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1 INTRODUCTION  
 
1.1. Secondary flow in curved pipes 

Flow in curved pipes is characterized by the existence of 
a secondary circulation in the cross section, caused by the 
imbalance between inertial and centrifugal forces. According 
to Isachenko et al. [2], the secondary flow appears when the 
Reynolds number exceeds 11.6 / δ∼ , e.g. ~36.7 for δ=0.1 

and ~21.2 for δ=0.3.  
Boussinesq [3] identified the mechanisms driving the 

secondary flow in a curved duct and predicted the presence of 
two symmetric secondary vortices. Dean [4], under the 
hypotheses of small curvature and stationary flow, derived a 
solution for the stream function of the secondary motion and 
for the main streamwise velocity. Dean’s solution exhibits a 
shift of the streamwise velocity maximum towards the outer 
wall and two symmetric recirculation cells (Dean vortices) 
having a characteristic velocity scale:  

ˆ ˆsec avu u δ≈  (1) 

in which ˆavu  is the average streamwise velocity, δ is the non-

dimensional curvature a/c, a is the radius of the section and c 
is the radius of curvature (here and in the following, 
dimensional quantities will be indicated by a caret ^ while no 
caret will be used for dimensionless quantities).  

The bulk Reynolds number Re is defined as 

ˆRe 2 /avu a ν=  (2) 

while the Dean number is defined as  

De Re δ=  (3) 

and takes account of inertial, centrifugal and viscous effects. 
For small values of the curvature, De becomes the single 
governing parameter; for example, in terms of the Dean 
number the above mentioned criterion for the appearance of 
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ABSTRACT 
Incompressible flow in a toroidal pipe was investigated by direct numerical simulation [1]. The curvature δ=a/c (radius of 

the cross section / radius of the torus) was 0.3 or 0.1 and the bulk Reynolds number ranged between ∼3500 and ∼14 700. The 
study revealed a rich scenario of transition to turbulence.  

For the higher curvature δ = 0.3, a supercritical transition from stationary to periodic flow (Hopf bifurcation) was observed 
at Re≈4600. The periodic flow was characterized by a travelling wave which, in the whole periodic Re range, took the form of 
a varicose modulation of the twin Dean vortex rings, included 8 wavelengths along the axis of the torus, and exhibited 
instantaneous anti-symmetry about the equatorial midplane. A further transition to quasi-periodic flow, characterized by two 
independent fundamental frequencies and their first few harmonics, occurred at Re≈5200. The two frequencies were associated 
with two travelling wave systems, the first consisting of a varicose modulation of the Dean vortex rings, the second of an array 
of oblique near-wall vortices produced at the edge of the Dean cells, co-rotating with these latter and travelling from the inner 
towards the outer side, against the secondary circulation. 

For the lower curvature δ=0.1, the results suggested the existence of a subcritical Hopf bifurcation at Re≈5200 and of a 
secondary Hopf bifurcation to quasi-periodic flow at a lower Reynolds number of ~4900. Starting from zero-velocity initial 
conditions, the steady-state flow remained stable up to a Reynolds number of 5139, while a further increase in Re to 5208 
yielded an abrupt transition to quasi-periodic flow which remained stable up to Re=6280 or larger. When a quasi-periodic 
solution (e.g., that obtained for Re=5658) was used as the initial condition and Re was made to decrease, the quasi-periodic 
regime remained stable down to values of Re well below the subcritical Hopf bifurcation at ~5200. Only a further, substantial 
decrease of Re to ~4108 led to the smooth disappearance of mode II and to a stable periodic solution. An abrupt transition to 
stationary flow was obtained when the Reynolds number decreased well below 4000 (e.g., a test case was computed for Re 
=3490). All periodic and quasi-periodic solutions for δ=0.1 exhibited instantaneous symmetry about the equatorial midplane. 

Also the further transition from quasi-periodic to chaotic flow occurred with different mechanisms for the two curvatures. 
For δ=0.3, quasi-periodic flow was obtained in the whole Reynolds number range 5270-7850. As Re increased slightly beyond 
this value (Re=8160), strong fluctuations, associated with random streamwise vortices, arose in the outer region. The ensuing 
chaotic flow regime was characterized by a broadband, almost continuous, frequency spectrum. A further increase of Re to 
13180 did not modify to any appreciable extent the flow regime and the distribution of the velocity fluctuation intensity. For 
δ=0.1, the convergence of the results to quasi-periodic flow became impossible to achieve as Re increased beyond ~6280, and 
was replaced by long and erratic transients. For Re=8160, the solution, albeit stationary in a statistical sense, was chaotic and 
exhibited a large number of frequencies, but the outer region remained basically stationary. Only when Re increased further, 
the outer region became unsteady and was characterized by the production of streamwise vortices which were then transported 
by the secondary flow destroying all remains of regular oscillations. 



 
secondary flow becomes De>~11.6. A thorough literature 
review for flow in curved pipes has been presented by Berger 
et al. [5]. 
 
1.2. Transition to turbulence in curved pipes 

Most of the first attempts to determine the conditions for 
transition to turbulence in curved and helical pipes focussed 
on the behaviour of global quantities such as the friction 
coefficient. The earlier departure from the linear pressure drop 
- flow rate behaviour observed in curved pipes with respect to 
straight pipes was interpreted in these studies as an indication 
of an earlier transition to turbulence. However, after the work 
of Dean [4] and the experiments of Taylor [6], it became clear 
that the departure from linearity in the pressure drop-flow rate 
relationship is simply an indication that the flow in curved 
pipes is not self similar, rather than an indication of departure 
from laminar flow conditions. Most of the increased resistance 
in curved pipes is due to the secondary circulation, and a 
stationary laminar flow is actually maintained in curved pipes 
up to Re well above the critical value for straight pipes. 
Narasimha & Sreenivasan [7] showed that, in a helically 
coiled pipe preceded and followed by straight pipe segments, 
under appropriate conditions turbulent flow may be observed 
in these latter while the flow remains laminar in the coils. 

Isachenko et al. [2] report the following formula to 
compute the critical Reynolds number for transition to 
turbulence: 

0.28Re 18500cr δ= ⋅  (4) 

which, for example, provides Recr=7996 for δ=0.05, 
Recr=9708 for δ=0.1 and Recr=13206 for δ =0.3. 

