On: 03 April 2013, At: 10:57
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Communications in Algebra

Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/loi/lagb20

Computing the $\mathbb{Z}_{\mathbf{2}}$-Cocharacter of 3×3 Matrices of Odd Degree
Stefania Aqué ${ }^{\text {a }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy Version of record first published: 02 Apr 2013.

To cite this article: Stefania Aqué (2013): Computing the \mathbb{Z}_{2}-Cocharacter of 3×3 Matrices of Odd Degree, Communications in Algebra, 41:4, 1405-1416

To link to this article: http:// dx. doi.org/ 10.1080/00927872.2011.643520

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPUTING THE \mathbb{Z}_{2}-COCHARACTER OF 3×3 MATRICES OF ODD DEGREE

Abstract

Stefania Aqué Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy

Let F be a field of characteristic 0 and $A=M_{2,1}(F)$ the algebra of 3×3 matrices over F endowed with the only non trivial \mathbb{Z}_{2}-grading. Aver'yanov in [1] determined a set of generators for the T_{2}-ideal of graded identities of A. Here we study the identities in variables of homogeneous degree 1 via the representation theory of the symmetric group, and we determine the decomposition of the corresponding character into irreducibles.

Key Words: Cocharacter; Grading; Polynomial identity.
2010 Mathematics Subject Classification: Primary: 16R10; 16R50; 16W55.

1. INTRODUCTION

Let F be a field of characteristic 0 and $M_{k}(F)$ the algebra of $k \times k$ matrices over F. It is possible to give a structure of \mathbb{Z}_{2}-graded algebra to $M_{k}(F)$ and all possible \mathbb{Z}_{2}-gradings are well-known (see [8]). Given a \mathbb{Z}_{2}-grading on $M_{k}(F)$, an important problem in the theory of polynomial identities is that of determining a set of generators for the T_{2}-ideal of graded identities of $M_{k}(F)$. In case $k=2$, there is only one possible \mathbb{Z}_{2}-grading and Di Vincenzo in [3] gave a set of generators for the corresponding T_{2}-ideal. Also in case $k=3$ the algebra $M_{3}(F)$ has only one non trivial \mathbb{Z}_{2}-grading. Such algebra is denoted by $A=M_{2,1}(F)$, and its grading is given by $A=A_{0} \oplus A_{1}$, where $A_{0}=\left(\begin{array}{ccc}F & F & 0 \\ F & F & 0 \\ 0 & 0\end{array}\right)$ and $A_{1}=\left(\begin{array}{ccc}0 & 0 & F \\ 0 & 0 & F \\ F & F & F\end{array}\right)$.

Recently Aver'yanov in [1] gave a set of generators for the T_{2}-ideal of graded identities of such algebra in terms of concordant polynomials. The graded identities in variables of homogeneous degree 0 coincide with the ordinary identities of $2 \times$ 2 matrices. It follows that the corresponding \mathbb{Z}_{2}-cocharacter coincides with the cocharacter of 2×2 matrices and this was computed by Drensky in [4] and Procesi in [9]. Here we want to do an analogous study for polynomials in variables of homogeneous degree 1 . In fact, the main objective of this paper is that of giving a description, through the representation theory of the symmetric group, of the space of multilinear graded polynomial identities in variables of homogeneous degree 1.

[^0]More precisely, by mean of concordant polynomials we study four different spaces of multilinear polynomials on which two copies of the symmetric group act. We then determine the decomposition of the corresponding character into irreducibles. For instance, let $V_{r, r+1}=\operatorname{span}_{F}\left\{z_{\sigma(1)} y_{\tau(1)} \ldots z_{\sigma(r)} y_{\tau(r)} z_{\sigma(r+1)} \mid \sigma \in S_{r+1}, \tau \in S_{r}\right\}$ and let $I d^{\mathbb{Z}_{2}}(A)$ be the T_{2}-ideal of graded polynomial identities of $A=M_{2,1}(F)$. Then by considering the permutation action of $S_{r} \times S_{r+1}$ on $V_{r, r+1}$ modulo $\operatorname{Id}^{\mathbb{Z}_{2}}(A)$, we completely determine the following decomposition of the corresponding character, denoted by $\chi_{r, r+1}(A)$, into irreducibles:

$$
\chi_{r, r+1}(A)=\sum_{p=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\left(\chi_{(r-p, p)} \otimes \chi_{(r-p+1, p)}+\chi_{(r-p, p)} \otimes \chi_{(r-p, p+1)}\right) .
$$

2. PRELIMINARIES

Throughout this article, we shall denote by F a field of characteristic zero. Recall that, if A is an associative algebra over F, a \mathbb{Z}_{2}-grading on A is a vector space decomposition $A=A_{0} \oplus A_{1}$ such that

$$
A_{0} A_{0}+A_{1} A_{1} \subseteq A_{0} \quad \text { and } \quad A_{0} A_{1}+A_{1} A_{0} \subseteq A_{1}
$$

The elements of A_{0} and A_{1} are called homogeneous of degree zero (or even elements) and of degree one (or odd elements), respectively.

Now, let $A=M_{2,1}(F)$ be the algebra of 3×3 matrices over F with the only nontrivial \mathbb{Z}_{2}-grading such that

$$
A_{0}=\left(\begin{array}{ccc}
F & F & 0 \\
F & F & 0 \\
0 & 0 & F
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
0 & 0 & F \\
0 & 0 & F \\
F & F & 0
\end{array}\right)
$$

We write

$$
\begin{equation*}
A=A^{00} \oplus A^{01} \oplus A^{10} \oplus A^{11} \tag{1}
\end{equation*}
$$

where $A^{00}=\operatorname{span}_{F}\left\{e_{11}, e_{12}, e_{21}, e_{22}\right\}, A^{01}=\operatorname{span}_{F}\left\{e_{13}, e_{23}\right\}, A^{10}=\operatorname{span}_{F}\left\{e_{31}, e_{32}\right\}$, and $A^{11}=\operatorname{span}_{F}\left\{e_{33}\right\}$.

Let $F\langle X\rangle$ be the free associative algebra on a countable set X, and write X as the disjoint union of two sets: $X=Y \cup Z$. If we denote by F^{0} the subspace of $F\langle Y \cup Z\rangle$ spanned by all monomials in the variables of X having an even number of variables of Z and by F^{1} the subspace spanned by all monomials with an odd number of variables in Z, then $F\langle Y \cup Z\rangle=F^{0} \oplus F^{1}$ is a graded algebra with grading (F^{0}, F^{1}).

