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ABSTRACT

Incompressible flow in a toroidal pipe was inveatag by direct numerical simulation [1]. The cunratd=a/c (radius of
the cross section / radius of the torus) was 0.8.brand the bulk Reynolds number ranged betw8&00 and 114 700. The
study revealed a rich scenario of transition tbulence.

For the higher curvaturé= 0.3, a supercritical transition from stationsmyperiodic flow (Hopf bifurcation) was observed
at Re=4600. The periodic flow was characterized by adlavg wave which, in the whole periodic Re rangakt the form of
a varicose modulation of the twin Dean vortex ringeluded 8 wavelengths along the axis of the ¢pand exhibited
instantaneous anti-symmetry about the equatoridplane. A further transition to quasi-periodic flogharacterized by two
independent fundamental frequencies tradr first few harmonics, occurred at#200. The two frequencies were associated
with two travelling wave systems, the first consigtof a varicose modulation of the Dean vortexsinthe second of an array
of oblique near-wall vortices produced at the edfjthe Dean cells, co-rotating with these latted &ravelling from the inner
towards the outer side, against the secondarylatron.

For the lower curvaturé=0.1, the results suggested the existence @aftaritical Hopf bifurcation at Re5200 and of a
secondary Hopf bifurcation to quasi-periodic flotvaalower Reynolds number of ~4900. Starting fromoaeelocity initial
conditions, the steady-state flow remained stapléoua Reynolds number of 5139, while a furthereéase in Re to 5208
yielded an abrupt transition to quasi-periodic flamich remained stable up to Re=6280 or larger. Whepuasi-periodic
solution (e.g., that obtained for Re=5658) was usethe initial condition and Re was madalézreasethe quasi-periodic
regime remained stable down to values of Re wetiwé¢he subcritical Hopf bifurcation at ~5200. Orlyurther, substantial
decrease of Re to ~4108 led to the smooth disappeaet mode Il and to a stable periodic solution.abrupt transition to
stationary flow was obtained when the Reynolds nundeereased well below 4000 (e.g., a test casecaarputed for Re
=3490). All periodic and quasi-periodic solutions 80.1 exhibited instantaneous symmetry about thategial midplane.

Also the further transition from quasi-periodicdbaotic flow occurred with different mechanisms floe two curvatures.
For &=0.3, quasi-periodic flow was obtained in the whekynolds number range 5270-7850. As Re increaggiitlglbeyond
this value (Re=8160), strong fluctuations, assodiatgh random streamwise vortices, arose in therorggion. The ensuing
chaotic flow regime was characterized by a broadbafmost continuous, frequency spectrum. A furtherease of Re to
13180 did not modify to any appreciable extentfitber regime and the distribution of the velocitydtuation intensity. For
&=0.1, the convergence of the results to quasi-gerittow became impossible to achieve as Re inctehsgond ~6280, and
was replaced by long and erratic transients. FOI8R@6, the solution, albeit stationary in a statatsense, was chaotic and
exhibited a large number of frequencies, but thierregion remained basically stationary. Only wienincreased further,
the outer region became unsteady and was chawzsttdry the production of streamwise vortices whiehe then transported
by the secondary flow destroying all remains ofutegoscillations.

1INTRODUCTION

1.1.Secondary flow in curved pipes

Flow in curved pipes is characterized by the eristeof
a secondary circulation in the cross section, aause the
imbalance between inertial and centrifugal fore&scording

to Isachenkeet al [2], the secondary flow appears when the

Reynolds number exceeds 11.6/v/J , €.g. ~36.7 fox=0.1

and ~21.2 foi=0.3.

Boussinesq [3] identified the mechanisms driving th
secondary flow in a curved duct and predicted tlesgnce of
two symmetric secondary vortices. Dean [4], undee t
hypotheses of small curvature and stationary flderjved a
solution for the stream function of the secondantion and
for the main streamwise velocity. Dean’s solutiohibits a
shift of the streamwise velocity maximum towardse thuter
wall and two symmetric recirculation cells (Deanrtiaes)
having a characteristic velocity scale:

0sec =0 av\/g- (1)

in which (i, is the average streamwise velocifyis the non-

dimensional curvature/c, a is the radius of the section and
is the radius of curvature (here and in the follayyi
dimensional quantities will be indicated by a cdrsthile no
caret will be used for dimensionless quantities).

