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ABSTRACT 

Precipitation data, one of the most important input required in hydrological modeling 

and forecasting, are usually recorded using raingauges which are classical and 

fundamental tools able to provide an estimate of rainfall at a point. The consistency of 

precipitation monitoring network in terms of spatial scale (network density and location 

of raingauges) and time resolution has to be capable to reproduce, with acceptable 

accuracy, the characteristics of the flood phenomenon. In this context, over the last thirty 

years, several studies concerning the influence of point measurement of rainfall for the 

estimation of total runoff volume have been carried out. Aim of this paper is using a 

physically based and distributed-parameter hydrologic model in order to investigate the 

influence of the raingauges network configuration, in terms of number and spatial 

distribution, on the estimation of hydrograph peak discharge considering also the spatial 

distribution of soil types in the basin. The hydrologic model has been applied to the 

catchment of Baron Fork located in Oklahoma. The radar measurements, available in the 

area, have been assumed as representative of the “real” distribution of precipitation. Its 

hydrological response is compared with that obtained from interpolated precipitation 

fields, which, in turn, are obtained by varying the distribution of the raingauges network. 

The analysis has been first carried out assuming a simplified spatial distribution of soil 

characteristics and then considering the real spatial distribution of soil types. 
 

 

1. INTRODUCTION 
 

In the past years numerous field experiments have revealed that most of the 

hydrological processes are characterized by a considerable spatial variability 

(Schuurmans et al, 2007). In this context the distributed hydrologic models try to 

represent most of the natural processes occurring in a basin, but their capability to model 

the catchment hydrological response is often compromised by large uncertainties in the 

knowledge of spatial distribution of rainfall input. Particularly rainfall is often defined as 

the key variable in hydrological systems because of its important role in determining 

surface hydrological processes. 

Precipitation is governed by complicated physical processes which are inherently 

nonlinear and extremely sensitive (Bardossy and Plate, 1992). It is significantly variable 

in space and time within a catchment (Krajewski et al., 2003) and this spatial variability 

has a dominant impact on runoff modeling (Schilling et al., 1986; Bell et al., 2000). The 

time-spatial variability of rainfall clearly affects every methods of rainfall estimation and 

influences the design of raingauge network (Sun et al., 2002). Raingauges provide 
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punctual estimates of rainfall used, in turn, to obtain a spatial distribution of precipitation 

over the catchment through spatial interpolation techniques. Unfortunately, if the gauges 

network density is low or the distribution of gauges and the interpolated methods are not 

correct, the rainfall field obtained may be characterized by a large estimation error which 

is transferred, often amplified, to the runoff through the hydrological model. 

The role of spatial distribution and temporal resolution of raingauges in the 

announcement of the flood has been discussed in scientific literature since 1960s, with 

the pioneeristic works of Eagleson and Shack (1966) and Eagleson (1967). Starting from 

these works Krajewski et al. (1991) forced a physically based distributed-parameter 

hydrologic model with synthetic rainfall generated using the Monte Carlo approach and 

applying it to the Ralston Creek watershed (7.5 km
2
) for investigating the sensitivity of 

the model response at event scale with respect to different spatial and temporal rainfall-

input sampling density. The input data were generated by a space-time stochastic model 

of rainfall and then sampled by the varied-density synthetic raingauges networks. The 

basin response, based on 5 minutes increment input data from a network of high density 

with about 1 gauge for 0.1 km
2
, was assumed to be the “ground truth”, and the other 

results were compared against it. The results indicated higher sensitivity of basin 

response with respect to the temporal resolution than to the spatial resolution of the 

rainfall data.  

The sensitivity of hydrological models to spatial distribution of precipitation has been 

also assessed by Obled et al. (1994), who applied the semi-distributed version of 

TOPMODEL to an experimental medium-sized basin, considering two different patterns 

of rainfall point data given by 5 and 21 gauges respectively with simulations performed 

in continuous at hourly resolution. The authors showed that, although the use of a greater 

number of raingauges was irrelevant to the estimate of the precipitation, the small 

differences in terms of estimation of the precipitation become important when the 

response is assessed in term of runoff. In fact, increasing the number of raingauges 

causes an elevated improvement of the estimation of both runoff and flood peak. 

