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Susceptibility assessment concerning the estimation of areas prone to landslide remains one 

of the most useful approach in the analysis of landslide hazard. The use of statistical 

methods together with the GIS technologies is currently the most efficient tool. The 

correlation between the physical phenomenon and its triggering factors based on past 

observations is the key point of such analysis. Many methods exist in scientific literature to 

capture and modeling this correlation. Among these, the logistic regression and the neural 

networks methods have provided successful results in many applications. A comparison 

between both the methodologies is given in the present study, by discussing the results of 

the susceptibility analysis carried out on the same study area by applying the two different 

approaches to a small basin located in the eastern Sicily, where a number of historical 

events have been documented over the years.  

 

INTRODUCTION 

 

Every year numerous landslide events hit various areas through the world, often causing 

severe economic and social damages and making the field of landslide prevention an 

extremely current issue in territorial management.  

Susceptibility mapping, based on recognition of landslide-prone terrain (Hansen [1]), is 

traditionally considered one of the most useful approach dealing with landslide hazard 

analysis. In such an analysis, the term ‘susceptibility’ commonly refers to the probability of 

a landslide occurrence over a region, following the assumption that “the past and present 

are keys to the future” and based on an empirical or modeled relationship between 

historical events and surface characteristics (Varnes and IAEG, [2]). These are identified in 

the so called landslide-inducing or triggering factors, and characterize the landslide 

potential of an area. It follows that estimation of susceptibility results into a typical spatial 

correlation analysis between the triggering factors and the occurrence of landslides and the 

production of thematic maps is the ultimate target. 

Over the last twenty years, the availability of reliable tools to assess area prone to 

landslide has deeply increased, due to the development of several GIS-based methodologies 

to evaluate the spatial correlation. Statistical methods are particularly successful in such 

applications. Particularly, the generalized linear models and in particular logistic 

regression, is well suited to analyze a presence-absence dependent variable (Carrara et al., 

[3]; Lee et al, [4]; Lee and Pradhan, [5]; Mirabella et al., [6]), representing one of the most 

applied methods. Recently, a number of studies proposed the use of Artificial Neural 



Network (ANN), belonging to the data driven methods, whose structure is suitable to 

analyze spatial correlation data as well (Lee et al.,[4]; Ermini et al.,[7]; Caniani et al.,[8]). 

An interesting combined use of the two methods have been proposed by Lee et al, [4], who 

used a probability method for calculating the rating of the relative importance of each 

triggering factor class to landslide occurrence and a ANN method for calculating the weight 

of the relative importance of each triggering factor.  

In this study we investigate the use of both the methodologies for landslide 

susceptibility mapping, by applying separately the two models on a small Sicilian 

catchment, where a number of historical events have been documented over the years. 

Goodness of models and their comparison are assessed by means of the area under the ROC 

(Receiving Operating Characteristic) curves method, whose value is a measure of model 

fitting. Results from comparison will provide an important indications in choosing the 

proper method for future analysis.  

 

METHODOLOGIES 

Logistic regression - LR 

Among the multivariate approaches, the logistic regression (LR) analysis is the one that 

best fits the case in which the dependent variable is a dichotomous variable. Moreover, it 

allows one to correlate the dichotomous variable with variables that may be both 

continuous (slope, distance from street, etc.) and polychotomous or categorical (land use, 

soil type, geology, etc.). 

In susceptibility analysis the dependent variable (Y) depends on landslides occurrence 

and is coded as 0 (no landslide) or 1 (landslide). The conditional probability that a landslide 

occurs, which is given by    ii XYEXYP ||1   where X is the vector of all the landslide-

inducing factors, is expressed inside the logistic regression analysis model as: 
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where 1, 2, … p, are the coefficients of variables X1, X2, … Xp, and represent the 

different weight of each landslide inducing factor. 

Logit function of Eq. (1) provides a simple linear relationship which allows one to 

make considerations about the weight that each factor has on the probability that a landslide 

occurs. A positive value of parameter i means that an increasing of variable Xi leads to an 

increasing of the probability that the dependent variable Y assumes the value 1. 