The bulk Reynolds number Re is defined as

Re=0_2al (2
while the Dean number is defined as

De= ReJd (3)

and takes account of inertial, centrifugal and oisc effects.
For small values of the curvature, De becomes thgles
governing parameter; for example, in terms of theaD
number the above mentioned criterion for the appea of



secondary flow becomes De>~11.6. A thorough litesat
review for flow in curved pipes has been presete@erger
et al.[5].

1.2.Transition to turbulence in curved pipes

Most of the first attempts to determine the cowdisi for
transition to turbulence in curved and helical pifecussed
on the behaviour of global quantities such as thetidn
coefficient. The earlier departure from the linpegssure drop
- flow rate behaviour observed in curved pipes wétspect to
straight pipes was interpreted in these studienasdication
of an earlier transition to turbulence. Howeveterathe work
of Dean [4] and the experiments of Taylor [6], éclme clear
that the departure from linearity in the pressuxapeflow rate
relationship is simply an indication that the flaw curved
pipes is not self similar, rather than an indicatod departure
from laminar flow conditions. Most of the increasedistance
in curved pipes is due to the secondary circulatamd a
stationary laminar flow is actually maintained ureed pipes
up to Re well above the critical value for straighipes.
Narasimha & Sreenivasan [7] showed that, in a &akyic
coiled pipe preceded and followed by straight pgments,
under appropriate conditions turbulent flow maydbserved
in these latter while the flow remains laminarhe toils.

Isachenko et al. [2] report the following formula t
compute the critical Reynolds number for transititm
turbulence:

Re, = 18500°%° (4)
which, for example, provides Re7996 for J=0.05,
Re,,=9708 foro=0.1 and Rg=13206 ford=0.3.

Experimental pressure drop results for a wide ramige
curvatures and Reynolds numbers were presentetb ]l
who derived the following correlations for the Darc
Weisbach friction factof (four times the Fanning coefficient)
in the laminar and turbulent ranges:

f-64, 21.5De (laminar flow)  (5.a)
Re (1.56+ log, De)”
f =0.3040Re*®+ 0.02¢0  (turbulent flow) (5.b)

valid for 510™*< J< 0.2.
Although dated,
confirmed to an

experimental work of Cioncolini & Santini [9] in broad
range of curvatures (0.02¢<0.143) and Reynolds numbers
(Re=10°-7010%. For relatively high values of the curvature
(0.0416&0<0.143), the friction coefficient decreases
monotonically with Re and transition to turbulende
indicated by a change in slope of th&e curve. Therefore,
for sufficiently high curvatures, an indicative wal of the
critical Reynolds number for transition to turbutencan be
provided by the intersection of fully laminar andlly
turbulent asymptotic laws. An approximate correlativhich
expresses this criterion for the critical Reynaidsnber is:

Re, = 2100{ ¥ 18°%)

equations (5) have

(6)

which, for example, provides Re7811 for J=0.05,
Re,=10578 for 0.1 and Rg=17958 for &=0.3 (which,
however, is beyond its range of validity).

For lower curvaturesd0.0416), Cioncolini and Santini
[9] observed that, in the proximity of transitiothe f-Re

curves exhibited a local minimum followed by anlection
point and by a local maximum. Under such circuntstan
different transition criteria may be specified dme thasis of
some feature of thé curves, but may not coincide with the
actual onset of turbulence.

Also alternative transition correlations proposed Ito
[8], Srinivasanet al. [10] and other authors are based on
different interpretations of thi€Re) behaviour for differen,
but do not really capture the specific dynamics tbé
transition process. All the proposed criteria, hesve agree
that the effect of curvature is to increase,Réth respect to
straight pipes.

Few studies have investigated transition in curpgubs
by direct measurement of local flow quantities.edieasan &
Strykowski [11] obtained experimental results inlidadly
coiled pipes with a curvature rati0.058 and a negligible
torsion. Hot-wire velocity measurements were takéer 5
helix turns where the flow was fully developed, atick
Reynolds number range investigated varied from 4&90
6730. For Re=4200 the hot wires registered flanaigy
corresponding to a laminar stationary flow. For B@80, a
periodically oscillating behaviour was observedthe inner
region and a small-amplitude, high-frequency inigemt
oscillation in the outer region. For Re=5870, a petfectly
periodic behaviour was observed in the inner regamd a
substantial intermittent turbulent oscillation itet outer
region. For Re=6730, the behaviour was fully tugntilboth
in the inner and in the outer region. The outee sigpeared to
be the critical region for transition to a chaoliehaviour,
since both intermittency and high frequencies fappeared
there.