Goodrich et al. (1995) showed also the influence, at the event scale, of the different 

positions of the gauge over the basin for the estimation of the runoff without providing 

any suggestions on how dispose the gauge correctly in the space. Runoff model runs 

performed with data from variable numbers of recording gauges demonstrated that the 

uncertainty in runoff estimation is strongly related to the number of input gauges. In the 

presence of elevated spatial rainfall gradients, observed in five of the eight observed 

events in this experiment, the location of the gauge becomes a crucial parameter in 

modeling the storm hydrograph. 

The correlation between the scale of the basin and the effect of raingauges spatial 

density is explicitly studied in the work of Arnaud et al. (2001) who applied three 

different hydrologic models at the event scale in four basins characterized by a different 

spatial scale. The results showed that the sensitivity of models to precipitation spatial 

variability, that is a function of the spatial scale of the basin and of the type of model 

used, increases in the case of very extreme events. 

Recently Bardossy et al. (2008) analyzed the performance of the hydrological model 

as a function of the raingauge density in continuous simulations. They showed that the 

number and spatial distribution of raingauges affect the simulation results pointing out 

that the overall model performances worsen radically with an excessive reduction of 

raingauges. However, the overall performances were not significantly improved by 
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increasing the number of raingauges more than a certain threshold number specially if 

stations around but outside the catchments are considered.  

As previously shown, in the past different studies have deeply analyzed the influence 

of the spatial distribution of raingauges on hydrological response while others the 

influence of the number of raingauges. Starting from these studies, our work aims to 

analyze the influence of the raingauges network configuration in terms of number and 

spatial distribution on the estimation of discharge hydrograph, taking into account the soil 

types spatial distribution within the basin as well. In fact, the soil distribution influences, 

through different hydrological properties, the rainfall-runoff transformation and then also 

the position of the “optimal” gauges for the estimation of runoff. The work is carried out 

applying a physically based distributed-parameter hydrologic model to the Baron Fork 

watershed in Oklahoma, USA. The analysis is performed at the event scale by 

considering nine precipitation events with different space-temporal characteristics, 

occurred during 1998. The influence of the gauges network configuration on the 

estimation of the runoff is thus assessed analyzing simultaneously the mutual relationship 

between spatial distribution of rainfall and soil types patterns within the study area. 

Analysis is first carried out assuming some simplified and fictitious spatial distributions 

of soil characteristics and then considering the real spatial distribution of soil types. In 

this way the dependence of the best raingauges configuration on the soil types 

distribution is investigated as well as the influence of the space-temporal characteristics 

of storm events on the choice of the gauges network. 
 

 

2. MODEL 
 

The model used in this study is the TIN-based Real-time Integrated Basin Simulator 

(tRIBS) (Ivanov et al., 2004a,b). The model stresses the role of topography in lateral soil 

moisture redistribution and accounts for the effects of a sloped, heterogeneous and 

anisotropic soil column. tRIBS explicitly considers the spatial variability in precipitation 

fields and land-surface descriptors and is capable of resolving basin hydrology at very 

fine temporal and spatial scales. An adaptive multiple resolution approach, discussed by 

Vivoni et al. (2004), is used to represent the complexity of the simulation domain. 

Catchment topography, vegetation and soils are accounted for using triangulated 

irregular networks (TINs). Through the TIN implementation, the number of 

computational model elements is significantly reduced up to 90% or more as compared to 

high-resolution DEMs. The direct implication of the multiple resolution approach is a 

high computational efficiency which makes feasible real-time applications over large 

basins. 
 

 

3. CASE STUDY 
 

3.1. BASIN DESCRIPTION 

Since the tRIBS model was successfully calibrated and verified at the Baron Fork 

basin at Eldon by Ivanov et al. (2004a, b), the study was made at the same catchment. 
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Figure 1. DEM of the Baron Fork at Eldon (a) - Land use map (b). 