Experimental pressure drop results for a wide range of 
curvatures and Reynolds numbers were presented by Ito [8], 
who derived the following correlations for the Darcy-
Weisbach friction factor f (four times the Fanning coefficient) 
in the laminar and turbulent ranges: 

5.73
10

64 21.5 De

Re (1.56 log De)
f

⋅= ⋅
+

 (laminar flow) (5.a) 

0.250.304 Re 0.029f δ−= ⋅ +  (turbulent flow) (5.b) 

valid for 5⋅10−4 ≤ δ ≤ 0.2. 
Although dated, equations (5) have recently been 

confirmed to an impressive degree by the extensive 
experimental work of Cioncolini & Santini [9] in a broad 
range of curvatures (0.027≤δ≤0.143) and Reynolds numbers 
(Re≈103-7⋅104). For relatively high values of the curvature 
(0.0416≤δ≤0.143), the friction coefficient decreases 
monotonically with Re and transition to turbulence is 
indicated by a change in slope of the f−Re curve. Therefore, 
for sufficiently high curvatures, an indicative value of the 
critical Reynolds number for transition to turbulence can be 
provided by the intersection of fully laminar and fully 
turbulent asymptotic laws. An approximate correlation which 
expresses this criterion for the critical Reynolds number is: 

( )0.57Re 2100 1 15cr δ= ⋅ +  (6) 

which, for example, provides Recr=7811 for δ=0.05, 
Recr=10578 for δ=0.1 and Recr=17958 for δ=0.3 (which, 
however, is beyond its range of validity). 

For lower curvatures (δ<0.0416), Cioncolini and Santini 
[9] observed that, in the proximity of transition, the f-Re 

curves exhibited a local minimum followed by an inflection 
point and by a local maximum. Under such circumstances, 
different transition criteria may be specified on the basis of 
some feature of the f curves, but may not coincide with the 
actual onset of turbulence.  

Also alternative transition correlations proposed by Ito 
[8], Srinivasan et al. [10] and other authors are based on 
different interpretations of the f(Re) behaviour for different δ, 
but do not really capture the specific dynamics of the 
transition process. All the proposed criteria, however, agree 
that the effect of curvature is to increase Recr with respect to 
straight pipes. 

Few studies have investigated transition in curved pipes 
by direct measurement of local flow quantities. Sreenivasan & 
Strykowski [11] obtained experimental results in helically 
coiled pipes with a curvature ratio δ=0.058 and a negligible 
torsion. Hot-wire velocity measurements were taken after 5 
helix turns where the flow was fully developed, and the 
Reynolds number range investigated varied from 4200 to 
6730. For Re=4200 the hot wires registered flat signals 
corresponding to a laminar stationary flow. For Re=5000, a 
periodically oscillating behaviour was observed in the inner 
region and a small-amplitude, high-frequency intermittent 
oscillation in the outer region. For Re=5870, a not perfectly 
periodic behaviour was observed in the inner region, and a 
substantial intermittent turbulent oscillation in the outer 
region. For Re=6730, the behaviour was fully turbulent both 
in the inner and in the outer region. The outer side appeared to 
be the critical region for transition to a chaotic behaviour, 
since both intermittency and high frequencies first appeared 
there. 

Webster & Humphrey [12] investigated flow in helical 
coils by LDV for Re≈3800-10500 and δ≈5.5⋅10-2. For 
Reynolds numbers between 5060 and 6330 (De=1190-1480) 
the authors described a periodic flow characterized by a 
dimensionless frequency f≈0.14 (normalized by the reference 
frequency ˆ /avu a). They attributed the origin of this periodic 

flow to an instability of the outward-directed midplane jet. 
Transition to turbulence proper was observed only for 
Re≥6330. In later work [13] the same authors performed flow 
visualization by dye streaks for the same curvature and 
Reynolds number range. On the basis of these new results, 
they identified the cause for flow periodicity in a travelling-
wave instability of the Dean vortices of the varicose type, i.e., 
one in which the axis of each vortex ring remains 
approximately a circumference, while the vortex intensity 
varies periodically streamwise (as opposed to a sinuous 
instability, which would involve a periodic lateral oscillation 
of the vortex ring axes). For Re=5060, they estimated the 
wavelength to be (2π c)/20 and the wave phase speed 
(celerity) to be ∼0.825ˆavu ; these values changed little with Re. 

Also the experimental results of Sreenivasan and Strykowski 
[11] for similar values of the curvature (δ=5.8⋅10-2) and of the 
Reynolds number (Re≈5000) are compatible with a travelling 
wave solution located mainly the inner (Dean vortex) region, 
although the authors did not explicitly suggest this 
interpretation (previous reports of travelling wave phenomena 
deserve a special attention since the present paper is largely 
devoted to the analysis of such structures). 

 
1.3. Computational studies 

Following two-dimensional perturbation studies [14-16], 
which assumed the flow to be axially fully developed and thus 
are of limited interest here, the first three-dimensional 



 
numerical simulations of incompressible turbulent flow in 
helical and curved pipes were presented by Friedrich and co-
workers [17]. They compared toroidal and helical pipe results 
for Re≈5600 (Reτ≈230) and δ=0.1. Although the authors 
performed a statistical processing of the computational results 
(e.g. by computing Reynolds stress distributions in the cross 
section), the case they studied was not actually turbulent, but 
rather a time-dependent laminar flow, as indicated by the 
experimental results obtained under similar conditions by 
Webster & Humphrey [13] and Sreenivasan & Strykowski 
[11] and by the results of the present study (see below). It 
must also be observed that in the simulations by Hüttl & 
Friedrich [17] only a small portion of pipe, 7.5 diameters 
long, was modelled, using periodic boundary conditions at the 
ends; such simulations would be inadequate to predict 
travelling waves.  

Also Webster & Humphrey [13] complemented their 
experimental investigation by numerical simulations, 
performed by discretizing the Navier-Stokes equations written 
in the local toroidal reference frame, i.e. neglecting coil 
torsion. The length of the computational domain was chosen 
equal to the experimentally measured wavelength, thus forcing 
the travelling wave to possess a-priori prescribed features. 
Under conditions in which experiments evidenced a travelling 
wave instability, the numerical results showed oscillating 
velocities with maximum rms values in the proximity of the 
Dean vortices. Quantitative comparison with experiments was 
not possible due to the purely qualitative (flow-visualization) 
nature of these latter. 

Travelling waves in a curved square duct were found both 
experimentally and numerically by Mees et al. [18]. The 
travelling wave mode developed from the stationary four-cell 
flow typical of curved square ducts, and was characterized by 
the oscillation of the outer vortices.  
 