Webster & Humphrey [12] investigated flow in helica
coils by LDV for Re3800-10500 andd=5.510° For
Reynolds numbers between 5060 and 6330 (De=1190}148
the authors described a periodic flow characteribgda
dimensionless frequendy0.14 (normalized by the reference
frequency(,,/a). They attributed the origin of this periodic

flow to an instability of the outward-directed midpe jet.
Transition to turbulence proper was observed ordy f
Re=6330. In later work [13] the same authors perforriled
visualization by dye streaks for the same curvatans
Reynolds number range. On the basis of these nsultse
they identified the cause for flow periodicity int@velling-

recently been wave instability of the Dean vortices of the vasedype, i.e.,
impressive degree by the extensive one

in which the axis of each vortex ring remains
approximately a circumference, while the vortexeisity
varies periodically streamwise (as opposed tcsiRuous
instability, which would involve a periodic lateratcillation
of the vortex ring axes). For Re=5060, they estathe
wavelength to be (2c)/20 and the wave phase speed
(celerity) to belD.825(, ; these values changed little with Re.

Also the experimental results of Sreenivasan amgk@tvski
[11] for similar values of the curvaturé<5.810?) and of the
Reynolds number (R&000) are compatible with a travelling
wave solution located mainly the inner (Dean vortesgion
although the authors did not explicitly suggest s thi
interpretation (previous reports of travelling waMgenomena
deserve a special attention since the present papargely
devoted to the analysis of such structures).

1.3.Computational studies

Following two-dimensional perturbation studies [16}
which assumed the flow to be axially fully develdmnd thus
are of limited interest here, the first three-disienal



numerical simulations of incompressible turbuletdwf in
helical and curved pipes were presented by Friedaitd co-
workers [17]. They compared toroidal and helicgepiesults
for Re=5600 (Re=230) and &=0.1. Although the authors
performed a statistical processing of the compuati results
(e.g. by computing Reynolds stress distributionshim cross
section), the case they studied was not actuatlyutent, but
rather a time-dependent laminar flow, as indicabgdthe
experimental results obtained under similar coodgi by
Webster & Humphrey [13] and Sreenivasan & Strykawsk
[11] and by the results of the present study (selew). It
must also be observed that in the simulations bytl Hii
Friedrich [17] only a small portion of pipe, 7.5adieters
long, was modelled, using periodic boundary coadgiat the
ends; such simulations would be inadequate to gredi
travelling waves.

Also Webster & Humphrey [13] complemented their
experimental investigation by numerical simulations
performed by discretizing the Navier-Stokes equetiaritten
in the local toroidal reference frame, i.e. nediegtcoil
torsion. The length of the computational domain whesen
equal to the experimentally measured wavelengtls, tbrcing
the travelling wave to possesspriori prescribed features.
Under conditions in which experiments evidencethaetling
wave instability, the numerical results showed Itsaig
velocities with maximum rms values in the proximdf the
Dean vortices. Quantitative comparison with experita was
not possible due to the purely qualitative (flowstalization)
nature of these latter.

Travelling waves in a curved square duct were fouith
experimentally and numerically by Meegt al [18]. The
travelling wave mode developed from the statiorfagy-cell
flow typical of curved square ducts, and was chearaeed by
the oscillation of the outer vortices.

2MODELSAND METHODS

2.1.Computational domain, governing equations, boundary
and initial conditions

corresponding friction velocityd, = /fo/p, and thus the
friction Reynolds numbeRe, =0, a /v .

Ny !

Nog
i Nrap i Ny ;
(b)

Figure 1(a) shows a schematic representation of theFigure 1. (a) Toroidal pipe (computational domaim)tube

toroidal computational domain; the major radius|wike
indicated withc, the minor radius witta. The inner side will
be indicated with and the outer side wit®; here and in all
the subsequent figures showing cross sectionseopifie, the
O side will be on the right and tHeside on the left, and the
view will be along the flow direction, i.e. lookinfrom
upstream. The azimuthal angl will be measured in the
clockwise direction, witt&l)=—772, §0)=72.