 

The basin, located in the north-eastern of Oklahoma (USA), is 800 km
2
 in size and its 

elevation is between 200 and 600 m a.s.l.. Most of the basin is characterized by steep 

slopes (15% - 40%) with gently rolling relief at the basin headwater (east) and quite 

rugged terrain in its lower areas (west) (Fig. 1a). Vegetation covers about 52% of the area 

with deciduous and evergreen forests and 46% with croplands and orchards (Fig. 1b). 

The surface soil texture is primarily silt-clay (47%), sandy-clay-loam (40%) and loam 

(13%). For a more detailed description of the basin, the reader can  refer to Ivanov et al. 

(2004a, b). 
 

3.2. DATA  

3.2.1. PRECIPITATION 

Simulations were driven both with radar rainfall estimates from the NWS Next-

Generation Weather Radar (NEXRAD) system and with fictitious raingauges 

measurements. Data by the NEXRAD radar (Vivoni et al., 2006) are available for the 

case study and used to obtain spatial distribution of precipitation fields over the basin in 

the form of hourly NEXRAD 4 km gridded estimates. 

Following the approach used by many authors, the analysis of the effect of the 

raingauges position has been performed at the event scale by considering nine 

precipitation events, occurred during 1998 and classified as function of their average 

intensity and spatial variability. This allowed us to analyze the influence of the 

raingauges network configuration on hydrological response as a function of the 

precipitation characteristics. The nine events were chosen according to the average (in 

time and space) of precipitation event intensity im classified as H - high (im > 2.5 mm/h), 

M - medium (1.5 mm/h < im < 2.5 mm/h) and L - low (im < 1.5 mm/h), and to the spatial 

variability of the average of rainfall evaluated in terms of coefficient of variation CVS 

(i.e. the ratio between the standard deviation of the mean intensity grid and the spatial 

average value of the same grid) ranked as H - high (CVS > 0.5), M - medium (0.25 < CVS 

< 0.5) and L - low (CVS < 0.25). 

Figure 2 represents the spatial pattern of the precipitation average intensity for each 

event. The range of event duration is from 4 hours (event 5) to 74 hours (event 6) and the 

total event rainfall amount is between 6,09 mm (event 5) and 116,11 mm (event 6). The 

event 3 shows the greatest average precipitation intensity (im=3,49 mm/h) and the lowest 

precipitation spatial variability (CVS=0,12), while the event 9 has the lowest average 
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precipitation intensity (im=0,77 mm/h) and the event 7 the greatest spatial variability 

(CVS= 0,92). 
 

 

 

                                       

                              

Figure 2. Spatial pattern of average precipitation intensity for each event. Events with the same 

average intensity class (H, M or L) are in the same row, while events with the same coefficient 

of variation class (H, M or L) are in the same column.  

 

3.2.2. SOIL TYPES DISTRIBUTION 

As mentioned above, since one of the goals of this analysis is to analyze the influence 

of raingauge network for a given spatial distribution of soil types, simulations have been 

performed considering first two synthetic configurations with a single soil type (silty-clay 

(c) and sandy-clay-loam (s)) and then using two synthetic configurations of the same two 

soil types differently distributed over the basin: silty-clay upstream the basin and sandy-

clay-loam downstream the basin (cs) and vice versa (sc) (Figure 3). Finally, the real 

spatial distribution of soil types (r) with three soil types has been considered. 
 

3.3. ASSUMPTIONS AND SIMULATIONS 

In order to run all the simulations, the following assumptions have been done: 

1. NEXRAD radar measurements, available in the area, have been assumed as 

representative of the “real” distribution of precipitation; 

2. the “real” hydrological response of the catchment has been considered as obtained 

from the tRIBS using as climate forcing the “real” precipitation and then used as 

term of reference for the remaining simulations; 

3. eight fictitious raingauges have been distributed in the basin randomly (Figure 4); 

4 (1, 2, 3, 4) can be considered downstream and 4 (5, 6, 7, 8) upstream raingauges; 

4. NEXRAD time series data have been sampled right by the eight fictitious 

raingauges in order to obtain the gauges time series;  
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5. tRIBS and soil parameters (section 3.2.2) used for running simulations come from 

calibration of Ivanov et al. (2004c). 
 

 

 
Figure 3. Different configurations of soil types distribution. 