2 MODELS AND METHODS 
 
2.1. Computational domain, governing equations, boundary 
and initial conditions 

Figure 1(a) shows a schematic representation of the 
toroidal computational domain; the major radius will be 
indicated with c, the minor radius with a. The inner side will 
be indicated with I and the outer side with O; here and in all 
the subsequent figures showing cross sections of the pipe, the 
O side will be on the right and the I side on the left, and the 
view will be along the flow direction, i.e. looking from 
upstream. The azimuthal angle θ will be measured in the 
clockwise direction, with θ(I)=−π/2, θ(O)=π/2.  

The continuity and Navier-Stokes equations for a 
constant-property fluid were solved in the Cartesian 
orthogonal reference frame ( )ˆ ˆ ˆ ˆ, ,jx x y z=  of figure 1. In 

dimensional form: 
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ˆ
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Here, ps is a driving force per unit volume directed along 
the axis of the pipe which balances frictional losses, so that 
ps,1=−pssinΘ, ps,2=pscosΘ, ps,3=0, Θ being the azimuth around 
the torus’ axis z, see figure 1. This is equivalent to imposing 
the equilibrium mean shear stress 

0ˆ ( / 2) sa pτ = , with 

corresponding friction velocity 
0ˆ ˆ /uτ τ ρ= , and thus the 

friction Reynolds number ˆRe /u aτ τ ν= . 

 
 (a) 

 
 (b) 

Figure 1. (a) Toroidal pipe (computational domain): a, tube 
radius; c, coil radius. (I), (O) denote inner  and outer sides; θ 
is the azimuth in the cross-section, measured clockwise with 
θ(I)=−π/2, θ(O)=π/2; Θ is the angular displacement of the 
cross section from the x-z plane. (b) One fourth of the cross 
section of the multi-block structured mesh. The total number 
of cells in the whole cross section is NSEC=4Nθ(Nθ+2 NRAD).  

 
Although the simulations were conducted in a Cartesian 

orthogonal reference frame, for post-processing and 
discussion purposes a cylindrical reference frame ( )ˆ ˆ, ,pr zΘ  

was used for the whole torus, 
p̂r  being the normal distance 

from the torus’ axis z; the direction Θ of the main flow is also 
indicated by s (for “streamwise”) in the figures. A local 2-D 
polar reference frame ( )ˆ,r θ  was also used in the plane of the 

generic cross section, so that the secondary flow in this plane 
may be alternatively represented by its components ur, uθ 
along ( )ˆ,r θ  or by its components urp, uz along ( )ˆ ˆ,pr z . 

No slip conditions were imposed at the wall. Zero 
velocity initial conditions were set for most of the numerical 
simulations; instabilities, if any, were triggered by small 
numerical fluctuations due to truncation and round-off errors. 
A few cases were restarted from a solution obtained for a 
higher Reynolds number, as discussed in Section 5.  



 
 

2.2. Scales 
Although the friction velocity ̂ ( / 2) /su a pτ ρ=  is the a-

priori  known quantity, the average velocity ˆavu  was chosen as 

a more natural velocity scale. The corresponding frequency 
scale is: 

0 2

ˆ Reˆ
2

avu
f

a a

ν= = ⋅  (9) 

proportional, by the factor Re/2, to the molecular momentum 
diffusion frequency ν/a2. The time scale follows as 

0 0̂
ˆ 1/t f= . 

The “natural” scale for angular velocity is 
0 0̂

ˆ 2 fω π= . The 

wall shear stress was scaled by 2ˆavuρ . 

All coordinates were scaled by the cross section radius a; 
thus, the non-dimensional local radial coordinate, measured 
from the centre of the cross section, is ˆ /r r a=  while the non-
dimensional distance from the torus’ axis z is ˆ /p pr r a= . 

 
2.3. Numerical method and computational mesh 

The computational method was based on a finite-volume 
coupled algebraic multigrid solver, and adopted the central 
interpolation scheme for the advection terms and a second-
order backward Euler time stepping algorithm. The 
computational domain was partitioned into equally-sized 
blocks which were assigned to different processes, generally 
running in parallel on 16 cores. 

The mesh was multi-block structured, and was 
characterized by the parameters NRAD and Nθ  as shown in 
figure 1(b). The values used in the present work were 
NRAD=46, Nθ=24; grid refinement was applied near the wall, 
with a maximum/minimum cell size ratio of ∼5 in the radial 
direction. With these choices, the cross section was resolved 
by 11136 cells. In the streamwise direction the domain was 
discretized by NAX =1024 cells for δ=0.1 and NAX=300 cells 
for δ=0.3; this led to an overall number of cells of 11.4×106 
for δ =0.1 and 3.34×106 for δ=0.3. The surface mesh for the 
case δ=0.3 is visible in figure 1(a). 

The time step was set equal to 0.8(ν/uτ
2) for all cases; this 

time discretization was judged adequate to capture the 
dynamic features of the time-dependent flows on which this 
study is focussed. For the present streamwise grid, this choice 
led to a Courant number slightly less than 1. 
 
3 FLOW REGIME TRANSITIONS 
 

A systematic investigation was carried out for each 
curvature by letting the friction Reynolds number Reτ vary 
from 232 to 519 (δ=0.3) or from 164 to 476 (δ=0.1). The 
corresponding bulk Reynolds number varied between 4515 
and 13180 for δ=0.3 and between 3490 and 14700 for δ=0.1. 
For both curvatures, steady state flow was predicted for 
Re≤Rec and time dependent flow for Re>Rec, Rec being a 
critical Reynolds number which was estimated to be ~4575 for 
δ=0.3 and ~5175 for δ=0.1. However, the transition scenario 
was different for the two curvatures as discussed below. 

For the higher curvature δ=0.3, a full sequence of flow 
regimes from stationary (S) to periodic (P), quasi-periodic 
(QP) and chaotic (C) flow was observed, similar to that 
reported for Taylor-Couette flow between concentric cylinders 
[19] and coherent with the classic Ruelle-Takens route to 
turbulence. This is illustrated in figure 2(a) by reporting the 

root mean square value us
rms of the oscillatory component of 

the streamwise velocity in a point of a generic cross section 
located at r=0.8, θ=-π/4 (i.e., within the upper Dean vortex) 
against the difference between the Reynolds number Re and 
the critical Reynolds number Rec. The results suggest the 
existence of a supercritical Hopf bifurcation from stationary to 
periodic flow at Re=Rec (point H in the figure), followed by a 
secondary Hopf bifurcation from periodic to quasi-periodic 
flow at Re≈Rec+500 (Re≈5075, point H2 in the figure). 
Symbols denote computational predictions; different shapes 
are used for S, P and QP solutions. Both the H and the H2 
transitions were of the “soft” type, i.e., a generic flow quantity 
like us

rms varied continuously as Re crossed the relevant 
bifurcation value. As discussed in detail in Sections 5.1 and 
5.2, the transition from S to P flow was accompanied by a 
breaking of the instantaneous symmetry with respect to the 
torus midplane; the ensuing anti-symmetry was preserved also 
in the QP flow regime. Transition to turbulence (not illustrated 
in figure 2(a) for scale reasons) occurred only at Re≈8000 
(~Rec+3500).  
 