The variables coefficients represent the model unknown quantities and are estimated 

maximizing a log-likelihood function. Once the parameters are estimated, it is possible to 

evaluate the probability of landslides occurrence through Eq. (1).  
 

Artificial Neural Network - ANN 

Among the Artificial neural networks (ANNs), the feed-forward Multilayer Perceptron 

(MLP) network has been chosen in this application. A MLP consists of a number of units 



(perceptrons or neurons) which are connected by weighted links. The units are organized in 

layers: an input layer, with a number of neurons equal to the number of input independent 

variables of the problem, an output layer, with a number of neurons equal to the number of 

output dependent variables, and ultimately one or more so called hidden layers. In a generic 

MLP, an arbitrary input vector is propagated forward through the network. The hidden 

layers of neurons make a linear combination of input signals and convert it through a 

generally nonlinear function (activation function). The hidden layer output becomes then 

the input to the following layers. Moreover in a MLP there are no feedbacks, i.e. the 

neurons of each layer are linked only to the neurons of the following layer. 

The key instrument that allows the network to learn the dynamics of a particular 

phenomenon is called training phase. During the training phase a set of known input-output 

couples are presented to the network and the weights are updated by following some pre-

determined learning rule, so that the resulting output vector of the net is almost equal to the 

target vector. Weights are updated on the base of distance between the target and the actual 

output vector, measured by a cost function E, through a  minimization of the same function 

E. The most widely used learning rule to perform a gradient descent along the cost surface 

of the network is the “error backpropagation rule” (EBP).  

Model performance of ANN and LR can be evaluated by means of the AUC method, 

i.e. Area Under the Curve ROC (Receiving Operating Characteristic). The AUC ranges 

from 0 to 1 and gives a measure of the model's ability to discriminate between the elements 

experiencing the outcome of interest versus those which do not. The ROC curve is built 

plotting the sensitivity versus 1-specificity over all possible cutoff. 

 

CASE STUDY  

The Timeto cathment 

The Timeto catchment was used in the evaluation of  landslide susceptibility. The basin is 

located in northeastern Sicily, within Messina district (Figure 1) characterized by the 

highest number of landslides and the largest area of soil removed by landslides in Sicily. 

The cathment is approximately 95 km2 in size and its elevation range between 0 and 

1350 m a.s.l.. The morphology of the basin is typical of the Peloritani mountains with 

narrow valleys and very steep hillslopes. Hydrology is torrential with low-flow discharges 

during the dry season and high-flow discharges during the fall and the winter. 

Information about landslides come from the Carta Inventario delle Frane, made by 

Regione Sicilia - Assessorato Territorio Ambiente ([9]); this map gives 4 different types of 

landslides: flows, falls/topless, slides and complex landslides (Figure 1). The map was 

transformed in a raster layer at 100 m  resolution and represents the dependent dichotomous 

variable (1 if landslide occurs and 0 in otherwise) used by the two methods. Landslide-

inducing factors identified for the analysis are listed in Table 1.  

Slope, curvature, and aspect were derived from a 100 m resolution DEM (Digital 

Elevation Model). Mean annual rainfall data were obtained by means of an interpolation of 

data coming from all the pluviometric stations located inside the basin. The hydrological 

parameters a ed n are the parameters of the rainfall depth-duration curve, expressed as 



h=adn , and were derived from Lo Conti et al., [10]. These parameters allows one to take 

into account the very intense rainfall effect. Information about land use come from the 

Corine Land Cover map (APAT, [11]), while the pedological layer was assessed by using 

the Sicilian soil map edited by Fierotti and Ballatore, [12]. The basin is characterized by the 

dominance of agricultural crops and trees with some areas for grazing and arable land 

(wheat and grass). Geology information were derived from the Geological Map 1:50000 

scale of the Province of Messina. Finally, distances from stream network, faults, and roads 

were estimated using the Euclidean Distance tool of ArcGis 9.1 starting from the 

corresponding vector data. 