 

 

Figure 4. Raingauges placement inside the basin. 

 

After simulation “zero” (model forced with NEXRAD precipitation - see points 1-2 of 

assumptions), 255 different simulations have been carried out for each soil type 

distribution and each event. Simulations use, as precipitation forcing, data coming from 

each single gauge, from the combinations of raingauges in pairs, three by three, four by 

four, five by five, six by six, seven by seven, and from the complete network spatially 

interpolated using Thiessen polygons. Considering all the events and all the soil types 

configurations, 11.484 simulations have been totally done. The flood hydrographs 

obtained for each combination of these raingauges have been compared with the “real” 

hydrological response. The performance of the model has been evaluated  using as 

performance index the Root Mean Squared Error (RMSE). This index allows one to 

quantify the difference between discharge (or precipitation) values obtained with the 

precipitation measured by gauges and the true discharge (or precipitation) values 

obtained with the precipitation measured by radar during the considered event and it 

returns a good average estimation of the error for the considered event. Normalized 

RMSE (NRMSE) is here useful because the different events, characterized by different 
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magnitude, have to be compared: it can be obtained normalizing RMSE to the average 

Xm of observed data (NRMSE=RMSE/Xm). 
 

 

4. RESULTS AND DISCUSSION 
 

The results have been analyzed considering firstly the “best raingauges network” for 

rainfall estimation and then the “best raingauges network” for runoff estimation (i.e. the 

network that for fixed number of raingauges and soil type distribution minimizes the 

RMSE for precipitation (RMSEP) and runoff (RMSEQ)). 

Considering the case of rainfall estimation, the distribution of precipitation obtained 

for each combination of raingauges has been compared with the “real” distribution of 

precipitation. For fixed number of raingauges composing the network, the network of 

raingauges with the smallest RMSEP (RMSEmin,P) has been chosen as the “best network” 

for rainfall estimation while, for each soil types configuration, the network of raingauges 

with the smallest RMSEQ (RMSEmin,Q) has been chosen as the “best network” for the 

hydrograph reconstruction. 

In Table 1, the “best networks” for each event are summarized as a function of the 

number of gauges in the network. The corresponding RMSEmin,P values can be also read 

in the table. Networks with the minimum RMSEmin,P are highlighted in bold italic; for 

each event, the minimum RMSEmin,P is not obtained with the complete network but with a 

fewer number of raingauges. 
 

 
Table 1. RMSEmin,P and optimal raingauges network for a fixed number of gauges for each 

event. Networks with the minimum RMSEmin,P are highlighted in bold italic. 

RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges

1 0,946 4 0,964 8 1,655 8

2 0,306 1,8 0,387 3,5 0,686 3,7

3 0,179 1,5,8 0,309 1,3,5 0,487 2,4,7

4 0,169 1,5,6,8 0,241 3,4,5,6 0,342 2,4,6,7

5 0,170 1,5,6,7,8 0,231 2,3,5,6,8 0,302 2,4,5,6,7

6 0,261 1,4,5,6,7,8 0,207 1,2,3,5,6,8 0,271 2,3,4,5,6,7

7 0,339 2,3,4,5,6,7,8 0,211 1,2,3,5,6,7,8 0,267 2,3,4,5,6,7,8

8 0,421 ALL 0,219 ALL 0,323 ALL

RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges

1 0,975 3 0,575 8 1,252 8

2 0,754 3,7 0,162 1,8 0,400 3,5

3 0,204 3,7,8 0,100 3,6,8 0,340 3,7,8

4 0,244 2,4,5,6 0,107 2,3,6,8 0,288 1,3,7,8

5 0,193 2,3,4,5,7 0,114 1,2,3,6,8 0,212 1,2,3,7,8

6 0,185 1,2,3,4,7,8 0,183 1,2,3,4,6,8 0,236 1,2,3,6,7,8

7 0,226 1,3,4,5,6,7,8 0,342 1,2,3,4,5,7,8 0,283 1,2,3,5,6,7,8

8 0,406 ALL 0,393 ALL 0,334 ALL

RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges RMSEmin,P (mm/h) gauges