 

Figure 2. Bifurcation diagrams for δ=0.3 (a) and δ=0.1 (b). 
The abscissa is the difference between the Reynolds number 
Re and the Reynolds number Rec of the Hopf bifurcation; the 
ordinate is the rms value of the oscillatory component of the 
streamwise velocity in a generic cross section for r=0.8, 
θ=−π/4. H=Hopf bifurcation; H2=secondary Hopf bifurcation; 
solid lines: stable branches; broken lines: unstable branches. 
 

For the lower curvature δ=0.1, a more complex sequence 
of flow regimes was observed. This is illustrated in figure 
2(b), which reports the same quantity us

rms as in figure 2(a). In 
simulations starting either from zero velocity or from the 



 
immediately lowest-Re solution, an abrupt (“hard”) transition 
from S to QP flow occurred when the Reynolds number 
exceeded Rec≈5175. The QP regime was maintained up to a 
Reynolds number of ~8000 as for δ=0.3. However, 
simulations conducted by starting from a QP case and 
reducing the Reynolds number below Rec led to a QP solution 
for Re=4920 (Re−Rec≈−255) and to P solutions for Re=4600, 
4108 and 3800 (Re−Rec≈−575, −1067 and −1375, 
respectively). Only a further reduction to Re=3490 
(Re−Rec≈−1685) led to steady-state flow. Thus, the results 
exhibited hysteresis: some solutions could be obtained only by 
approaching them backward from higher-Reynolds numbers, 
and in a certain range of Re multiple solutions (S–P or even 
S–QP) were obtained for the same Reynolds number 
depending on the path followed. Interestingly, unlike case 
δ=0.3, all the P and QP solutions exhibited instantaneous 
symmetry with respect to the torus midplane. The bifurcation 
diagram sketched in figure 2(b) is compatible with all the 
results obtained. It includes a subcritical Hopf bifurcation (H) 
at Re=Rec (~5175), an unstable periodic branch, a turning 
point between Re≈3500 and Re≈4000, a stable periodic 
branch and a secondary Hopf bifurcation (H2) at Re≈4900. To 
the best of the authors’ knowledge, a comparable transition 
scenario has not been reported previously in the literature for 
other flows. Transition to turbulence is not illustrated in figure 
2(b) for scale reasons. 

Table 1 summarizes the eight selected test cases 
presented in detail in this paper. They cover the two values of 
the curvature δ=0.3 and δ=0.1, denoted by D3 and D1, and all 
four different regimes S, P, QP and C. Both Reynolds 
numbers Re and Reτ are provided in Table 1 along with the 
Dean number De. The friction factor can be computed as 
f=32(Reτ/Re)2 and its values predicted by Ito’s resistance 
correlations (4) are also reported for comparison purposes; 
however, it should be observed that neither of equations (4) is 
strictly applicable to the cases with δ=0.3.  

 

Table 1 Main test cases simulated. Flow regimes are indicated 
by S (stationary), P (periodic), QP (quasi-periodic), C 
(chaotic).  

 
Case D1-S D1-P* D1-QP D1-C 

δ 0.1 0.1 0.1 0.1 

Reτ 217 184 232 305 

Re 5139 4108 5658 8160 
De 1625 1299 1789 2561 

Regime S P QP C 

f(×102) 5.718 6.400 5.391 4.484 

f(×102) lam, eq.(5a) 5.627 6.331 5.352 4.445 

f(×102) turb, eq.(5b) n.a. n.a. n.a. 4.117 
* attained only by letting Re decrease from case D1-QP 

 
Case D3-S D3-P D3-QP D3-C 

δ 0.3 0.3 0.3 0.3 

Reτ 234 247 290 361 

Re 4556 4899 6128 8160 
De 2495 2732 3356 4475 

Regime S P QP C 

f(×102) 8.449 8.119 7.190 6.256 

f(×102) lam, eq.(5a) 7.825 7.546 6.756 5.879 

f(×102) turb, eq.(5.b) n.a. n.a. n.a. 4.786 

 

4 STATIONARY FLOW 
 

Stationary flow was obtained for Re=4515 and 4556 
(δ=0.3) and for Re=3490, 4108, 4600 and 5139 (δ=0.1). The 
two test cases D3-S (δ=0.3, Re=4556) and D1-S (δ=0.1, 
Re=5139) were chosen as representative. The corresponding 
values of Reτ, De and other global quantities are reported in 
table 1. The higher values of the friction coefficient f obtained 
for D3-S with respect to D1-S are justified by the higher Dean 
number, and thus by the more intense secondary circulation 
associated with higher curvatures. Note that, since stationary 
solutions are strictly two-dimensional, a fully three-
dimensional simulation would not have been necessary in 
these cases, but this can be stated only a posteriori. 

Selected results for these two cases are reported in figure 
3. Graphs (a, c) in the left column report contours of the 
streamwise velocity us. Graphs (b, d) in the right column 
report vector plots of the secondary motion in their top half, 
with the reference vector corresponding to ˆavu drawn, and 

corresponding streamlines in the bottom half. The solution is 
always symmetric with respect to the equatorial midplane of 
the torus. 
 

 

Figure 3. Dimensionless solutions for the stationary cases D3-
S (top row) and D1-S (bottom row): (a), (c) contours of the 
streamwise velocity; (b), (d) secondary flow vector plot 
(reference vector drawn besides) in the upper half and 
streamlines in the lower half of the section.  

 
Figure 3 shows that the streamwise velocity maximum is 

shifted towards the outer (O) wall and that a roughly linear 
stratification of the streamwise velocity along the I-O 
direction exists in the core region. The shape and extent of the 
inner-wall vortices is typical of high-De flow and is coherent 
with computational results obtained by other authors. In each 
of the twin vortices the streamlines are winding and strongly 
asymmetric with respect to the vertical midline of the section 
and exhibit two separate maxima, i.e. two closed-circulation 
regions; by contrast, in low-De flows the streamlines are 
almost elliptic in shape and are roughly symmetric with 
respect to the vertical midline of the cross section [20]. Only 
small differences exist between the two curvatures.  