The continuity and Navier-Stokes equations for a
constant-property fluid were solved in the Cartesia
orthogonal reference framé(j =(§<, ¥, 2) of figure 1. In

dimensional form:

Wy (7
0X,
G oul _ _10p, 0 04 Py ®)

of 0%, po%x 0% 0% p

Here,ps is a driving force per unit volume directed along
the axis of the pipe which balances frictional &sssso that
Ps1=—PsSING, Ps=PLOSO, ps3=0, @ being the azimuth around
the torus’ axisz, see figure 1. This is equivalent to imposing

the equilibrium mean shear stresg =(a/2)p,, Wwith

radius;c, coil radius. (), (O) denote inner and outer sidés;
is the azimuth in the cross-section, measured wlisekwith
&)=-12, §0)=172; @ is the angular displacement of the
cross section from the-z plane.(b) One fourth of the cross
section of the multi-block structured mesh. Thealtotumber
of cells in the whole cross sectiorNge=4NgNgt+ 2 Nrap).

Although the simulations were conducted in a Cates
orthogonal reference frame, for post-processing and

discussion purposes a cylindrical reference fra(rf;)e;@,z)
was used for the whole toru;?i5 being the normal distance

from the torus’ axig; the direction® of the main flow is also
indicated bys (for “streamwise”) in the figures. A local 2-D
polar reference fram(-:-r“,e) was also used in the plane of the

generic cross section, so that the secondary fhothis plane
may be alternatively represented by its componentsi,
along (f,4) or by its components,, u, along(fp, 2).

No slip conditions were imposed at the wall. Zero
velocity initial conditions were set for most ofetmumerical
simulations; instabilities, if any, were triggerdsy small
numerical fluctuations due to truncation and roofiderrors.

A few cases were restarted from a solution obtaifoeda
higher Reynolds number, as discussed in Section 5.



2.2.Scales

Although the friction velocityi, =./(a/2) p,/p is thea-
priori known quantity, the average velociy, was chosen as

a more natural velocity scale. The correspondimgjfency
scale is:

Re _v
-_— G_

a 2 &

(9)

proportional, by the factor Re/2, to the molecutaymentum
diffusion frequency/a®. The time scale follows a§ =1/ f,.

The “natural” scale for angular velocity i& =2nfo. The
wall shear stress was scaled b, .

All coordinates were scaled by the cross sectidiusa;
thus, the non-dimensional local radial coordinateasured
from the centre of the cross sectionrisf /a while the non-
dimensional distance from the torus’ axis r,= fp/a .

2.3.Numerical method and computational mesh

The computational method was based on a finiteraelu
coupled algebraic multigrid solver, and adopted ¢katral
interpolation scheme for the advection terms amskeond-
order backward Euler time stepping algorithm. The
computational domain was partitioned into equaithed
blocks which were assigned to different procesgeggrally
running in parallel on 16 cores.

The mesh was multi-block structured, and was
characterized by the parametéMg,p and Ny as shown in
figure 1(b). The values used in the present workewe
Nrap=46, N=24; grid refinement was applied near the wall,
with a maximum/minimum cell size ratio @b in the radial
direction. With these choices, the cross sectios waolved
by 11136 cells. In the streamwise direction the dionwas
discretized byNax =1024 cells foro=0.1 andNxx=300 cells
for 5=0.3; this led to an overall number of cells of 4x10°
for =0.1 and 3.3410° for 5=0.3. The surface mesh for the
cased=0.3 is visible in figure 1(a).

The time step was set equal to ®/8¢) for all cases; this
time discretization was judged adequate to captime
dynamic features of the time-dependent flows onctvhhis
study is focussed. For the present streamwise il choice
led to a Courant number slightly less than 1.