1 1,132 8 0,803 8 0,198 4

2 0,556 3,8 0,338 7,8 0,126 4,8

3 0,178 1,4,7 0,236 2,3,5 0,071 2,4,5

4 0,154 1,3,6,7 0,165 2,3,7,8 0,086 2,3,4,5

5 0,164 1,2,3,4,7 0,166 1,2,3,7,8 0,085 2,3,4,6,8

6 0,164 1,3,4,6,7,8 0,164 1,2,3,5,7,8 0,079 2,3,4,5,7,8

7 0,321 1,2,3,4,6,7,8 0,197 2,3,4,5,6,7,8 0,092 2,3,4,5,6,7,8

8 0,681 ALL 0,215 ALL 0,112 ALL

number of gauges

number of gauges

number of gauges

event 6

event 7 event 8 event 9

event 2 event 3

event 4 event 5

event 1
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Analyzing all the events simultanously, it is not easy to understand the exact position 

of raingauges for rainfall estimation. In fact, since the reconstruction of the rainfall 

volume is strongly influenced by the spatial pattern of  precipitation, the network 

performance varies for each event. 

Results previously shown in Table 1 can be summarized by averaging the NRMSEs 

relative to the nine events. Figure 5 shows the average NRMSE values (

€ 

NRMSE ) as a 

function of the number of used gauges. If only one raingauge is used, the lowest value of 

€ 

NRMSE P  is obtained by raingauge #8 that is placed in the central part of the basin. If two 

raingauges are used, the 

€ 

NRMSE P  is obtained with the gauges #3 and #7, and the #8 

becomes less important because its importance is replaced by a gauge upstream (#7) and 

a gauge downstream (#3). In the three raingauges configuration the “best network” is 3-

7-8, while in the four gauges configuration the best one is 2-3-7-8 and there are two 

gauges upstream the basin and two downstream. In the cases of five raingauges there are 

three gauges downstream (#2, #3, #4) and two downstream (#7, #8). The minimum 

€ 

NRMSE P  is obtained with five gauges. Adding more raingauges causes an increase of the 

€ 

NRMSE P . 
 

 
Figure 5. Relationship between 

€ 

NRMSE P  and number of gauges for the average event. 

 

Considering the performances of networks relative to runoff estimation, the results 

have been evaluated by analyzing firstly the single events, and then trying to summarize 

the overall knowledge provided by the analysis of each single event. 

In Table 2 the optimal networks for the event 1 are summarized as a function of the 

soil types configuration and the number of gauges within the network. Table 2 shows the 

RMSEQ values of each “best network” as well. For a fixed soil type configuration the 

network with the minimum RMSEmin,Q is highlighted in bold italic. 

A first important observation can be done by comparing the “best gauges network” for 

precipitation estimation (Table 1) with the “best gauges network” for runoff 

estimation(Table 2 – relative just to the 1
st
 event): the network aimed to the best rainfall 

field estimation rarely coincides with the network aimed to the reconstruction of the best 

flood hydrograph, according to Eagleson (1967) and Goodrich et al. (1995), because the 

best gauges position for runoff estimation is influenced also by the rainfall-runoff 

transformation as a function of the soil distribution. 

Event 1 (Table 2) has a duration of 5 hours and the precipitation is higher upstream 

than downstream. With one raingauge, the lowest value of RMSEQ is obtained by 

raingauge #5, for the soil configurations c and cs. Instead for s and cs, the “best” 

raingauge is the #7. In particular, the best single raingauge is placed in the area with 
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higher precipitation. If two raingauges are used, the best RMSEQ is obtained with an 

upstream raingauge and a downstream raingauge for c and cs, and with two upstream 

gauges for s, cs and r. In the three raingauges configuration , two raingauges have to be 

located downstream the basin (#1, #4) and one raingauge upstream (#8) in all soil 

configurations. In a network with four raingauges, there are always two gauges upstream 

and two raingauges downstream. The number of raingauges placed upstream is usually 

greater than the number of raingauges located downstream, because of the spatial pattern 

of precipitation. For the sake of brevity, the tables summarizing the results relative to the 

other eight events are here omitted, providing only the comments to the results. 
 

