. (C1), using *tot ≡ * + *ext, and r = R + i

√
R(1 − R).

(a) We set *tottd = 2, R = 0.98, δω = 0.25*tot and vary the ratio
between *ext and *, keeping *tot fixed. (b) We fix R = 1,*ext = 0,
*td = 0.1, and vary the dephasing rate δω.

the case of pure dephasing, a significantly long-lived excitation
trapping still survives for relatively high δω/* ratios.

VII. CONCLUSIONS

We have investigated the time evolution of spontaneous
emission for a two-level system coupled to a semi-infinite 1D
photonic waveguide. We have derived an exact delay differen-
tial equation for the atomic excitation amplitude. According
to this, the atomic excitation undergoes a nonexponential
decay which can exhibit oscillations (a signature of partial
photon reabsorption) and long time tails. A full decay to the
ground state is even inhibited when the emitted wavelength
matches the atom-mirror distance, owing to the formation
of an atom-photon bound state which we exactly derive.
The amount of trapped excitation can be substantial, and it
can be released as a photon by applying a frequency shift
to the atom, resulting in a light emission revival. We have
assessed that such phenomena can be observable even in the
presence of substantial detrimental effects such as dissipation
into unwanted modes and atomic dephasing. This indicates that
an experimental demonstration of the key features investigated
here may be not far-fetched. We finally point out that an
interesting way to regard our system is to consider the mirror as
a means to introduce a feedback mechanism. This ensures that
part of the output signal, i.e., the spontaneously emitted light,
is re-inserted into the atomic system as input. Significantly,
delay differential equations with a similar structure as Eq. (6)
occur in quantum optics settings with feedback [32].
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APPENDIX A: DERIVATION OF Eq. (8)

For t " td , the delay term in Eq. (6) vanishes and thus ε(t) =
e−*t/2. For t > td and *td + 1, the time delay td becomes the
shortest time scale in a way that it can be taken as the differen-
tial of time. We thus introduce the discrete variable n and, ac-
cordingly, define εn ≡ ε(ntd ). Therefore ε̇ ' (εn+1 − εn)/td ,
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which once replaced in Eq. (6) gives the recursion identity

εn+1 =
(

1 + eiφ *td
2

1 + *td
2

)

εn. (A1)

Using this along with the matching condition at t = td ,
ε1 = ε(td ) = e−(*td /2), we immediately end up with

εn =
(

1 + eiφ *td
2

1 + *td
2

)n−1

e−(*td /2). (A2)

By combining the functions for t < td and t > td and
reintroducing the continuous time through n = t/td , we find
Eq. (8) of the main text.

APPENDIX B: DERIVATION OF Eq. (17)

We start by recalling that the integration in Eq. (4) of the
main text for ωk = ω0 + υ(k − k0) gives

ϕ(k,t) = −igk

∫ t

0
ds e−iυ(k−k0)(t−s)ε(s), (B1)

where gk =
√
*υ/π sin kx0 and the irrelevant phase factor

e−iω0t has been removed from both functions ϕ(k,t) and ε(t).
Thus, using that the field amplitude in position space is defined
as ψ(x,t) =

√
2/π

∫
dk ϕ(k,t) sin kx, we find

ψ(x,t) = −i

√
2*υ
π

∫ t

0
ds

∫
dk sin (kx0)

× sin (kx)e−iυ(k−k0)(t−s)ε(s). (B2)

The integral over k returns a combination of δ functions, which
makes the time integration particularly straightforward. This
yields

ψ(x,t)

= −i

√
*

2υ

[
eik0(x0−x)ε

(
t−x0−x

υ

)
θ (x0−x)θ (υt − x0 + x)

+ eik0(x−x0)ε

(
t − x − x0

υ

)
θ (x − x0)θ (υt − x + x0)

− eik0(x+x0)ε

(
t − x + x0

υ

)
θ (x + x0)θ (υt − x − x0)

]
.

(B3)

In the special case x̄ = x0 + d (d > 0) we have

ψ(x̄,t) = −i

√
*

2υ
eik0d [ε(t ′)θ (t ′) − eiφε(t ′ − td )θ (t ′ − td )],

(B4)

where t ′ = t − d/υ as in the main text. Equation (B4) is
equivalent to Eq. (17) of the main text, up to an irrelevant
phase factor −i.

APPENDIX C: INCLUDING DETRIMENTAL EFFECTS

Here we briefly explain how we have extended our model so
as to include losses and perform the robustness study in Fig. 4
of the main text. For our purposes, it suffices to adopt a heuristic
reasoning (a more rigorous analysis yields the same results).
The inclusion of a reservoir of external nonaccessible modes
is a routine procedure in the literature. It simply amounts to
adding a term −*ext

2 ε(t) on the right-hand side of Eq. (6),
where *ext is the decay rate associated to such unwanted
modes. The presence of an imperfect mirror with R < 1 will
instead modify the delay term in Eq. (6), since the atom will
reinteract only with the portion of light which is reflected.
This suggests the substitution eiφ → reiφ , where −r is the
complex probability amplitude for backward reflection off the
mirror (|r|2 = R). Solving the 1D scattering problem yields
r = R + i

√
R(1 − R). Finally, as mentioned in the main text,

we include extra dephasing of the atom by adding a white-noise
term to the excited-state frequency as ω(t) = ω0 + η(t), where
η(t) is a Gaussian-distributed random variable: 〈η(t)〉 = 0 and
〈η(t)η(t ′)〉 = 2δω δ(t − t ′), where δω quantifies the strength
of the dephasing [〈· · ·〉 stands for the ensemble average].
In conclusion, Eq. (6) of the main text is modified as
follows:

ε̇(t) + iη(t)ε(t) = −* + *ext

2
ε(t)

+ r
*

2
eiφε(t − td )θ (t − td ). (C1)

For completeness, we also mention that a similar analysis can
be carried out on the output field amplitude, which modifies
Eq. (17) of the main text as

ψ(x̄,t) =
√

*

2υ
eik0d [ε(t ′)θ (t ′) − reiφε(t ′ − td )θ (t ′ − td )].

(C2)

To obtain each line in Fig. 4 of the main text, we have integrated
Eq. (C1) numerically for 100 realizations in the presence
of simulated white noise, and then averaged over these the
resulting probabilities Pe(t) = |ε(t)|2.

Finally, let us stress again that Eqs. (C1) and (C2) can
be obtained rigorously by modifying the microscopic model
given by Eq. (1) of the main text. In particular, one has to
include both sine and cosine waves for each wave vector
k, while the presence of an imperfect mirror at x = 0 can
be modeled by adding an extra term in the Hamiltonian of
the form V Ĉ†(0)Ĉ(0). Here, V = υ

√
R/(1 − R) and Ĉ(x) is

the field annihilation operator in real space as introduced in the
main text [now, however, owing to the cosine standing modes
Ĉ(0) ,= 0].

[1] E. M. Purcell, Phys. Rev. 69, 681 (1946).
[2] D. Meschede, Phys. Rep. 211, 201 (1992).
[3] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Rep.

Prog. Phys. 69, 1325 (2006); R. Miller, T. E. Northup, K. M.
Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, J. Phys.
B 38, S551 (2005); J. M. Raimond, M. Brune, and S. Haroche,
Rev. Mod. Phys. 73, 565 (2001).

[4] S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990); S. Bay,
P. Lambropoulos, and K. Molmer, ibid. 79, 2654 (1997).

[5] A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković,
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