3FLOW REGIME TRANSITIONS

A systematic investigation was carried out for each
curvature by letting the friction Reynolds numbee, Rary
from 232 to 519 §0.3) or from 164 to 4760E0.1). The
corresponding bulk Reynolds number varied betwegh54
and 13180 foid=0.3 and between 3490 and 14700 de0.1.
For both curvatures, steady state flow was predidiar
Re<Re. and time dependent flow for Re>Rdre being a
critical Reynolds number which was estimated to-#875 for
&=0.3 and ~5175 for=0.1. However, the transition scenario
was different for the two curvatures as discussddvia

For the higher curvaturé=0.3, a full sequence of flow
regimes from stationary (S) to periodic (P), quaeiodic
(QP) and chaotic (C) flow was observed, similar that
reported for Taylor-Couette flow between concertsiinders
[19] and coherent with the classic Ruelle-Takensteoto
turbulence. This is illustrated in figure 2(a) gporting the

root mean square valug™® of the oscillatory component of
the streamwise velocity in a point of a genericssrgection
located atr=0.8, &=-774 (i.e., within the upper Dean vortex)
against the difference between the Reynolds nurRgeand
the critical Reynolds number ReThe results suggest the
existence of a supercritical Hopf bifurcation fretationary to
periodic flow at Re=Rg(point H in the figure), followed by a
secondary Hopf bifurcation from periodic to quasiipdic
flow at Re=Re+500 (Re5075, point H2 in the figure).
Symbols denote computational predictions; differehapes
are used for S, P and QP solutions. Both the HthadH2
transitions were of the “soft” type, i.e., a gendlow quantity
like u™ varied continuously as Re crossed the relevant
bifurcation value. As discussed in detail in Sewi®.1 and
5.2, the transition from S to P flow was accompdry a
breaking of the instantaneous symmetry with respedhe
torus midplane; the ensuing anti-symmetry was pveskalso

in the QP flow regime. Transition to turbulencet(itlastrated

in figure 2(a) for scale reasons) occurred onlyRet8000
(~Re+3500).
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0.008 - —o— Periodic |
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0.006 -
g
3
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—
0 +— e ‘ . . ‘ .
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Re - Re,
(a)
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Figure 2. Bifurcation diagrams fa#=0.3 (a) andd=0.1 (b).
The abscissa is the difference between the Reymuldsher
Re and the Reynolds number Ré the Hopf bifurcation; the
ordinate is the rms value of the oscillatory comgmnof the
streamwise velocity in a generic cross section 1fe0.8,
é=—r74. H=Hopf bifurcation; H2=secondary Hopf bifureati
solid lines: stable branches; broken lines: unsthbhnches.

For the lower curvaturé=0.1, a more complex sequence
of flow regimes was observed. This is illustratedfigure
2(b), which reports the same quantity’™ as in figure 2(a). In
simulations starting either from zero velocity aorh the



immediately lowest-Re solution, an abrupt (“hartfgnsition 4 STATIONARY FLOW

from S to QP flow occurred when the Reynolds number

exceeded Re5175. The QP regime was maintained up to a Stationary flow was obtained for Re=4515 and 4556
Reynolds number of ~8000 as fof=0.3. However, (J=0.3) and for Re=3490, 4108, 4600 and 513€(1). The
simulations conducted by starting from a QP casd an two test cases D3-S0.3, Re=4556) and D1-S&O0.1,
reducing the Reynolds numbeelowRe, led to a QP solution ~ Re=5139) were chosen as representative. The coneésy

for Re=4920 (ReRe~-255) and to P solutions for Re=4600, values of Rg De and other global quantities are reported in
4108 and 3800 (R&Re=-575-1067 and -1375, table 1. The higher values of the friction coe#iuif obtained
respectively). Only a further reduction to Re=3490 for D3-S with respect to D1-S are justified by tiigher Dean
(Re-Re~-1685) led to steady-state flow. Thus, the results humber, and thus by the more intense secondarylaiion
exhibitedhysteresissome solutions could be obtained only by associated with higher curvatures. Note that, sstaonary
approaching them backward from higher-Reynolds remb ~ solutions are strictly two-dimensional, a fully dlr
and in a certain range of Re multiple solutionsR®+ even dimensional simulation would not have been necgssar
S—-QP) were obtained for the same Reynolds numberthese cases, but this can be stated amgsteriori

depending on the path followed. Interestingly, kmlicase Selected results for these two cases are repartéguire
3=0.3, all the P and QP solutions exhibited instamtas  3- Graphs & ¢) in the left column report contours of the
symmetry with respect to the torus midplane. THarbation streamwise velocityi, Graphs I, d) in the right column
diagram sketched in figure 2(b) is compatible wath the re_port vector plots of the secondary m_otlon inrthep half,
results obtained. It includes a subcritical Hogtitwation (H) with the reference vector corresponding dig,drawn, and

at Re=Rg (~5175), an unstable periodic branch, a turning corresponding streamlines in the bottom half. Thlet®n is
point between Re8500 and Re4000, a stable periodic always symmetric with respect to the equatorialpiside of
branch and a secondary Hopf bifurcation (H2) at42€0. To the torus.
the best of the authors’ knowledge, a comparalaesttion
scenario has not been reported previously in thealure for
other flows. Transition to turbulence is not ilkaed in figure
2(b) for scale reasons.