 
Table 2. RMSEmin,Q and optimal network for a fixed number of gauges for each soil distribution 

and for event 1. Network with the minimum RMSEmin,Q is underlined in bold italic. 

 

Event 2 has a duration of 39 hours and precipitation is higher upstream than 

downstream. With one raingauge, the lowest value of RMSEQ is obtained by raingauge 

#4, for both the configurations with one soil type. Instead for the configuration with two 

soil types, the best raingauge is the #3 for cs and the #5 for sc. In particular, it seems that 

it is preferable to sample the precipitation where the soil is less permeable. If two 

raingauges are used, in all soil distribution configurations, the lowest RMSEQ is obtain 

with a raingauge upstream the basin and one downstream. In the configuration with three 

raingauges, two raingauges have to be located downstream the basin (#1, #3) and one 

upstream (#6) with s and cs, and vice versa in sc (#3, #5, #7). In a network with four 

raingauges, there are two gauges upstream the basin and two downstream in all cases 

except for sc, for which there are three raingauges upstream and one downstream (#2, #5, 

#6, #8). In a network with 5 raingauges, there are always three gauges upstream the basin 

and two downstream. The observed pattern seems to show a usual location of the 

raingauges where the soil is less permeable. 

Event 3 has a duration of 29 hours and is characterized by high precipitation at the 

center and downstream. Using one raingauge the effect of precipitation distribution 

prevails and the best raingauge is always the #3. With two raingauges the “best network” 

is always located downstream except in sc (7-8). With three raingauges the influence of 

soil types distribution is negligible and the “best optimal network” is 1-7-8 in all the soil 

type configurations. With four raingauges, there are always two gauges upstream and two 

raingauges downstream. 

Event 4 is representative of a precipitation with short duration (7 hours), high 

precipitation in the central area and lower downstream. When a single raingauge is used, 

the best estimate of the hydrograph is obtained with raingauge #7 for r, s and cs and with 

raingauge #5 for c and sc. When two gauges are placed, raingauges #3 and #8 return the 

minimum RMSEQ for c and cs, while the “best gauges network” is 5-7 when the less 

permeable soil is in the upstream part of the basin (sc) and 6-7 for s. Raingauges with the 

s c sc cs r s c sc cs r

1 0,464 1,387 0,989 0,848 0,837 7 5 7 5 7

2 0,397 0,982 0,758 0,882 0,705 5,6 4,8 4,8 5,7 5,6

3 0,328 0,662 0,568 0,556 0,470 1,4,8 1,4,8 1,4,8 1,4,8 1,4,8

4 0,308 0,768 0,419 0,552 0,442 1,4,6,8 1,4,6,8 2,3,6,8 1,4,6,8 1,4,6,8

5 0,380 1,026 0,438 0,645 0,587 1,4,6,7,8 1,4,6,7,8 1,2,3,6,8 1,4,6,7,8 1,2,3,4,8

6 0,382 1,157 0,544 0,707 0,564 1,2,3,4,6,8 1,2,3,4,6,8 1,2,3,4,6,8 1,4,5,6,7,8 1,2,3,4,6,8

7 0,423 1,175 0,788 1,124 0,674 1,2,3,4,6,7,8 1,2,3,4,6,7,8 1,2,3,4,6,7,8 1,2,3,4,5,6,7 1,2,3,4,6,7,8

8 0,477 1,323 1,139 1,152 0,828 ALL

RMSEmin,Q  (m
3
/s) Raingauges
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best performance are usually placed in the part of the basin with high precipitation and 

less permeable soils. With a network of three raingauges in s, there are two raingauges 

upstream (#6, #8) and one raingauge downstream (#1) because the rain intensity is higher 

upstream. In c and sc, there are a raingauge (#1) downstream and two raingauges 

upstream (#5, #8). With four raingauges, if the soil configuration is c the network is 

placed upstream the basin where precipitation is greater. In the soil configuration sc there 

are more raingauges upstream the basin since the effect of rainfall spatial distribution is 

greater. 