                                     
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Application of logistic regression model 

Estimating regression coefficients implies to fit the model to the dataset and assessing 

the coefficient significance. The most successful parsimonious model is pursued selecting 

the variables that result in a best model within the constraints of the available data 

following a stepwise procedure. Such a procedure involves the estimate of coefficients at 

different model configurations which either includes or excludes a variable on the basis of 

the increase in goodness of fit introduced by different variables. Many software for 

statistical computing include algorithms capable to provides the estimate of regression 

coefficients together with values of statistical indexes to assess the significance of the 

coefficients.  

 In our analysis, 13 steps have been performed, corresponding to the total number of 

factors. Free software R has been used, which determines a coefficient for each continuous 

variable, while in case of categorical variables, for each factor, it determines a number of 

coefficients as the classes minus one class (assumed as class of reference). 

LANDSLIDE-INDUCING FACTORS 
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Figure 1. Timeto catchment and landslide locations. 

Table 1. Landslide-inducing factors 



The best fitted model was obtained at step 11, corresponding to a value AUC equal to 

0.645. The most parsimonious results in the model with 3 variables, with a value AUC 

equal to 0.633. Here, the more onerous but still acceptable model has been chosen, with the 

following 11 variables: pedology (pedo), litology (lito), land use, distance from river 

network (dist_riv), curvature (curvat), slope, parameter n, aspect, distance from faults 

(dist_faults), distance from roads (dist_roads) and mean  annual rainfall (rain).  The 

resulting coefficients and their significance were here omitted for sake of brevity, referring 

the reader to Mirabella et al. (2010) for more details. 
Given the estimated coefficients, either as vector or scalar, the variable z of the logistic 

regression model results as follows:  
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         (3) 

The probability of landslide occurrence is then given by introducing z into Eq. (1). 

 

Application of artificial neural network model 

Phases involved in the development of an MLP network are various and need to be 

carefully defined by the operator in order to build up the most successful model which best 

describes the modeled phenomenon. They can be identified in the following: data selection 

for training phase, design definition (input, hidden and output layer), training phase 

(choosing activation and transfer functions), classification phase. Analysis has been carried 

out within the Neural Network Toolbox implemented into the software for numerical 

computing Matlab (MathWorks). 
Selection of proper dataset for training phase is far from being obvious and a clear 

criterion has not been provided yet. It is common use selecting randomly a subset 

corresponding to 1/2 (Lee et al.,[4]) or 1/3 (Ermini et al., [7]) of the entire database. In our 

application, two different subsets have been defined in order to pursuit the best 

configuration, according to the following criterion: the entire dataset was first divided 

between cells experiencing landslides (landslides) and those not experiencing landslides 
(non-landslides); the 50% of landslides cells were randomly selected (464 cells) while the 

non-landslides cells were randomly selected in a percentage obtained by varying the ratio 

between landslides and non-landslides cells, respectively equal to 1:2 (subset 1) and 1:3 

(subset 2). The two dataset have dimensions respectively of 1392 and 1856 cells. 

Structure of input vector depends on number and type (continuous or categorical) of 

triggering factors and on the methodology used in representing data. In order to minimize 

the subjectivity connected to a classification of data, we adopted the methodology used by 

Ermini et al., [7]), which organizes the factors as binary variables and the input vector 

(relative to each cell) as a binary string composed by a number of positions equal to the 

total number of classes of all variables (73); each position results from 1/0 binary switches 

as a function of the presence/absence of a class of the variables in a given cell. Such a 
method, although capable to provide an efficient objective approach, increases considerably 

the number of computational nodes. A single hidden layer is commonly used in landslide 

analysis applications, whose number of nodes can be defined using various empirical 

criteria available from scientific literature, which relate that number to those of nodes in 



input and of training cells. Here, 140 nodes have been imposed. Lastly, one node is 

designed in the output layer, corresponding to the output value of susceptibility at each cell. 
The overall network structure is denoted as 73 x 140 x 1. Among all the backpropagation 

algorithms available in literature, one of the most suitable to treat a large amount of data 

and here used is the GDM (Gradient Discendent with Momentum) algorithm. The chosen 

transfer function is a sigmoid function (sgm) which returns values ranging from 0 to 1. 