Table 1 summarizes the eight selected test cases
presented in detail in this paper. They cover @ talues of
the curvature=0.3 andd=0.1, denoted by D3 and D1, and all
four different regimes S, P, QP and C. Both Reysold
numbers Re and Rare provided in Table 1 along with the
Dean number De. The friction factor can be compued
f=32(Re/ReYf and its values predicted by Ito’s resistance
correlations (4) are also reported for comparisorppses;
however, it should be observed that neither of gous (4) is
strictly applicable to the cases widh0.3.

Table 1 Main test cases simulated. Flow regimesnalieated
by S (stationary), P (periodic), QP (quasi-peripd@

(chaotic).
Case D1-S D1-P D1-QP Di1-C
o 0.1 0.1 0.1 0.1
Re, 217 184 232 305
Re 5139 4108 5658 8160 Figure3. Dimensionless solutions for the stationary c&sgs
D‘? 1625 1299 1789 2561 g (top row) and D1-S (bottom row)a)( (c) contours of the
Regime S P QP c streamwise velocity; b)), (d) secondary flow vector plot
f(x109) 5718 6400 5391 4484 oterence vector drawn besides) in the upper laaid
f(x10%) lam, eq.(5a) 5627 6.331 5352 4445 gyeamlines in the lower half of the section.
f(x10°) turb, eq.(5b) n.a. n.a. n.a. 4.117
" attained only by letting Re decrease from caseJP1- Figure 3 shows that the streamwise velocity maxinisim
shifted towards the oute©Of wall and that a roughly linear
Case D3-S D3-p D3-QP D3-C st.ratif!cation_ of. the streamvyise velocity along theD
5 0.3 0.3 03 03 Q|rectlon exists in the core region. The shapeemelnt of the
Re 234 047 290 361 m_ner—wall vortices is typical of h|gh—De flow ansl coherent
4 with computational results obtained by other awthdm each
Re 4556 4899 6128 8160 of the twin vortices the streamlines are windingl atrongly
De 2495 2132 3356 4475 asymmetric with respect to the vertical midlinetloé section
Regime S P QP € and exhibit two separate maxima, i.e. two closedutation
f(x10) 8.449 8.119 7190 6.256 regions; by contrast, in low-De flows the streamdinare
f(x10%) lam, eq.(5a) 7825 7546 6.756 5879 Zimpost elliptic in shape and are roughly symmetsith
f(x107) turb, eq.(5.b) n.a. n.a. na.  4.786 respect to the vertical midline of the cross secfz0]. Only

small differences exist between the two curvatures.



5UNSTEADY LAMINAR FLOW

5.1Case D3-P §=0.3, Re=4899)

For 5=0.3 periodic flow was obtained for Reynolds
numbers of 4605, 4660, 4768, 4899 and 5042. Irncpdat,
detailed results will be illustrated for case D3(8=0.3,
Re=4899).

Figure 46) reports time samples of the streamwise
velocity fluctuationsus—us) at two arbitrary points of the
cross section, located one in the upper secondiany f
boundary layer and one in the upper Dean vorteionegver
a dimensionless time interval of 30 starting fromaabitrary
instant. The periodicity is clearly visible at boltbcations;
oscillations are smallD.6%) in the Dean vortex region and
even smaller({D.03%) in the secondary flow boundary layer
region. Frequency spectra of the same two quasititeken
over a dimensionless time interval of ~140, areorea in
figure 4@). The signals relative to both monitoring location
exhibit a sharp peak at a dimensionless frequérwe.238;
harmonics af=2f ' and 3' are present in the Dean vortex
region but negligible in the secondary flow bourydayer.
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b

Figure4. Test case D3-P (Re=48980.3): @) behaviour of

the streamwise velocity fluctuations at two poiotshe cross

section, located in the Dean vortex region and lie t

secondary flow boundary, respectivelyy) (corresponding
velocity power spectra (arbitrary units).