 
5 UNSTEADY LAMINAR FLOW 
 
5.1 Case D3-P (δ=0.3, Re=4899) 

For δ=0.3 periodic flow was obtained for Reynolds 
numbers of 4605, 4660, 4768, 4899 and 5042. In particular, 
detailed results will be illustrated for case D3-P (δ=0.3, 
Re=4899).  

Figure 4(a) reports time samples of the streamwise 
velocity fluctuations us−〈us〉 at two arbitrary points of the 
cross section, located one in the upper secondary flow 
boundary layer and one in the upper Dean vortex region, over 
a dimensionless time interval of 30 starting from an arbitrary 
instant. The periodicity is clearly visible at both locations; 
oscillations are small (∼0.6%) in the Dean vortex region and 
even smaller (∼0.03%) in the secondary flow boundary layer 
region. Frequency spectra of the same two quantities, taken 
over a dimensionless time interval of ~140, are reported in 
figure 4(b). The signals relative to both monitoring locations 
exhibit a sharp peak at a dimensionless frequency f I≈0.238; 
harmonics at f=2f I and 3f I are present in the Dean vortex 
region but negligible in the secondary flow boundary layer. 

 

 

Figure 4. Test case D3-P (Re=4899, δ=0.3): (a) behaviour of 
the streamwise velocity fluctuations at two points of the cross 
section, located in the Dean vortex region and in the 
secondary flow boundary, respectively; (b) corresponding 
velocity power spectra (arbitrary units). 

 
 
 
 
 

The spatial structure of the flow oscillations is more 
clearly visible in figure 5, which reports the instantaneous 
distribution of the vertical velocity component uz on the 
equatorial midplane. This distribution exhibits kI=8 cells and 
rotates rigidly along the torus as a travelling wave with a 
linear celerity (evaluated at the mean radius c) of ~0.623ˆavu . 

Note that this is less than the mean fluid velocity, so that the 
wave lags behind the fluid over most of the toroidal volume. 

 

 
Figure 5. Test case D3-P (Re=4899, δ=0.3): instantaneous 
distribution of the vertical velocity uz on the equatorial 
midplane. Directions and angular celerities of the travelling 
wave are indicated. 

 
All the periodic cases simulated for δ=0.3 (ranging from 

Re=4605 through Re=5042) exhibited the same wavelength 
number kI=8. Also the dimensionless modal frequency 
remained about constant (~0.238) in this range. 
 
5.2 Case D3-QP (δ=0.3, Re=6128) 

For δ=0.3 quasi-periodic flow was obtained for Reynolds 
numbers of 5270, 5562, 5819, 6128, 6594, 7142 and 7850. In 
particular, detailed results will be illustrated in figures 6-8 for 
case D3-QP (δ=0.3, Re=6128).  

Figure 6(a) reports time samples of the streamwise 
velocity fluctuations us-〈us〉 at two arbitrary points of the cross 
section, located in the upper secondary flow boundary layer 
and in the upper Dean vortex region, over a dimensionless 
time interval of 30 starting from an arbitrary instant. The 
oscillatory non-periodic unsteadiness is clearly visible. 
Frequency spectra of the same two quantities, taken over a 
dimensionless time interval of ~220, are reported in figure 
6(b). The signals relative to both monitoring locations exhibit 
sharp peaks at dimensionless frequencies of ∼0.400 (f I) and 
∼0.165 (f II), while secondary harmonics are very small. 
Within the present frequency resolution limits ∆f=1/∆t≈0.005, 
the two values 0.165 and 0.400 are totally unrelated and thus 
must be regarded as two incommensurate frequencies 
characterizing a quasi-periodic flow. Spectra computed for 
different points of the flow field and different flow quantities 
exhibited, in all cases, only the independent frequencies f I, f II 
and their first few harmonics. 

 



 

 

Figure 6. Test case D3-QP (Re=6128, δ=0.3): (a) behaviour 
of the streamwise velocity fluctuations at two points of the 
cross section, located in the Dean vortex region and in the 
secondary flow boundary, respectively; (b) corresponding 
velocity power spectra (arbitrary units). 

 
The modal filters GI and GII sketched in Figure 7 were 

now used to split the spectral components of the flow 
associated with mode I and mode II, respectively.  

 

 
Figure 7. Test case D3-QP (Re=6128, δ=0.3): filter functions 
GI and GII used to separate modes I and II. 

 
The spatial structure of mode I is visible in figure 8(a), 

which reports the instantaneous distribution of the vertical 

velocity component uz on the equatorial midplane, where the 
contribution of mode II is small. This distribution exhibits 
kI=7 cells and rotates rigidly (or, more exactly, its pure mode I 
component rotates rigidly) along the torus as a travelling wave 
with a linear celerity of ~1.19̂

avu . This is close to the mean 

fluid velocity so that the wave leads the fluid in the inner 
(slow moving) region while it lags behind it in the outer (fast 
moving) region. It should be observed that the fundamental 
frequency f I (~0.400) is much larger than the periodic 
frequency f I of case D3-P (~0.238); therefore, the transition 
from periodic to quasi-periodic flow, with the appearance of 
the second fundamental frequency f II, is accompanied by a 
strong increase of the fundamental frequency associated with 
the varicose modulation of the Dean vortex ring. Since the 
number of wavelengths along the torus changes only from 8 to 
7, this increase in f I is mainly due to the increase of the linear 
wave celerity from 0.623 to 1.19̂

avu . 

 

 
Figure 8. Test case D3-QP (Re=6128, δ=0.3): (a) 
instantaneous distribution of the vertical velocity uz on the 
equatorial midplane; (b) instantaneous distribution of the wall 
shear stress on the torus’ surface. Directions and angular 
celerities of travelling waves I and II are indicated. 

 
In the generic cross section, the second mode (mode II) 

manifests itself in the form of a pair of vortex sheets which 
occupy the secondary flow boundary layers and move against 
the mean secondary flow, from the I side towards the O side. 