For event 5 precipitation is higher downstream and lower upstream. With one 

raingauge and for sc and cs, the raingauge is placed where the soil is less permeable, 

while when a pair of raingauges is used, there is not the influence of the soil types 

distribution and the “best optimal network” is 3-5 for all the soil type configurations. 

Increasing the number of raingauges, the arrangement of raingauges varies little with the 

soil type configurations and the “best raingauges network” is obtained with the same 

gauges for all the soil configurations. 

Event 6 has a duration of 74 hours, precipitation is higher downstream and lower 

upstream. If a single gauge is used, the #2 is always the best raingauge, except for sc 

(#5), while with two raingauges the couple is always given by raingauges 3-5. Varying 

the soil type distribution the position of raingauges varies little, due to the low value of 

rainfall spatial. For all the soil type configurations, the minimum value of RMSEQ is 

always obtained with the same number of gauges equal to five and with the same gauges 

(2-3-4-5-8). 

Event 7 has a duration of 7 hours, with  high precipitation in the upstream part of the 

basin and lower rainfall in the downstream area. With a single raingauge and when the 

less permeable soil is upstream the basin (sc) the raingauge is placed upstream (#7), 

whereas in cs the raingauge is placed downstream (#2). In a three raingauges network, 

the gauges are located upstream (#5, #7, #8) for c and sc, while in cs there are two gauges 

downstream (#1, #2) and a gauge upstream (#7). 

Event 8 has a duration of 9 hours and precipitation is higher upstream and lower 

downstream. The single raingauge is placed in the less permeable soil for all 

configurations. Increasing the number of raingauges, the position of raingauges varies 

little with the soil type distribution. 

Event 9 has a duration of 12 hours, low coefficient of variation and low average 

precipitation intensity. Varying the soil type distribution, the “best network” is the same 

for a fixed number of gauges: 3-5 with two gauges, 1-3-5 with three gauges, 3-5-7-8 with 

four gauges, due to the low value of precipitation spatial variability and the minimum 

value of RMSEQ is always obtained with the same number of gauges equal to four. 

The above mentioned comments point out that the factors that mainly influence the 

distribution of raingauges are: 

• soil type distribution, with a general trend to locate the raingauges where the 

soil is less permeable, 

• precipitation spatial distribution, being the raingauges placed where there is 

more precipitation. 

In the event with high precipitation average intensity and high spatial variability the 

raingauge is placed where the precipitation is higher (event 1). If the average 

precipitation intensity is medium but the spatial variability of rainfall is high, the 

influence of precipitation pattern is more considerable than that of soil types distribution 
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and the gauge is placed where the precipitation is higher (event 4). In the event with low 

average intensity and high spatial variability the gauge is placed where the soil is less 

permeable, in fact the effect of the less permeable soil position prevails on the effect of 

precipitation distribution (event 7). If the spatial variability of precipitation is low then 

the position of the gauges is not influenced by the soil distribution (events 3-6-9) and the 

“best gauges network” is obtained with the same number of gauges for all the soil 

configuration. Moreover if the spatial variability of precipitation is medium the position 

of gauges varies little varying the soil type distribution (events 5-8). 

In order to compare the different events, the NRMSEQ has been used. Figure 6 shows, 

for each event, the value of NRMSEmin,Q as a function of the number of gauges and for 

fixed soil configuration. 
 

    

 

 

Figure 6. NRMSEmin,Q as a function of the number of gauges and for fixed soil configuration, 

relative to each event. 

 

When CVS=H (events 1-4-7), there is an elevated influence of the soil configuration on 

the network performance, while for CVS=M or CVS=L, as the soil configuration changes, 

the NRMSE curves have a similar pattern (events 2-5-6-8-9). When CVS=L, the 

distribution of raingauges varies little changing the soil distribution; one can observe a 

flattening of the curves and then the position of the gauges is not influenced by the soil 

distribution (events 3-6-9). The “best gauges network” is obtained, in this way, with the 

same number of gauges for all the soil configurations. 

For a fixed number of gauges, the number of occurrences of single raingauges in the 

“best network” as function of the soil configuration can be analyzed (Figure 7). In the 

one gauge network (Figure 7a) the gauge #6 is never present while the #3 is the most 

important in cs, the #5 is important in sc; gauges #1, #2, #4 are never present in sc. 
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Figure 7. Number of occurrences of each single raingauge in the one gauge network (a), two 

gauges network (b), three gauges network (c), and four gauges network (d) for runoff estimation   

as function of the soil configuration. 