The spatial structure of the flow oscillations ione
clearly visible in figure 5, which reports the iastaneous
distribution of the vertical velocity component on the
equatorial midplane. This distribution exhibis8 cells and
rotates rigidly along the torus as a travelling wawith a
linear celerity (evaluated at the mean radiyef ~0.623j, .

Note that this is less than the mean fluid velqcity that the
wave lags behind the fluid over most of the torbisdume.

u;
0.005
0.004
0.003
0.002
0.001
0.000
-0.001
-0.002
-0.003
-0.004

-0.005

Figure5. Test case D3-P (Re=4898=0.3): instantaneous
distribution of the vertical velocityu, on the equatorial
midplane. Directions and angular celerities of treevelling
wave are indicated.

All the periodic cases simulated for0.3 (ranging from
Re=4605 through Re=5042) exhibited the same wagtien
number K=8. Also the dimensionless modal frequency
remained about constant (~0.238) in this range.

5.2Case D3-QP ¢=0.3, Re=6128)

For &=0.3 quasi-periodic flow was obtained for Reynolds
numbers of 5270, 5562, 5819, 6128, 6594, 7142 &50.71n
particular, detailed results will be illustratedfigures 6-8 for
case D3-QP&0.3, Re=6128).

Figure 66) reports time samples of the streamwise
velocity fluctuationaus-(us) at two arbitrary points of the cross
section, located in the upper secondary flow boonéyer
and in the upper Dean vortex region, over a dintetess
time interval of 30 starting from an arbitrary i@st. The
oscillatory non-periodic unsteadiness is clearlysible.
Frequency spectra of the same two quantities, takem a
dimensionless time interval of ~220, are reportedigure
6(b). The signals relative to both monitoring locataxhibit
sharp peaks at dimensionless frequencie§0o400 ') and
[0.165 ¢ "), while secondary harmonics are very small.
Within the present frequency resolution limits=1/4t=0.005,
the two values 0.165 and 0.400 are totally unrdlated thus
must be regarded as two incommensurate frequencies
characterizing a quasi-periodic flow. Spectra coragufor
different points of the flow field and differenfl quantities
exhibited, in all cases, only the independent fezmgiesf ', "
and their first few harmonics.
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Figure 6. Test case D3-QP (Re=61280.3): @) behaviour
of the streamwise velocity fluctuations at two psif the
cross section, located in the Dean vortex regioth ianthe

secondary flow boundary, respectivelyy) (corresponding

velocity power spectra (arbitrary units).

The modal filtersG' and G" sketched in Figure 7 were
now used to split the spectral components of thew fl

associated with mode | and mode I, respectively.
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Figure7. Test case D3-QP (Re=6128:0.3): filter functions
G' andG" used to separate modes | and II.

The spatial structure of mode | is visible in figus@),
which reports the instantaneous distribution of Heetical

velocity componenti, on the equatorial midplane, where the
contribution of mode Il is small. This distributioexhibits
K'=7 cells and rotates rigidly (or, more exactly,gtge mode |
component rotates rigidly) along the torus as eeltimg wave
with a linear celerity of ~1.19 . This is close to the mean

fluid velocity so that the wave leads the fluid timee inner
(slow moving) region while it lags behind it in theter (fast
moving) region. It should be observed that the &mental
frequency f ' (~0.400) is much larger than the periodic
frequencyf ' of case D3-P (~0.238); therefore, the transition
from periodic to quasi-periodic flow, with the appance of
the second fundamental frequericy, is accompanied by a
strong increase of the fundamental frequency astaatiwith
the varicose modulation of the Dean vortex ringac8ithe
number of wavelengths along the torus changesfomty 8 to

7, this increase ifi is mainly due to the increase of the linear
wave celerity from 0.623 to 1.19 .

Figure8. Test case D3-QP (Re=6128/=0.3): @)
instantaneous distribution of the vertical velocityon the
equatorial midplane;bj instantaneous distribution of the wall
shear stress on the torus’ surface. Directions amgular
celerities of travelling waves | and Il are indiedt

In the generic cross section, the second mode (rtipde
manifests itself in the form of a pair of vortexesis which
occupy the secondary flow boundary layers and namanst
the mean secondary flow, from theide towards th® side.