Recall that a polynomial $f\left(y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right) \in F\langle Y \cup Z\rangle$ is a \mathbb{Z}_{2}-graded identity of A if $f\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A_{0}$ and $b_{1}, \ldots, b_{m} \in$ A_{1}. We denote by $I d^{\mathbb{Z}_{2}}(A)$ the ideal of graded identities of A. Clearly, $I d^{\mathbb{Z}_{2}}(A)$ is a T_{2}-ideal of $F\langle X\rangle$, i.e., an ideal invariant under all endomorphisms φ of $F\langle X\rangle$ such that $\varphi\left(F^{0}\right) \subseteq F^{0}$ and $\varphi\left(F^{1}\right) \subseteq F^{1}$.

It is well known [7] that in characteristic zero every T-ideal is generated, as a T-ideal, by its multilinear polynomials. Hence if we denote, for every $n \geq 1$, by

$$
P_{n}^{g r}=\operatorname{span}_{F}\left\{x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_{n}, x_{i}=y_{i} \text { or } x_{i}=z_{i}, i=1, \ldots, n\right\}
$$

the vector space of multilinear polynomials of degree n in $y_{1}, z_{1}, \ldots, y_{n}, z_{n}$ (i.e. y_{i} or z_{i} appears in each monomial at degree 1), the study of $\operatorname{Id}^{\mathbb{Z}_{2}}(A)$ is equivalent to the study of $P_{n}^{g r} \cap I d^{\mathbb{Z}_{2}}(A)$, for all $n \geq 1$.

Next, following [1] we define concordant polynomials.
Let u be a multilinear monomial in $F\langle X\rangle$. Denote by $Z_{0}(u)\left(Z_{1}(u)\right.$, respectively) the set of variables z appearing in u such that $u=v z w$ and $\operatorname{deg}_{Z}(v)$ is even (odd, respectively). Further, denote by $Y_{0}(u)\left(Y_{1}(u)\right.$, respectively) the set of variables y appearing in u such that $u=v y w$ and $\operatorname{deg}_{z}(v)$ is even (odd, respectively). Denote by $K(u)$ the quadruple $\left(Y_{0}(u), Z_{0}(u), Y_{1}(u), Z_{1}(u)\right)$.

For instance, if $u=y_{1} z_{1} z_{2} y_{2} z_{3} y_{3} y_{4}$, then $Y_{0}(u)=\left\{y_{1}, y_{2}\right\}, Z_{0}(u)=\left\{z_{1}, z_{3}\right\}$, $Y_{1}(u)=\left\{y_{3}, y_{4}\right\}$, and $Z_{1}(u)=\left\{z_{2}\right\}$.

Let $f\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{q}\right) \in I d^{\mathbb{Z}_{2}}(A)$ be a multilinear polynomial. Denote by f_{K} the sum of all monomials u of f for which $K(u)=K$. Thus we write

$$
f=\sum_{K} f_{K},
$$

where $K=\left(Y_{0}, Z_{0}, Y_{1}, Z_{1}\right), Y_{0}, Y_{1} \subset Y, Z_{0}, Z_{1} \subset Z$.
It is easy to show that $f \in I d^{\mathbb{Z}_{2}}(A)$ if and only if $f_{K} \in I d^{\mathbb{Z}_{2}}(A)$, for all K. A multilinear polynomial f of the form $f=f_{K}$ for some $K=\left(Y_{0}, Z_{0}, Y_{1}\right.$, Z_{1}) is called K-homogeneous (or concordant). Moreover, a substitution under which the variables belonging to Y_{0}, Z_{0}, Y_{1}, and Z_{1} are replaced by elements of A^{00}, A^{01}, A^{11} and A^{10} respectively or of A^{11}, A^{10}, A^{00}, and A^{01}, respectively, is called K-concordant.

We have the following proposition.
Proposition 1 ([1]). Let f be a multilinear polynomial. Then $f \in I d^{\mathbb{Z}_{2}}(A)$ if and only if all its K-homogeneous components vanish under any K-concordant substitution.

According to this proposition the study of the polynomial identities of A is reduced to that of K-homogeneous polynomials and recently Aver'yanov ([1]) found a basis of K-homogeneous polynomials for the T_{2}-ideal $I d^{\mathbb{Z}_{2}}(A)$. Here we want to study the corresponding graded cocharacter in some special cases.

Notice that since $A_{0}=M_{2}(F) \oplus F$, we have that

$$
\begin{equation*}
\operatorname{Id}\left(A_{0}\right)=\operatorname{Id}\left(M_{2}(F)\right) \cap \operatorname{Id}(F)=\operatorname{Id}\left(M_{2}(F)\right) . \tag{2}
\end{equation*}
$$

Hence if P_{n}^{0} is the space of multilinear polynomials in n variables of homogeneous degree 0 and we regard $P_{n}^{0} /\left(P_{n}^{0} \cap I d^{\mathbb{Z}_{2}}(A)\right)$ as an S_{n}-module under the permutation action of the variables, its character coincides with the ordinary cocharacter of $M_{2}(F)$. Such cocharacter has been computed by Drensky [4] and Procesi [9].

The purpose of this article is to describe, through the representation theory of the symmetric group, the space of multilinear polynomials in odd variables modulo the \mathbb{Z}_{2}-graded identities of A.

To this end, let us denote by y_{i} and z_{i} the variables in Z_{0} and Z_{1}, respectively. In what follows we shall assume, as we may, that the variables y_{i} are evaluated in A^{01}, and the variables z_{i} in A^{10}. In fact, if f is a polynomial only in odd variables, according to Proposition 1, we can consider f as a K-homogeneous polynomial with $K=\left(\emptyset,\left\{y_{i}\right\}, \emptyset,\left\{z_{j}\right\}\right)$.

Notice that if G is any group with an element $g \in G$ such that $g^{2} \neq 1$, we can consider the elementary grading on $B=M_{3}(F)$ determined by $(1,1, g)$. In this case if $B=\bigoplus_{g \in G} B_{g}$ is the decomposition of B into its homogeneous components, we have $B_{1}=A^{00} \oplus A^{11}, B_{g}=A^{10}, B_{g^{-1}}=A^{01}$, and $B_{h}=0$, for all $h \neq g$ in G. Hence the polynomial identities of B on variables of homogeneous degree g and g^{-1} coincide with the \mathbb{Z}_{2}-graded polynomial identities of A in variables y_{i} and z_{i}. Such identities were previously computed by Bahturin and Drensky ([2]), and we next state their result in this setting.