 
 For this curvature not only mode I, but also mode II (and 

therefore the whole time-dependent part of the flow field) is 
anti-symmetric with respect to the equatorial midplane of the 
torus. The spatial structure of mode II fluctuations is shown in 
figure 8(b), which reports the instantaneous distribution of the 
wall shear stress module on the surface of the toroidal pipe, 
where the contribution of mode-I oscillations is small. For the 
present curvature, the distribution exhibits k II=18 cells and 
rotates rigidly (or rather, its pure mode II component rotates 
rigidly) along the torus as a travelling wave having a linear 
celerity of ~0.19̂

avu , much less than the mean fluid velocity 

and than the linear celerity of mode-I wave. 
Summarizing, the unsteady flow exhibited by test case 

D3-QP can be described as the superposition of two 
independent systems of travelling waves. Each system consists 
of a spatially periodic k-cell pattern (mode) which rotates 
rigidly around the torus in the same direction as the mean flow 
with its own characteristic celerity. Conventionally, we 
denoted by ‘mode I’ that mainly concentrated in the Dean 
vortex region; this mode is the less energetic of the two, 
consists of a varicose modulation of the Dean vortex rings, 
and manifests itself in the cross section as a pulsatile motion 
of the Dean vortices. The second mode, conventionally 
denoted as ‘mode II’, is mainly concentrated in the secondary 
flow boundary layers and is the more energetic of the two. In 
space, it consists of two arrays of oblique vortices co-rotating 
with the Dean ones; in the cross section, it manifests itself as a 
pair of vortex trails generated at the edge of the Dean vortices 
and moving upstream with respect to the mean secondary 
flow, from the I to the O side. The whole fluctuating flow field 
is instantaneously anti-symmetric with respect to the 
equatorial midplane of the torus. 

In the quasi-periodic range examined (Re=5270-7850) the 
mode-I wavelength number kI decreased from 8 (Re=5270) to 
7 (Re=5562 and larger), while the dimensionless mode-I 
frequency f I increased from 0.275 to 0.400. The mode-II 
wavelength number kII increased from 10 (Re=5270) to 18 
(Re=6128 and larger); the dimensionless mode-II frequency f II 
increased from 0.035 (Re=5270) to 0.165 (Re=6128) and then 
decreased slightly for larger Reynolds numbers. 

 
5.3 Case D1-QP (δ=0.1, Re=5658) 

As anticipated in Section 3, for δ=0.1 an abrupt transition 
from steady-state to quasi-periodic flow was observed, in 
simulations starting from zero-velocity conditions or from a 
lower-Re solution, as soon as the friction Reynolds number 
exceeded a value of ~218, corresponding to a bulk Reynolds 
number of ~5175. QP solutions were thus computed for 
Re=5208, 5236, 5400, 5658 and 6280. Detailed results will be 
presented here for the test case D1-QP, characterized by 
δ=0.1, Re=5658. 

Figure 9(a) reports time samples of the streamwise 
velocity fluctuations us-〈us〉 at two arbitrary points of the cross 
section, located in a secondary flow boundary layer and in a 
Dean vortex region, over a dimensionless time interval of 30 
starting from an arbitrary instant. An oscillatory non-periodic 
unsteadiness is clearly visible. Frequency spectra of the same 
two quantities, taken over a much longer dimensionless time 
interval of ~130, are reported in figure 9(b). The signal 
relative to the boundary layer region exhibits a sharp peak at a 
dimensionless fundamental frequency of ∼0.20 (f II) and less 
marked peaks at the harmonic frequencies 2f II≈0.40 and  
3f II≈0.60. Shallow peaks are also present at the frequency  
f I≈0.27 and its harmonics 2f I≈0.54 and 3f I≈0.81. The signal 

relative to the Dean vortex region exhibits its highest peak at 
the frequency f I≈0.27, with very shallow secondary peaks at 
the harmonic frequencies 2f I≈0.54, 3f I≈0.81; peaks are also 
present at the frequency f II and its first harmonic 2f II. Within 
the present frequency resolution limits ∆f=1/∆t≈0.007, the two 
values 0.20 and 0.27 are totally unrelated and must be 
regarded as two incommensurate frequencies characterizing a 
quasi-periodic flow. Spectra for different points of the flow 
field and different flow quantities exhibited, in all cases, only 
the two independent frequencies f I, f II and their first few 
harmonics. 

 

 

Figure 9. Test case D1-QP (Re=5658, δ=0.1): (a) behaviour 
of the streamwise velocity fluctuations at two points of the 
cross section, located in the Dean vortex region and in the 
secondary flow boundary, respectively; (b) corresponding 
velocity power spectra (arbitrary units). 

 
A modal filter similar to that shown in figure 7 was used 

also in this case to separate mode I and mode II. The spatial 
structure of mode I is visible in figure 10(a), which reports the 
instantaneous distribution in the equatorial midplane of the 
secondary flow velocity component urp directed along the 
toroidal radius ̂

pr . Here, the influence of mode II is minor and 

manifests itself only as a slight departure from exact 
streamwise periodicity of the pattern shown. This distribution 
exhibits kI=16 identical cells; the whole structure (or, more 
exactly, its pure mode I component) rotates rigidly along the 
torus as a travelling wave having a linear celerity of ~1.05ˆavu . 

Since this is close to the mean fluid velocity, the wave leads 



 
the fluid in the inner region and lags behind it in the outer 
region. The above values of kI and of the linear celerity are 
compatible with those reported by Webster & Humphrey [13] 
for the lower curvature δ=5.5⋅10-2.  

The spatial structure of mode II is shown in figure 10(b), 
which reports the instantaneous distribution of the wall shear 
stress module on the surface of the toroidal pipe, where the 
influence of mode I is marginal. This distribution exhibits 
kII=36 cells; the whole structure (or, more exactly, its pure 
mode-II component) rotates rigidly along the torus with a 
linear celerity of ~0.35̂

avu , much less than the mean fluid 

velocity and than the linear celerity of mode-I wave. 
 

 

Figure 10. Test case D1-QP (Re=5658, δ=0.1): (a) 
instantaneous distribution of the velocity component along the 
torus’ radius, urp, in the equatorial midplane; (b) instantaneous 
distribution of the wall shear stress module τw on the torus’ 
surface. Directions and angular celerities of travelling waves I 
and II are indicated.  

 
Summarizing, the unsteady flow exhibited by test case 

D1-QP can be described, as in case D3-QP, as the 
superposition of two independent systems of travelling waves; 
unlike in case D3-QP, the fluctuating flow field is 
instantaneously symmetric with respect to the equatorial 
midplane of the torus. 

All the quasi-periodic cases simulated for the same 
curvature δ=0.1, ranging from Re=5208 to 6280, exhibited the 

same modes and the same number of wavelengths for each 
mode (kI=16, kII=36). The modal frequencies f I and f II varied 
only negligibly with Re with respect to the values obtained for 
the reference case D1-QP (0.27 and 0.20, respectively). 