 

Varying the number of gauges in the networks, gauges #3 and #5 are always present, 

while gauges #2, #4 and #6 are less important. Also the gauge #8 is important and, 

varying the soil distribution, it is usually present with the same frequency. Gauges #1 and 

#7 are less important in the network with one or two gauges but they become important 

in the network with three and four gauges. When a single raingauge is used in cs the best 

raingauge is placed downstream for six events and upstream for three events, whereas in 

sc the gauge is upstream for eight events and downstream only for an event. This 

observed pattern suggests that the best raingauge tends to be located where the soil is less 

permeable. 

The results previously shown can be summarized in Table 3 by averaging the 

NRMSEQ relative to single events. The best network, for average conditions, seems to 

not be influenced by the soil type distribution since the network is almost the same for 

each soil type distribution. This could be due to the removing of the influence of the 

spatial pattern of the precipitation by averaging the results relative to each event. 
 

 
Table 3. 

€ 

NRMSE Q  and “best network” as a function of the number of gauges and for fixed soil 

distribution. The network with the minimum 

€ 

NRMSE Q  is highlighted in bold italic. Last column 

shows the precipitation “best network”. 
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As the number of raingauges increases, there is not a clear criterion for the best 

positioning of a new gauge. However, when in the network there are three or five gauges 

there is not influence of the soil distribution and the network is the same for each soil 

distribution. If the precipitation “best network” is compared with the discharge “best 

network” for a fixed number of gauges, one can observe that the two networks coincide 

rarely (only when three gauges are present, 3-7-8). 

Results observed in Table 3 can be also analyzed considering the curve of 

€ 

NRMSE Q  

varying the number of gauges for each soil configuration (Fig. 8). The minimum 

€ 

NRMSE Q  is obtained with five gauges in all the soil type configurations and the five 

curves rarely differ each other following the same pattern. 
 

 
Figure 8. 

€ 

NRMSE Q  as a function of the number of gauges and for a  fixed soil configuration. 
 

 

5. CONCLUSIONS 
 

In this paper a deep investigation of the influence of raingauge network characteristics 

on hydrological response at catchment scale has been carried out. The use of tRIBS 

model has allowed us to investigate the influence of the raingauges network 

configuration in terms of number and spatial distribution on the estimation of flood 

hydrograph in the Baron Fork watershed at Eldon. Analysis has been performed at the 

event scale by considering precipitation events with different spatial variability and 

intensity and trying to take into account the effect of different soil types distribution as 

well. 

One of the main outcoming of this work derives from the comparison of networks for 

precipitation and discharge estimations, which points out how the network aimed to the 

best reconstruction of rainfall field does not coincide with the network aimed to the best 

flood hydrograph estimation. This behavior is due to the fact that the best gauges position 

for runoff estimation is influenced also by the rainfall-runoff transformation as a function 

of the soil distribution.  

Results of the analysis show the influence of the space-temporal characteristics of 

storm events on catchment response predictions and that, for a fixed event, the best 

raingauges configuration is strongly dependent on the soil types distribution. Then the 

main factors that influence the position of raingauges are the precipitation spatial 

distribution (i.e. the raingauges are placed where higher precipitation occur) and the soil 

types distribution (i.e. general trend to locate the raingauges where the soil is less 

permeable). If the average intensity of precipitation is high the influence of precipitation 
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on catchment response is greater than the soil types distribution influence. Vice versa if 

the average intensity of precipitation is low or medium. When the spatial variability of 

precipitation is high, the location of gauge becomes very important for modeling the 

storm hydrograph. Moreover increasing the precipitation gradient, the effect of the soil 

type configuration becomes important. Vice versa if the rainfall spatial variability is low, 

the distribution of raingauges varies little with the change of the distribution of soils, then 

the position of the gauges is not influenced by the soil distribution and the “best network” 

is obtained with the same number of gauges for all the soil configurations. 
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