We adopt the convention of marking with the same symbol (, $\tilde{,}$ etc.) variables which are alternating. Hence, let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial alternating on x_{1}, \ldots, x_{i}, we shall write

$$
f\left(\bar{x}_{1}, \ldots, \bar{x}_{i}, x_{i+1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{i}}(\operatorname{sgn} \sigma) f\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}, x_{i+1}, \ldots, x_{n}\right) .
$$

We shall also write $\left[x_{1}, x_{2}\right]=x_{1} x_{2}-x_{2} x_{1}$.
Theorem 1 ([2], Theorem 5.3). The \mathbb{Z}_{2}-graded polynomial identities of $A=M_{2,1}(F)$ which depend only on odd variables are consequences of the following graded identities:

$$
\begin{gather*}
y_{1} y_{2} \equiv 0, \tag{3}\\
z_{1} z_{2} \equiv 0, \tag{4}\\
{\left[z_{1} y_{1}, z_{2} y_{2}\right] \equiv 0,} \tag{5}\\
\tilde{y}_{1} z_{1} \tilde{y}_{2} z_{2} \tilde{y}_{3} \equiv 0, \tag{6}\\
\tilde{z}_{1} y_{1} \tilde{z}_{2} y_{2} \tilde{z}_{3} \equiv 0 . \tag{7}
\end{gather*}
$$

3. A GENERAL SETTING

For any $r \geq 1$, define the following four spaces:

$$
\begin{aligned}
V_{r, r}^{\prime} & =\operatorname{span}_{F}\left\{z_{\sigma(1)} y_{\tau(1)} \ldots z_{\sigma(r)} y_{\tau(r)} \mid \sigma, \tau \in S_{r}\right\}, \\
V_{r, r}^{\prime \prime} & =\operatorname{span}_{F}\left\{y_{\sigma(1)} z_{\tau(1)} \ldots y_{\sigma(r)} z_{\tau(r)} \mid \sigma, \tau \in S_{r}\right\}, \\
V_{r, r+1} & =\operatorname{span}_{F}\left\{z_{\sigma(1)} y_{\tau(1)} \ldots z_{\sigma(r)} y_{\tau(r)} z_{\sigma(r+1)} \mid \sigma \in S_{r+1}, \tau \in S_{r}\right\}, \\
V_{r, r-1} & =\operatorname{span}_{F}\left\{y_{\sigma(1)} z_{\tau(1)} \ldots y_{\sigma(r-1)} z_{\tau(r-1)} y_{\sigma(r)} \mid \sigma \in S_{r}, \tau \in S_{r-1}\right\} .
\end{aligned}
$$

Since $y_{1} y_{2} \equiv 0$ and $z_{1} z_{2} \equiv 0$ are identities of A, it is clear that if $f \notin$ $V_{r, r}^{\prime} \oplus V_{r, r}^{\prime \prime} \oplus V_{r, r+1} \oplus V_{r, r-1}$, then f is a graded identity of A. Moreover, by multihomogeneity, an obvious evaluation on A shows that if $f_{1} \in V_{r, r}^{\prime}, f_{2} \in V_{r, r}^{\prime \prime}, f_{3} \in$ $V_{r, r+1}$, and $f_{4} \in V_{r, r-1}$ are such that $f_{1}+f_{2}+f_{3}+f_{4} \in I d^{\mathbb{Z}_{2}}(A)$, then both f_{i} lies in
$I d^{\mathbb{Z}_{2}}(A)$ for $i=1,2,3,4$. Therefore, we can study the four spaces above separately, and we shall do so through the representation theory of the symmetric group.

Let the group $S_{r} \times S_{r}$ act on $V_{r, r}^{\prime}$ by permuting the variables y_{1}, \ldots, y_{r} and z_{1}, \ldots, z_{r} separately. Hence if $(\sigma, \tau) \in S_{r} \times S_{r}$ and $f\left(y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{r}\right) \in V_{r, r}^{\prime}$, we define $(\sigma, \tau) f\left(y_{1}, \ldots, y_{r}, z_{1}, \ldots, z_{r}\right)=f\left(y_{\sigma(1)}, \ldots, y_{\sigma(r)}, z_{\tau(1)}, \ldots, z_{\tau(r)}\right)$. This action preserves $V_{r, r}^{\prime} \cap I d^{\mathbb{Z}_{2}}(A)$ (i.e., the \mathbb{Z}_{2}-graded identities of A lying in $V_{r, r}^{\prime}$), and so, we consider the $S_{r} \times S_{r}$-module $V_{r, r}^{\prime}(A)=V_{r, r}^{\prime} /\left(V_{r, r}^{\prime} \cap I d^{\mathbb{Z}_{2}}(A)\right)$. Our aim is to decompose its character into irreducibles. Recall that the irreducible S_{n}-characters are indexed by partitions λ of n (we write $\lambda \vdash n$). Hence if we let $\chi_{r, r}^{\prime}(A)$ be the $S_{r} \times S_{r}$-character of $V_{r, r}^{\prime}(A)$, by complete reducibility one writes

$$
\begin{equation*}
\chi_{r, r}^{\prime}(A)=\sum_{\lambda, \mu \downharpoonright r} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu} \tag{8}
\end{equation*}
$$

where $\chi_{\lambda} \otimes \chi_{\mu}$ is the irreducible $S_{r} \times S_{r}$-character corresponding to the pair of partitions (λ, μ) and $m_{\lambda, \mu} \geq 0$ is the multiplicity of $\chi_{\lambda} \otimes \chi_{\mu}$ in $\chi_{r, r}^{\prime}(A)$.

Similarly, we define the $S_{r} \times S_{r}$-module $V_{r, r}^{\prime \prime}(A)=V_{r, r}^{\prime \prime} /\left(V_{r, r}^{\prime \prime} \cap I d^{\mathbb{Z}_{2}}(A)\right)$, the $S_{r} \times S_{r+1}$-module $V_{r, r+1}(A)=V_{r, r+1} /\left(V_{r, r+1} \cap I d^{\mathbb{Z}_{2}}(A)\right)$, and the $S_{r} \times S_{r-1}$-module $V_{r, r-1}(A)=V_{r, r-1} /\left(V_{r, r-1} \cap I d^{\mathbb{Z}_{2}}(A)\right)$. We let $\chi_{r, r}^{\prime \prime}(A), \chi_{r, r+1}(A)$ and $\chi_{r, r-1}(A)$ be the corresponding characters.