A further QP case was obtained by starting from the 
solution for case D1-QP (Re=5658) and letting the Reynolds 
number decrease to ~4920, well below the critical Reynolds 
number of ~5175 for transition to unsteady flow. This case, 
unattainable “from below” (i.e., by letting Re increase starting 
from still fluid or from any lower-Re solution), exhibited the 
same general features of other quasi-periodic cases, but a 
reduced number of wavelengths (kI=12) and a larger 
dimensionless frequency (f I≈0.36) for mode I, while, for mode 
II, k II and f II were still 36 and 0.20 as in the other QP cases 
computed for δ=0.1. 

As anticipated in Section 3, using the D1-QP solution 
(Reτ=232, Re=5658) as initial condition and imposing lower 
friction Reynolds numbers Reτ yielded periodic flow (D1-P) at 
Re=4600, 4108 and 3800 (Re−Rec≈−575, −1067 and −1375, 
respectively), well below the critical Reynolds number of 
~5175 for transition to unsteady flow.  
 
6 CHAOTIC FLOW 
 

The highest Reynolds numbers for which clearly quasi-
periodic solutions were obtained were 7859 (δ=0.3) and 6280 
(δ=0.1). For the higher curvature (δ=0.3), a moderate increase 
of Re to 8160 was sufficient to yield a clearly chaotic solution. 
For δ=0.1, Reynolds numbers in the range ∼6500-8000 gave 
rise to long and erratic transients while clearly chaotic 
solutions were obtained only for Re>∼8000. For both 
curvatures, results will be presented for a Reynolds number of 
8160 (cases D3-C and D1-C). 
 
6.1 Case D3-C (δ=0.3, Re=8160) 

For this case, figure 11(a) reports time samples of the 
streamwise velocity fluctuations us-〈us〉 at two arbitrary points 
of the cross section, located in the secondary flow boundary 
layer and in the Dean vortex region. Frequency spectra of the 
two velocities, taken over a time interval of ~200, are reported 
in figure 11(b). For both locations, spectra exhibit an almost 
continuous distribution of frequencies, characteristic of highly 
chaotic flow. Although some peaks stand out on the broad-
band background, there is no clear residual of the modal 
frequencies (f I≈0.4, f II≈0.165) observed in the corresponding 
quasi-periodic case D3-QP. Similar broad-band spectra are 
obtained for different points of the flow field and different 
flow quantities. 

For this case, the numerical simulation conducted starting 
from zero velocity conditions initially yielded a quasi-periodic 
flow, similar to that predicted for lower Reynolds numbers. 
However, at a certain instant an instability of the outer region 
manifested itself in the form of irregular vortices which were 
rapidly swept by the cross flow into the secondary boundary 
layers, where they destroyed the regular vortex pattern 
characteristic of QP flows. Subsequently, the irregularities 
propagated to the Dean vortex regions until a chaotic flow 
condition was attained in the whole cross section. These 
results support the hypothesis that, for this high curvature 
(δ=0.3), the centrifugal instability of the main flow in the 
outer region appears to be the mechanism causing the loss of 
stability of the quasi-periodic solution prevailing at lower 
Reynolds numbers [1].  

 



 

 

 
Figure 11. Test case D3-C (Re=8160, δ=0.3): (a) behaviour 
of the streamwise velocity fluctuations at two points of the 
cross section, located in the Dean vortex region and in the 
secondary flow boundary, respectively; (b) corresponding 
velocity power spectra (arbitrary units). 
 

The time-averaged secondary flow in the cross section is 
not illustrated here since, once made dimensionless by the 
average streamwise velocity, it is almost indistinguishable 
from that obtained for stationary flow, e.g. case D3-S. This 
shows that flow unsteadiness, either of regular or chaotic 
nature, does not significantly affect the time-mean flow: for a 
given curvature, as the Reynolds number increases, the Dean 
circulation attains rather early (well within the stationary 
range) an asymptotic shape and a dimensionless intensity 
which are little affected (in the average) by the subsequent 
transitions to unsteady and chaotic behaviour. 

A map of the root mean square values of the velocity 
fluctuations along the streamwise direction for case D3-C is 
reported in figure 12(a). The outer region has a high level of 
fluctuations and is the most unsteady. Fluctuations in this 
region were almost completely absent in the quasi-periodic 
case D3-QP, and thus appear to be purely chaotic.  

A further increase of Re does not change the overall flow 
structure: figure 12(b) reports the rms streamwise fluctuation 
for Re=13180, and exhibits no relevant difference with respect 
to case D3-C in the distribution and dimensionless intensity of 
turbulence. 

 

Figure 12. Streamwise root mean square velocity fluctuations 
for chaotic flow and δ=0.3. (a) Re=8160; (b) Re=13180.  
 
6.2 Case D1-C (δ=0.1, Re=8160) 

For this case, figure 13(a) reports time samples of the 
streamwise velocity fluctuations us-〈us〉 at two arbitrary points 
of the cross section, located in the secondary flow boundary 
layer and in the Dean vortex region. The time series in figures 
9(a) (case D1-QP) and 13(a) do not show any obvious 
differences; however, the corresponding power spectra are 
completely different, see parts (b) of these figures.  

 

 
Figure 13. Test case D1-C (Re=8160, δ=0.1): (a) behaviour 
of the streamwise velocity fluctuations at two points of the 
cross section, located in the Dean vortex region and in the 
secondary flow boundary, respectively; (b) corresponding 
velocity power spectra (arbitrary units). 

 
 
 



 
For case D1-C, figure 13(b), the spectra for both 

monitoring points, taken over a dimensionless time interval of 
~200, exhibit a large number of peaks occurring at 
incommensurate frequencies, which is a clear indication of 
chaotic flow. In the spectrum relative to the Dean vortex, but 
not in that relative to the boundary layer region, the spectral 
peak corresponding to the frequency f I≈0.27 of the mode-I 
travelling wave (varicose instability of the Dean vortex ring) 
is still recognizable. The cluster of frequencies observed in the 
spectra relative to both monitoring points in the interval ∼0.1-
0.2 replaces the single frequency f II≈0.2 of mode II (oblique 
vortex trail in the boundary layer region) and corresponds to a 
slow, non-sinusoidal, amplitude modulation of the mode-II 
vortices. Spectra obtained for different points of the flow field 
and different flow quantities exhibit the same overall chaotic 
behaviour.The time-averaged secondary flow in the cross 
section is very similar (once made dimensionless by the 
average streamwise velocity) to the secondary flow predicted 
for the stationary case D1-S and is not illustrated here. 