Once all these phases are ultimate, the network is fully designed and ready for the final 

simulation (i.e. the classification stage) which returns the susceptibility values on the basis 

of the weights found during the training phase. Networks used for the analysis are the 

following: NN1, which uses the subset 1 as training subset, and NN2 which uses the subset 

2; both the networks use the GDM algorithm. 

 

RESULTS AND COMPARISON 

 

Both the approaches return the distribution of probability of landslides occurrences 

predicted over the basin with values ranging from 0 to 1. Values have been classified into 

five level of probability (very low, low, medium, high, very high) in order to obtain the final 

susceptibility maps in risk levels and to make their comparison easier (Figure 2).  

A first observation can be done on the spatial distribution of susceptibility areas over 

the five classes. LR model returns a ‘smoothed’ distribution of values, capable to identify 

areas classified at various level of risk; particularly, very low and low susceptibility areas 

are located downstream the basin and in flat areas; large areas in the western part are 

instead classified as medium susceptible; within these areas, some well defined spots are 

classified as high susceptible; lastly, very few but still well defined areas are located in very 

high susceptible class, where landslide events where recorded.  

Susceptibility values returned by ANN model are mostly distributed over only two of 

the five classes available, i.e. the basin is mostly classified either as very low susceptible or 

very high susceptible, with a various small spots (mostly corresponding to single cells) 

spread on the basin and classified as medium or high susceptible. Moreover, results show a 

perfect agreement with the existing landslide location data which are all classified within 

the very high risk class in both the networks NN1 and NN2. Particularly, in NN2 total areas 

classified within the very high class are larger, due to the different subset chosen for the 

training phase (subset 2) which includes a greater number of non-landslide cells. The 

corresponding relative frequency distributions are given in Figure 3a, which confirm the 

analysis above described.  

A quantitative evaluation of goodness of fit of the models and their quantitative 

comparison are given by the ROC curves (sensitivity versus 1-specifity) shown in Figure 3b 

and relative AUC. Results clearly denote the superiority of the ANN model in terms of 

goodness of fit, since the two relative curves approach very fast to the unit value. 

Consequently, values of AUC are greater for ANN models, resulting respectively equal to 

0.645 (LR), 0.819 (NN1) and 0.824 (NN2). NN2 networks shows the best fit, suggesting 

that a more numerous sample in running the training phase improve, at least numerically, 

the goodness of model. 

 



 
Figure 2. Maps of susceptibility, reclassified in classes of risk, obtained from models. 
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Figure 3. (a) Relative frequency distribution of susceptibility values over the three models. 
(b) ROC curves of LR model and two ANNs. 

 

CONCLUSIONS 
 

The use of probabilistic and strictly statistical methods to evaluate the susceptibility is 

being the preferred approach by academic and research institutions, since they allow a good 

comprehension of the relationships between landslides and inducing factors (Ermini et al., 

[7]) in term of weight of each factor on the overall analysis. The conceptual approach of 

multivariate statistical methods is very close to those used by ANN, which can be 

considered, in some way, statistical methods. In the application to landslide susceptibility 

both techniques can be classified as “black box models”, and furthermore, several ANNs 



have been developed on a statistical basis (Patterson, [13]) even if the ANNs do not have 

the disadvantage to be dependent of the statistical distribution of data. 

In this work the characteristics of the two approaches in a susceptibility mapping 

application have been analyzed by applying the models to a small Sicilian catchment. 

Results showed that ANNs models are capable to provide very satisfactory agreement with 

the existing landslide location data, which have been classified within the higher 

susceptibility classes. This was easily pointed out by a simple visual observation of maps 

and then proved by a quantitative comparison through the AUC values. Moreover, 

comparison between two different ANNs proved also that the use of a greater sample size 

in the training phase gives higher values of AUC, because it allows the network to ‘better 

learn’ the reality. However, although the satisfactory results, the ANN models do not offer 

any chance to make considerations on the role of each landslide-inducing factor. This 

possibility is instead given by LR models which allow one to evaluate the influence of each 

variable and each class in determining the susceptibility, and thus to better understand the 

physical relations between factors and modeled phenomenon. 
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