Let $\lambda, \mu \vdash r$ and T_{λ}, T_{μ} be Young tableaux of shape λ and μ, respectively. Let us denote by $e_{T_{\lambda}} e_{T_{\mu}}$ the corresponding essential idempotent of $F\left(S_{r} \times S_{r}\right)$. Recall that we can write $e_{T_{\lambda}}=C_{T_{\lambda}}^{-} R_{T_{\lambda}}^{+}$where $C_{T_{\lambda}}^{-}=\sum_{\sigma \in C_{T_{\lambda}}}(\operatorname{sgn} \sigma) \sigma, R_{T_{\lambda}}^{+}=\sum_{\tau \in R_{T_{\lambda}}} \tau$, and $C_{T_{\lambda}}, R_{T_{\lambda}}$ are the column and row stabilizer of T_{λ}, respectively. If $M_{\lambda, \mu}$ is an irreducible $S_{r} \times S_{r}$ submodule of $V_{r, r}^{\prime}$, then $M_{\lambda, \mu}=F\left(S_{r} \times S_{r}\right) e_{T_{\lambda}} e_{T_{\mu}} f$, for some polynomial $f \in V_{r, r}^{\prime}$ and Young tableaux T_{λ}, T_{μ} (see [7]).

Since by (6) any graded polynomial alternating in 3 variables y_{i} is an identity of A, it follows that $m_{\lambda, \mu}=0$ in (8) (and in the analogous $\chi_{r, r}^{\prime \prime}(A), \chi_{r, r+1}(A)$ and $\left.\chi_{r, r-1}(A)\right)$ as soon as the partition λ has more than 2 parts. Similarly, by (7), $m_{\lambda, \mu}=0$ if μ has more than 2 parts.

Therefore, we have the following decomposition for the character

$$
\begin{equation*}
\chi_{r, r}^{\prime}(A)=\sum_{\substack{\lambda, \mu-\mu-\\ h(\lambda), h(\mu)<3}} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu}, \tag{9}
\end{equation*}
$$

where $h(\lambda)$ and $h(\mu)$ is the number of parts of λ and μ, respectively.
We can apply similar remarks to the spaces $V_{r, r}^{\prime \prime}(A), V_{r, r+1}(A), V_{r, r-1}(A)$, and deduce a decomposition similar to (9) for the corresponding characters.

In the computation of the above characters we shall actually use the representation theory of $G L$ as follows. We consider

$$
F_{2}^{r}=\operatorname{span}\left\{z_{i_{1}} y_{j_{1}} \ldots z_{i_{r}} y_{j_{r}} \mid 1 \leq i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r} \leq 2\right\}
$$

a space of homogeneous polynomials of degree $2 r$. Then if $U=\operatorname{span}_{F}\left\{y_{1}, y_{2}\right\}$ and $V=\operatorname{span}_{F}\left\{z_{1}, z_{2}\right\}$, we let $G L(U) \times G L(V)$ act diagonally on F_{2}^{r}. Then the quotient space $F_{2}^{r}(A)=F_{2}^{r} /\left(F_{2}^{r} \cap I d^{\mathbb{Z}_{2}}(A)\right)$ is a $G L(U) \times G L(V)$-module, and we let $\psi_{r}(A)$ be its character.

It is well known that there is a duality between S_{n}-representations and $G L$ representations. Let ψ_{λ} denote the $G L$-character corresponding to the partition $\lambda \vdash$ r. Then if $\psi_{r}(A)=\sum_{\lambda, \mu \vdash r} m_{\lambda, \mu} \psi_{\lambda} \otimes \psi_{\mu}$, we have $\chi_{r, r}^{\prime}(A)=\sum_{\lambda, \mu \vdash r} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu}$, i.e., the multiplicities in $\psi_{r}(A)$ and $\chi_{r, r}^{\prime}(A)$ are the same (see [6]). Similar decompositions, with the obvious changes hold for the other characters $\chi_{r, r}^{\prime \prime}(A), \chi_{r, r+1}(A), \chi_{r, r-1}(A)$.

We recall that any irreducible submodule of $F_{2}^{r}(A)$ corresponding to the pair (λ, μ) of partitions of r is cyclic and is generated by a nonzero polynomial $f_{\lambda, \mu}\left(y_{1}\right.$, $\ldots, y_{a}, z_{1}, \ldots, z_{b}$) corresponding to a pair of Young tableaux, where $0 \leq a, b \leq 2$ are the number of parts of λ and μ, respectively, called the highest weight vector of the module (see [5], Theorem 12.4.12). Moreover, any highest weight vector $f_{\lambda, \mu}$ can be expressed uniquely as a linear combination of the highest weight vectors $f_{T_{\lambda}, T_{\mu}}$ corresponding to standard tableaux T_{λ} and T_{μ} (see [5], Proposition 12.4.14). In particular, let $\lambda=(r-p, p), \mu=(r-q, q)$, with $0 \leq p, q \leq\left\lfloor\frac{r}{2}\right\rfloor$, and let $\lambda^{\prime}=\left(2^{p}, 1^{r-2 p}\right)$ and $\mu^{\prime}=\left(2^{q}, 1^{r-2 q}\right)$ be the conjugate partitions of λ and μ, respectively. Then $f_{T_{\lambda}, T_{\mu}}$ can be written, $\bmod \operatorname{Id} d^{\mathbb{Z}_{2}}(A)$, both as a linear combination of polynomials of the type

$$
\left(z_{h_{1}} \dot{y}_{1} z_{k_{1}} \dot{y}_{2}\right) \ldots\left(z_{h_{p}} \ddot{y}_{1} z_{k_{p}} \ddot{y}_{2}\right) z_{l_{1}} y_{1} \ldots z_{l_{r-2 p}} y_{1}
$$

or as a linear combination of polynomials of the type

$$
\left(\tilde{z}_{1} y_{a_{1}} \tilde{z}_{2} y_{b_{1}}\right) \ldots\left(\bar{z}_{1} y_{a_{q}} \bar{z}_{2} y_{b_{q}}\right) z_{1} y_{c_{1}} \ldots z_{1} y_{c_{r-2 q}} .
$$

Moreover, we recall the following remark.
Remark 1. If

$$
\psi_{r}(A)=\sum_{\substack{\lambda, \mu \vdash r \\ h(\lambda), h(\mu)<3}} m_{\lambda, \mu} \psi_{\lambda} \otimes \psi_{\mu}
$$

is the $G L_{2} \times G L_{2}$-character of $F_{2}^{r}(A)$, then $m_{\lambda, \mu} \neq 0$ if and only if there exists a pair of tableaux $\left(T_{\lambda}, T_{\mu}\right)$ such that the corresponding highest weight vector $f_{T_{\lambda}, T_{\mu}}$ is not a graded polynomial identity for A.