A map of the root mean square velocity fluctuation along 
the streamwise direction for case D1-C is reported in figure 
14(a). Of course, fluctuations include all the spectral 
components, i.e. both chaotic fluctuations proper and what is 
left of the low-frequency, quasi-periodic oscillations. Figure 
14(a) shows that high values of the streamwise fluctuation are 
attained both in the Dean vortex regions and in the secondary 
flow boundary layers for θ ≈0 or π, while the outer region is 
basically stationary despite the overall chaotic nature of the 
solution. This suggests that the centrifugal instability of the 
main flow in this region has not yet manifested itself at the 
present Reynolds number of 8160. 

 

 

Figure 14. Streamwise root mean square velocity fluctuations 
for chaotic flow and δ=0.1. (a) Re=8160; (b) Re=14700. 
 

A different picture is obtained if the Reynolds number is 
further increased: figure 14(b) reports the rms streamwise 
fluctuation for a higher Re (14700), well into the turbulent 
range. In this case, fluctuations attain high values not only in 
the regions mentioned for the lower-Re case, but also near the 
outer wall, which shows that the centrifugal instability of the 
main flow in this region has occurred at some Reynolds 
number intermediate between 8160 and 14700. Since the 
spatial resolution criteria for the DNS of turbulence are not 
fully satisfied by the computational mesh for this latter value 
of Re, the corresponding case will not be analysed in detail 
here and is reported only for the purpose of comparison with 
the early-chaotic case D1-C. 
 
7 FLOW REGIME MAP 
 

On the basis of the simulations reported above, of results 
from the literature, and of asymptotic arguments, a tentative 
flow regime map in the Re-δ plane can be sketched as in 

figure 15. This takes into account the present results for δ=0.3 
and 0.1, the (qualitative) experimental findings of Sreenivasan 
& Strykowki [11] for δ=0.058, and the experimental results of 
Webster & Humphrey [13] for δ=0.055. Here we assumed that 
the oscillatory flow regimes described by the above authors as 
periodic are actually instances of quasi-periodic flow. 
Moreover, the map takes account of the fact that, for δ=0 
(straight pipe), a direct transition from stationary laminar to 
turbulent (chaotic) flow occurs. 

The solid lines in figure 15 denote transitions for 
increasing Re, while the broken lines correspond to transitions 
for decreasing Re. The regions indicated as P-BW and QP-
BW are attainable only by letting the Reynolds number 
decrease from initial conditions corresponding to a higher-Re 
solution.  

 

 

Figure 15. Flow regime map in the Re-δ plane. Symbols: 
computational or experimental results classified as S 
(stationary), P (periodic), QP (quasi-periodic) or C (chaotic). 
S-BW, P-BW and QP-BW denote S, P or QP solutions 
obtained by letting Re decrease. Solid lines: transitions for 
increasing Re; broken lines: transitions for decreasing Re. 
Bifurcation diagrams corresponding to different intervals of δ 
are drawn in the lower part of the figure. The shaded region is 
only hypothetical. 

 
Schematic bifurcation diagrams corresponding to 

different intervals of δ are drawn in the lower part of the 
figure; in the regions close to δ=0.3 and δ=0.1 they are 
qualitatively identical to those reported in figures 3(a) and 
3(b), respectively. H denotes a Hopf bifurcation from 
stationary to periodic flow while H2 denotes a secondary 
Hopf bifurcation from periodic to quasi-periodic flow. The 
details of the flow regime map in the region of curvatures 
intermediate between 0.1 and 0.3 are purely hypothetical as 
suggested by the shaded area. Moreover, a complete regime 
map would exhibit a finely serrated shape of the transition 
curves in correspondence with the discrete jump in the number 
of wavelengths of either mode I or mode II as δ and Re vary, 
much as in the spiral Poiseuille flow study by Avila et al. [21], 
see e.g. figure 3 therein. 

The transition criterion expressed by equation (6) is also 
reported in figure 15. For any curvature, it predicts a 
transitional Reynolds number far larger than that associated 
with transition to chaotic flow on the basis of the present work 
and of the existing literature. This suggests that transition 



 
correlations like (4) or (6) identify not the onset of turbulence, 
but rather the attainment of turbulence levels sufficiently high 
for pressure drop to be dominated by turbulence effects. In 
fact, in configurations characterized by the presence of 
secondary flow, pressure drop is largely caused by 
recirculation and may be significantly higher than in parallel 
flow also under stationary laminar conditions; the appearance 
of unsteadiness, and even of turbulence, results in an added 
frictional term which increases gradually with the Reynolds 
number and, in low turbulence flows, may represent just a 
minor contribution to the overall pressure drop. 
 
NOMENCLATURE 
 
a pipe radius [m] 
c torus radius [m] 
De Dean number, Re δ  
f Darcy-Weisbach friction coefficient 
f dimensionless frequency, 

0
ˆ ˆ/f f  

0̂f  frequency scale, ̂ /avu a  [s-1] 

k number of wavelengths in the torus 
p̂  pressure [Nm−2] 

ps driving force per unit volume [Nm−3] 
r  dimensionless radial polar coordinate, ˆ /r a  
r̂  radial polar coordinate in cross section [m] 
rp dimensionless distance from torus axis,ˆ /pr a  

p̂r  distance from torus axis [m] 

Re bulk Reynolds number, ˆavu 2a/ν 

Reτ friction Reynolds number, uτ a/ν 

0̂t  time scale, ˆ/ ava u  [s] 

ˆavu  average streamwise velocity [ms−1] 

ˆ ju  velocity components [ms] 

ˆ secu  scale of secondary velocity [ms−1] 

ûτ  equilibrium friction velocity, 
0ˆ /τ ρ  [ms−1] 

ˆ ˆ ˆ ˆ; , ,jx x y z Cartesian coordinates [m] 

 
Greek symbols 
δ curvature, a/c  
∆t time interval [s]  
θ azimuthal polar coordinate in cross section [rads] 
Θ azimuthal angle around torus axis [rads] 
ν kinematic viscosity [m2s−1] 
ρ density  [kg m−3] 

0̂τ  equilibrium mean shear stress, ( / 2) sa p  [Nm−2] 

0ω̂  angular velocity scale, 
0̂2 fπ  [rads s−1] 

 
Subscripts, superscripts, averages 
cr critical value for transition 
I, O inner and outer sides of the pipe cross section 
RAD, SEC, θ grid-related subscripts, see figure 1.b 
r along cross section radius 
rp along torus radius 
rms root mean square value of a fluctuation 
s component along pipe axis 
I, II modes of oscillatory flow 
0 equilibrium 
^ dimensional quantity 
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