Next we state some basic relations that we shall use throughout the article.
Remark 2. The following equalities hold modulo $I d^{\mathbb{Z}_{2}}(A)$.

$$
\begin{gather*}
z_{1} \bar{y}_{1} z_{2} \bar{y}_{2} \equiv \bar{z}_{1} y_{1} \bar{z}_{2} y_{2} \tag{10}\\
\bar{z}_{1} \dot{y}_{1} \bar{z}_{2} \dot{y}_{2} \equiv 2 \tilde{z}_{1} y_{1} \tilde{z}_{2} y_{2} \tag{11}\\
\left(z_{1} \dot{y}_{1} \tilde{z}_{2} \dot{y}_{2}\right) \tilde{z}_{1} y_{1} \equiv\left(\tilde{z}_{1} y_{1} \tilde{z}_{2} y_{2}\right) z_{1} y_{1} \tag{12}\\
\left(\bar{z}_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right)\left(z_{1} \ddot{y}_{1} \bar{z}_{2} \ddot{y}_{2}\right) \equiv\left(\dot{z}_{1} y_{1} \dot{z}_{2} y_{2}\right)\left(\ddot{z}_{1} y_{1} \ddot{z}_{2} y_{2}\right) \tag{13}\\
\left(\bar{z}_{1} \dot{y}_{1} \overline{\bar{z}}_{2} \dot{y}_{2}\right)\left(\overline{\bar{z}}_{1} \ddot{y}_{1} \bar{z}_{2} \ddot{y}_{2}\right) \equiv 2\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right)\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right) . \tag{14}
\end{gather*}
$$

Proof. The equalities (10), (11), and (12), clearly follow from (5). Also (14) follows from (13). Concerning the last one, we have

$$
\left(\bar{z}_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right)\left(z_{1} \ddot{y}_{1} \bar{z}_{2} \ddot{y}_{2}\right) \equiv\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right)\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right) \equiv\left(\dot{z}_{1} y_{1} \dot{z}_{2} y_{2}\right)\left(\ddot{z}_{1} y_{1} \ddot{z}_{2} y_{2}\right) .
$$

4. COMPUTING \mathbb{Z}_{2}-COCHARACTERS

If $\chi_{r, r}^{\prime}(A)$ is the character of the $S_{r} \times S_{r}$-module $V_{r, r}^{\prime}(A)$, we have the following result which was proved in ([2], Theorem 3.1). Here we give a proof based on an easy computation of $G L$-characters. Recall that for any real $\alpha,\lfloor\alpha\rfloor$ is the integer part of α.

Theorem 2.

$$
\chi_{r, r}^{\prime}(A)=\sum_{p=0}^{\left\lfloor\frac{r}{2}\right\rfloor} \chi_{(r-p, p)} \otimes \chi_{(r-p, p)} .
$$

Proof. Write $\chi_{r, r}^{\prime}(A)=\sum_{\substack{\lambda, \mu \vdash r \\ h(\lambda), h(\mu)<3}} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu}$ and let $\lambda=(r-p, p), \mu=(r-q, q)$, $0 \leq p, q \leq\left\lfloor\frac{r}{2}\right\rfloor$.

First we claim that $m_{\lambda, \mu} \neq 0$ implies $p=q$ (i.e. $\lambda=\mu$). In fact, by Remark 1 , $m_{\lambda, \mu} \neq 0$ if there exist two tableaux T_{λ} and T_{μ} such that the corresponding highest weight vector $f_{T_{\lambda}, T_{\mu}}$ is not a graded polynomial identity for A.

We can write $f_{T_{\lambda}, T_{\mu}}, \bmod I d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type:

$$
\begin{equation*}
\left(\tilde{z}_{1} y_{a_{1}} \tilde{z}_{2} y_{b_{1}}\right) \ldots\left(\bar{z}_{1} y_{a_{q}} \bar{z}_{2} y_{b_{q}}\right) z_{1} y_{c_{1}} \ldots z_{1} y_{c_{r-2 q}} \tag{15}
\end{equation*}
$$

Since $\tilde{z}_{i} y \tilde{z}_{j} y=\left[z_{i} y, z_{j} y\right] \equiv 0$, we get that the indexes a_{i} and $b_{i}, 1 \leq i \leq q$, must all be distinct. Therefore, we get that $p \geq q$.

On the other hand, $f_{T_{2}, T_{\mu}}$ can be also written, $\bmod I d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
\left(z_{k_{1}} \dot{y}_{1} z_{k_{1}} \dot{y}_{2}\right) \ldots\left(z_{k_{p}} \ddot{y}_{1} z_{k_{p}} \ddot{y}_{2}\right) z_{l_{1}} y_{1} \ldots z_{l_{r-2 p}} y_{1} . \tag{16}
\end{equation*}
$$

Then by using the relation $z \tilde{y}_{i} z \tilde{y}_{j} \equiv 0$, as above we get that $q \geq p$. Thus $p=q$ and the claim is proved.

Now let $g=f_{T_{i}, T_{l}^{\prime}}$ be the highest weight vector corresponding to a pair of Young tableaux ($T_{\lambda}, T_{\lambda}^{\prime}$). Then, by (16), since the indexes h_{i} and $k_{i}, 1 \leq i \leq p$, are distinct, we write g as as a linear combination of polynomials of the type

$$
\begin{equation*}
\underbrace{\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right) \ldots\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} . \tag{17}
\end{equation*}
$$

We observe that p of the variables z_{1} in (17) must alternate with the z_{2} 's. Then, by using the equalities of Remark 2, we get that

$$
g \equiv C \underbrace{\left(z_{1} \bar{y}_{1} z_{2} \bar{y}_{2}\right) \ldots\left(z_{1} \overline{\bar{y}}_{1} z_{2} \overline{\bar{y}}_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right),
$$

for some nonzero integer C. This proves that $m_{(r-p, p),(r-p, p)} \leq 1$.

If we now consider the substitution $z_{i}=e_{3 i}, y_{i}=e_{i 3}, i=1,2$, we obtain that $g \not \equiv 0$. Hence $m_{(r-p, p),(r-p, p)}=1,0 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$, and the proof is complete.

We recall that we act on the space $V_{r, r+1}(A)$ with the group $S_{r} \times S_{r+1}$, and we let $\chi_{r, r+1}(A)$ be its character.

Write

$$
\chi_{r, r+1}(A)=\sum_{\substack{\lambda, r \\ \mu \vdash r+1}} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu} .
$$

Theorem 3.

$$
\chi_{r, r+1}(A)=\sum_{p=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\left(\chi_{(r-p, p)} \otimes \chi_{(r-p+1, p)}+\chi_{(r-p, p)} \otimes \chi_{(r-p, p+1)}\right) .
$$

Proof. Let T_{λ} and T_{μ} be two tableaux such that the corresponding highest weight vector $f_{T_{\lambda}, T_{\mu}}$ is not a graded identity for A, and let $\lambda=(r-p, p), \mu=(r+1-q, q)$, $0 \leq p, q \leq\left\lfloor\frac{r}{2}\right\rfloor$.

First we claim that $m_{\lambda, \mu} \neq 0$ implies $q=p$ or $q=p+1$.
We write $f_{T_{\lambda}, T_{\mu}}, \bmod I d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
\left(z_{h_{1}} \dot{y}_{1} z_{k_{1}} \dot{y}_{2}\right) \ldots\left(z_{h_{p}} \ddot{y}_{1} z_{k_{p}} \ddot{y}_{2}\right) z_{l_{1}} y_{1} \ldots z_{l_{r-2 p}} y_{1} z_{l_{r-2 p+1}} . \tag{18}
\end{equation*}
$$

Then by using the relation $z \tilde{y}_{i} z \tilde{y}_{j} \equiv 0$ as in Theorem 2, we get that $q \geq p$.
On the other hand, $f_{T_{i}, T_{\mu}}$ can also be written, $\bmod I d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
\left(\bar{z}_{1} y_{a_{1}} \bar{z}_{2} y_{b_{1}}\right) \ldots\left(\overline{\bar{z}}_{1} y_{a_{q-1}} \overline{\bar{z}}_{2} y_{b_{q-1}}\right) z_{1} y_{c_{1}} \ldots z_{1} y_{c_{r-2 q}} w, \tag{19}
\end{equation*}
$$

where $w=z_{1} y_{s}\left(\tilde{z}_{1} y_{t} \tilde{z}_{2}\right)$ or $w=\left(\tilde{z}_{1} y_{a_{q}} \tilde{z}_{2} y_{b_{q}}\right) z_{1}$ according to if the rightmost variable alternates or does not alternate, respectively. Then, by using the relation $\tilde{z}_{i} y \tilde{z}_{j} y \equiv 0$ as above, we get that $p \geq q-1$. Thus it follows that $p \leq q \leq p+1$, and the claim is proved.

Next we show that $m_{\lambda, \mu}=1$ if $q=p$ or $q=p+1$.
Suppose first that $\lambda=(r-p, p), \mu=(r-p+1, p)$, and let $g=f_{T_{\lambda}, T_{\mu}}$ be the highest weight vector corresponding to a pair of Young tableaux $\left(T_{\lambda}, T_{\mu}\right)$. Then, by (18), since the indexes h_{i} and $k_{i}, 1 \leq i \leq p$, are distinct, we can write g as as a linear combination of polynomials of the type

$$
\begin{equation*}
\underbrace{\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right) \ldots\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} z_{1} . \tag{20}
\end{equation*}
$$

We observe that p of the variables z_{1} in (20) must alternate with the z_{2} 's. Then, by using the equalities of Remark 2, we get that

$$
g \equiv C \underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right.}_{p}) \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} z_{1} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right),
$$

for some nonzero integer C.

Let now $\lambda=(r-p, p)$ and $\mu=(r-p, p+1)$. By applying the above argument, we get that

$$
g \equiv C \underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-1} \tilde{z}_{1} y_{1} \tilde{z}_{2} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right)
$$

for some nonzero integer C.
This proves that in both cases, $m_{\lambda, \mu} \leq 1$.
If we now consider the substitution $z_{i}=e_{3 i}, y_{i}=e_{i 3}, i=1,2$, we obtain that $g \not \equiv 0$, and the proof is complete.

Recall that $V_{r, r-1}(A)$ is the space of multilinear polynomials in r variables y_{i} and $r-1$ variables z_{i} modulo $I d^{\mathbb{Z}_{2}}(A)$. We act on this space with $S_{r} \times S_{r-1}$, and we let its character be

$$
\chi_{r, r-1}(A)=\sum_{\substack{\lambda \uparrow r \\ \mu \vdash-r-1}} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu} .
$$

We have the following theorem.

Theorem 4.

$$
\chi_{r, r-1}(A)=\sum_{p=0}^{\left\lfloor\frac{r}{2}\right\rfloor}\left(\chi_{(r-p, p)} \otimes \chi_{(r-p-1, p)}+\chi_{(r-p, p)} \otimes \chi_{(r-p, p-1)}\right) .
$$

Proof. As in the previous theorems, we let T_{λ} and T_{μ} be two tableaux such that $f_{T_{\lambda}, T_{\mu}} \notin I d^{\mathbb{Z}_{2}}(A)$. Let also $\lambda=(r-p, p)$ and $\mu=(r-1-q, q), 0 \leq p, q \leq\left\lfloor\frac{r}{2}\right\rfloor$.

We claim that $m_{\lambda, \mu} \neq 0$ implies $q=p$ or $q=p-1$.
Then we write $f_{T_{\lambda}, T_{\mu}}, \bmod \operatorname{Id} d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
y_{d}\left(\bar{z}_{1} y_{a_{1}} \bar{z}_{2} y_{b_{1}}\right) \ldots\left(\overline{\bar{z}}_{1} y_{a_{q}} \overline{\bar{z}}_{2} y_{b_{q}}\right) z_{1} y_{c_{1}} \ldots z_{1} y_{c_{r-2 q-1}} . \tag{21}
\end{equation*}
$$

By using the relation $\tilde{z}_{i} y \tilde{z}_{j} y \equiv 0$ as before, we get that $p \geq q$.
On the other hand $f_{T_{\lambda}, T_{\mu}}$ can be also written, $\bmod \operatorname{Id} d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
w\left(z_{h_{1}} \dot{y}_{1} z_{k_{1}} \dot{y}_{2}\right) \ldots\left(z_{h_{p-1}} \ddot{y}_{1} z_{k_{p-1}} \ddot{y}_{2}\right) z_{l_{1}} y_{1} \ldots z_{l_{r-2 p-1}} y_{1} \tag{22}
\end{equation*}
$$

where $w=\left(\tilde{y}_{1} z_{t} \tilde{y}_{2}\right) z_{s} y_{1}$ or $w=y_{1}\left(z_{k_{p}} \tilde{y}_{1} z_{k_{p}} \tilde{y}_{2}\right)$ according if the leftmost variable does or does not alternate, respectively. Then, by using the relation $z \tilde{y}_{i} z \tilde{y}_{j} \equiv 0$ as above, we get that $q \geq p-1$. Thus it follows that $p-1 \leq q \leq p$, and the claim is proved.

Next we show that $m_{\lambda, \mu}=1$ if $q=p$ or $q=p-1$.
Suppose first that $\lambda=(r-p, p), \quad \mu=(r-p-1, p)$, and let $g=f_{T_{1}, T_{\mu}} \notin$ $I d^{\mathbb{Z}_{2}}(A)$ be the highest weight vector corresponding to a pair of Young tableaux
(T_{λ}, T_{μ}). Then, by (21), since the indexes a_{i} and $b_{i}, 1 \leq i \leq p$, are distinct, we can write g as a linear combination of polynomials of the type

$$
\begin{equation*}
y_{1} \underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-1} . \tag{23}
\end{equation*}
$$

We observe that p of the variables y_{1} in (23) must alternate with p variables y_{2}. Then, by using the equalities of Remark 2, we get that

$$
g \equiv C y_{1} \underbrace{\left(z_{1} \bar{y}_{1} z_{2} \bar{y}_{2}\right) \ldots\left(z_{1} \overline{\bar{y}}_{1} z_{2} \overline{\bar{y}}_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-1} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right),
$$

for some nonzero integer C.
Let now $\lambda=(r-p, p)$ and $\mu=(r-p, p-1)$. As in the previous case, we get

$$
g \equiv C \tilde{y}_{1} z_{1} \tilde{y}_{2} \underbrace{\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right) \ldots\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right)}_{p-1} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right),
$$

for some nonzero integer C.
It follows that in both cases $m_{\lambda, \mu} \leq 1$.
If we now consider the substitution $z_{i}=e_{3 i}, y_{i}=e_{i 3}, i=1,2$, we obtain that $g \not \equiv 0$, and the proof is complete.

Recall that $V_{r, r}^{\prime \prime}=\operatorname{span}_{F}\left\{y_{\sigma(1)} z_{\tau(1)} \ldots y_{\sigma(r)} z_{\tau(r)} \mid \sigma, \tau \in S_{r}\right\} \quad$ and $\quad V_{r, r}^{\prime \prime}(A)=$ $V_{r, r}^{\prime \prime} /\left(V_{r, r}^{\prime \prime} \cap I d^{\mathbb{Z}_{2}}(A)\right)$ has a structure of $S_{r} \times S_{r}$-module whose character is

$$
\chi_{r, r}^{\prime \prime}(A)=\sum_{\lambda, \mu \vdash r} m_{\lambda, \mu} \chi_{\lambda} \otimes \chi_{\mu} .
$$

Next we compute $\chi_{r, r}^{\prime \prime}(A)$.

Theorem 5.

$$
\begin{aligned}
\chi_{r, r}^{\prime \prime}(A)=\chi_{(r)} & \otimes \chi_{(r)}+\chi_{(r)} \otimes \chi_{(r-1,1)}+\sum_{p=1}^{\left\lfloor\frac{r}{2}\right\rfloor}\left(\chi_{(r-p, p)} \otimes \chi_{(r-p+1, p-1)}\right. \\
& \left.+\chi_{(r-p, p)} \otimes \chi_{(r-p-1, p+1)}+2 \chi_{(r-p, p)} \otimes \chi_{(r-p, p)}\right) .
\end{aligned}
$$

Proof. As in the previous theorems we let T_{λ} and T_{μ} be two tableaux such that $f_{T_{\lambda}, T_{\mu}} \notin I d^{\mathbb{Z}_{2}}(A)$. Let also $\lambda=(r-p, p)$ and $\mu=(r-q, q), 0 \leq p, q \leq\left\lfloor\frac{r}{2}\right\rfloor$.

First we claim that $m_{\lambda, \mu} \neq 0$ implies $p-1 \leq q \leq p+1$.
We can write $f_{T_{\lambda}, T_{\mu}}, \bmod \operatorname{Id} d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
y_{d}\left(\bar{z}_{1} y_{a_{1}} \bar{z}_{2} y_{b_{1}}\right) \ldots\left(\overline{\bar{z}}_{1} y_{a_{q-1}} \overline{\bar{z}}_{2} y_{b_{q-1}}\right) z_{1} y_{c_{1}} \ldots z_{1} y_{c_{r-2 q-1}} w \tag{24}
\end{equation*}
$$

where $w=z_{1} y_{s}\left(\tilde{z}_{1} y_{t} \tilde{z}_{2}\right)$ or $w=\left(\tilde{z}_{1} y_{a_{q}} \tilde{z}_{2} y_{b_{q}}\right) z_{1}$ if the rightmost variable does or does not alternate, respectively. Then, by using the relation $\tilde{z}_{i} y \tilde{z}_{j} y \equiv 0$ as in the previous theorems, we get that $p \geq q-1$.

On the other hand $f_{T_{i}, T_{\mu}}$ can be also written, $\bmod \operatorname{Id} d^{\mathbb{Z}_{2}}(A)$, as a linear combination of polynomials of the type

$$
\begin{equation*}
u\left(z_{h_{1}} \dot{y}_{1} z_{k_{1}} \dot{y}_{2}\right) \ldots\left(z_{h_{p-1}} \ddot{y}_{1} z_{k_{p-1}} \ddot{y}_{2}\right) z_{l_{1}} y_{1} \ldots z_{l_{r-2 p-1}} y_{1} z_{l-2 p} \tag{25}
\end{equation*}
$$

where $u=\left(\tilde{y}_{1} z_{t} \tilde{y}_{2}\right) z_{s} y_{1}$ or $u=y_{1}\left(z_{h_{p}} \tilde{y}_{1} z_{k_{p}} \tilde{y}_{2}\right)$ if the leftmost variable does or does not alternate, respectively. Then, by using the relation $z \tilde{y}_{i} z \tilde{y}_{j} \equiv 0$ as above, we get that $q \geq p-1$, and the claim follows.

Now we shall compute $m_{\lambda, \mu}$ in the three possible cases: $q=p-1, q=p+1$, and $q=p$.

Suppose first that $q=p-1$, and observe that $1 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$. Thus, let $\lambda=$ $(r-p, p), \mu=(r-p+1, p-1)$, and let $g=f_{T_{2}, T_{\mu}}$ be the highest weight vector corresponding to a pair of Young tableaux $\left(T_{\lambda}, T_{\mu}\right)$. Then, by (25), since the indexes h_{i} and $k_{i}, 1 \leq i \leq p-1$, are distinct and since (25) must contain only $p-1 z_{2}$'s, we can write g as as a linear combination of polynomials of the type

$$
\begin{equation*}
\tilde{y}_{1} z_{1} \tilde{y}_{2} \underbrace{\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right) \ldots\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right)}_{p-1} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} z_{1} . \tag{26}
\end{equation*}
$$

We observe that $p-1$ of the variables z_{1} in (26) must alternate with corresponding z_{2} 's. Then, by using the equalities of Remark 2, we get that

$$
g \equiv C \tilde{y}_{1} z_{1} \tilde{y}_{2} \underbrace{\left(z_{1} \dot{y}_{1} z_{2} \dot{y}_{2}\right) \ldots\left(z_{1} \ddot{y}_{1} z_{2} \ddot{y}_{2}\right)}_{p-1} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p} z_{1} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right)
$$

for some nonzero integer C.
This proves that $m_{\lambda, \mu} \leq 1$. If we now consider the substitution $z_{i}=e_{3 i}, y_{i}=e_{i 3}$, $i=1,2$, we obtain that $g \not \equiv 0$ and so, $m_{(r-p, p),(r-p+1, p-1)}=1,1 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$.

Consider now the case $q=p+1$, i.e., let $\lambda=(r-p, p)$ and $\mu=(r-p-$ $1, p+1), 0 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$. Let also $g=f_{T_{\lambda}, T_{\mu}}$ correspond to a pair of Young tableaux $\left(T_{\lambda}, T_{\mu}\right)$. Then, by (24), since the indexes a_{i} and $b_{i}, 1 \leq i \leq p$, are distinct and since (24) must contain only $p y_{2}$'s, we can write g as as a linear combination of polynomials of the type

$$
\begin{equation*}
y_{1} \underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-2} \tilde{z}_{1} y_{1} \tilde{z}_{2} \tag{27}
\end{equation*}
$$

As in the previous case, since p of the variables y_{1} in (27) must alternate with the y_{2} 's, we get that

$$
g \equiv C y_{1} \underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right)}_{p} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-2} \tilde{z}_{1} y_{1} \tilde{z}_{2} \quad\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right)
$$

for some nonzero integer C. Thus, by considering the same substitution of the previous case, we get that also $m_{(r-p, p),(r-p-1, p+1)}=1,0 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$.

Finally, we consider the case $q=p$ (i.e., $\lambda=\mu$), and let $g=f_{T_{\lambda}, T_{\lambda}^{\prime}}$, be the highest weight vector corresponding to a pair of Young tableaux $\left(T_{\lambda}, T_{\lambda}^{\prime}\right)$.

It is clear that if $p=0$, i.e., $\lambda=\mu=(r)$, then $g \notin I d^{\mathbb{Z}_{2}}(A)$. In fact in this case, we get $g=\underbrace{\left(y_{1} z_{1}\right) \ldots\left(y_{1} z_{1}\right)}_{r}$, and by evaluating for instance z_{1} to e_{31} and y_{1} to e_{13}, we get a nonzero value. Hence $m_{(r),(r)}=1$.

Suppose now that $\lambda=\mu=(r-p, p), 1 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$. We want to show that in this case $m_{\lambda, \lambda}=2$.

We start by considering (24) (similarly, (25)), and we apply arguments similar to the previous ones concerning the number of y_{2} 's and z_{2} 's into (24). By using the equalities of Remark 2, we get that g is a linear combination of the following polynomials:

$$
\begin{array}{lll}
g_{1}=\dot{y}_{1} v z_{1} y_{1} \tilde{z}_{1} \dot{y}_{2} \tilde{z}_{2} & g_{2}=\dot{y}_{1} v \tilde{z}_{1} \dot{y}_{2} \tilde{z}_{2} y_{1} z_{1} & g_{3}=\dot{y}_{1} v z_{1} \dot{y}_{2} \tilde{z}_{1} y_{1} \tilde{z}_{2} \\
g_{4}=\dot{y}_{1} v \tilde{z}_{1} y_{1} \tilde{z}_{2} \dot{y}_{2} z_{1} & g_{5}=y_{1} v \tilde{z}_{1} \dot{y}_{1} \tilde{z}_{2} \dot{y}_{2} z_{1} & g_{6}=y_{1} v z_{1} \dot{y}_{1} \tilde{z}_{1} \dot{y}_{2} \tilde{z}_{2},
\end{array}
$$

where $v=\underbrace{\left(\bar{z}_{1} y_{1} \bar{z}_{2} y_{2}\right) \ldots\left(\overline{\bar{z}}_{1} y_{1} \overline{\bar{z}}_{2} y_{2}\right)}_{p-1} \underbrace{\left(z_{1} y_{1}\right) \ldots\left(z_{1} y_{1}\right)}_{r-2 p-1}$.
It is easy to check that

$$
g_{6} \equiv-g_{4} \equiv g_{2} \equiv-y_{1} v \tilde{z}_{1} y_{1} \tilde{z}_{2} y_{2} z_{1} \quad g_{5} \equiv-2 g_{2} \quad \text { and } \quad g_{3} \equiv g_{1}-g_{2}
$$

Now the polynomials g_{1} and g_{2} are linearly independent. In fact, let $f=\alpha g_{1}+$ $\beta g_{2} \equiv 0\left(\bmod I d^{\mathbb{Z}_{2}}(A)\right)$. If we consider the usually substitution $z_{i}=e_{3 i}, y_{i}=e_{i 3}, i=$ 1,2 , we obtain $f=-(\alpha+\beta) e_{11}-\alpha e_{22}=0$. Hence $\alpha=0$ and also $\beta=0$. Then it follows that $m_{(r-p, p),(r-p, p)}=2,1 \leq p \leq\left\lfloor\frac{r}{2}\right\rfloor$, and the proof is complete.

REFERENCES

[1] Aver'yanov, I. V. (2009). Basis of graded identities of the superalgebra $M_{1,2}(F)$. Mathematical Notes 85(4):467-483.
[2] Bahturin, Yu., Drensky, V. (2003). Identities of bilinear mappings and graded polynomial identities of matrices. Linear Algebra and its Applications 369:95-112.
[3] Di Vincenzo, O. M. (1992). On the graded identities of $M_{1,1}(E)$. Isr. J. Math. 80:323-335.
[4] Drensky, V. (1984). Codimension of T-ideals and Hilbert series of relatively free algebras. J. Algebra 91:1-17.
[5] Drensky, V. (2000). Free algebras and PI-algebra. Graduate Course in Algebra. Singapore: Springer-Verlag Singapore.
[6] Giambruno, A. (1993). GL×GL-representations and *-polynomial identities. Commun. Algebra 21:3779-3795.
[7] Giambruno, A., Zaicev, M. V. (2005). Polynomial identities and asymptotic methods. AMS. Mathematical Surveys and Monographs Vol. 122. Providence, R.I.
[8] Kemer, A. R. (1988). Ideals of identities of associative algebras. AMS Translations of Mathematical Monograph Vol. 87.
[9] Procesi, C. (1984). Computing with 2×2 matrices. J. Algebra 87(2):342-359.

[^0]: Received July 29, 2011; Revised November 15, 2011; Communicated by S. Sehgal.
 Address correspondence to Stefania Aqué, Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo Italy; E-mail: aque@math.unipa.it