For this curvature not only mode I, but also mddand
therefore the whole time-dependent part of the ffmhd) is
anti-symmetric with respect to the equatorial méa@ of the
torus. The spatial structure of mode Il fluctuasios shown in
figure 8(), which reports the instantaneous distributiothef
wall shear stress module on the surface of thedakipe,
where the contribution of mode-I oscillations isadimFor the
present curvature, the distribution exhibit$=18 cells and
rotates rigidly (or rather, its pure mode |l componrotates
rigidly) along the torus as a travelling wave havia linear
celerity of ~0.1i_ , much less than the mean fluid velocity

and than the linear celerity of mode-I wave.

Summarizing, the unsteady flow exhibited by testeca
D3-QP can be described as the superposition of two
independent systems of travelling waves. Each systmsists
of a spatially periodick-cell pattern (mode) which rotates
rigidly around the torus in the same directiontesrhean flow
with its own characteristic celerity. Conventiogallwe
denoted by ‘mode I' that mainly concentrated in thean
vortex region; this mode is the less energetic haf two,
consists of a varicose modulation of the Dean woriegs,
and manifests itself in the cross section as aafildsmotion
of the Dean vortices. The second mode, conventional
denoted as ‘mode II', is mainly concentrated in $keondary
flow boundary layers and is the more energeticheftivo. In
space, it consists of two arrays of oblique vodice-rotating
with the Dean ones; in the cross section, it matsféself as a
pair of vortex trails generated at the edge ofllkan vortices
and moving upstream with respect to the mean secgnd
flow, from thel to theO side. The whole fluctuating flow field
is instantaneously anti-symmetric with respect toe t
equatorial midplane of the torus.

In the quasi-periodic range examined (Re=5270-7 &%)
mode-| wavelength numbét decreased from 8 (Re=5270) to
7 (Re=5562 and larger), while the dimensionless a¥iod
frequencyf ' increased from 0.275 to 0.400. The mode-II
wavelength numbek" increased from 10 (Re=5270) to 18
(Re=6128 and larger); the dimensionless mode-tjufemcyf"
increased from 0.035 (Re=5270) to 0.165 (Re=6188)then
decreased slightly for larger Reynolds numbers.

5.3Case D1-QP &0.1, Re=5658)

As anticipated in Section 3, fax0.1 an abrupt transition
from steady-state to quasi-periodic flow was obsdrvin
simulations starting from zero-velocity conditioas from a
lower-Re solution, as soon as the friction Reynaldsber
exceeded a value of ~218, corresponding to a beln&ds
number of ~5175. QP solutions were thus computed fo
Re=5208, 5236, 5400, 5658 and 6280. Detailed weuiilltbe
presented here for the test case D1-QP, charaateris
0=0.1, Re=5658.

Figure 96) reports time samples of the streamwise
velocity fluctuationaus(us) at two arbitrary points of the cross
section, located in a secondary flow boundary layet in a
Dean vortex region, over a dimensionless time vateof 30
starting from an arbitrary instant. An oscillatargn-periodic
unsteadiness is clearly visible. Frequency spegfttae same
two quantities, taken over a much longer dimensismltime
interval of ~130, are reported in figureb®( The signal
relative to the boundary layer region exhibits arptpeak at a
dimensionless fundamental frequency®20 ¢") and less
marked peaks at the harmonic frequenciés'=P.40 and
3f "=0.60. Shallow peaks are also present at the freguen
f'=0.27 and its harmonics 20.54 and 8'=0.81. The signal

relative to the Dean vortex region exhibits itshagt peak at
the frequencyf '=0.27, with very shallow secondary peaks at
the harmonic frequencies 20.54, 3 '=0.81; peaks are also
present at the frequenéy and its first harmonicf2'. Within
the present frequency resolution limis=1/At=0.007, the two
values 0.20 and 0.27 are totally unrelated and nest
regarded as two incommensurate frequencies chaziotea
quasi-periodic flow. Spectra for different pointéthe flow
field and different flow quantities exhibited, ifi aases, only
the two independent frequencié$, f" and their first few
harmonics.
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Figure9. Test case D1-QP (Re=565850.1): @) behaviour
of the streamwise velocity fluctuations at two psif the
cross section, located in the Dean vortex regioth ianthe
secondary flow boundary, respectivelyp) (corresponding
velocity power spectra (arbitrary units).

A modal filter similar to that shown in figure 7 wased
also in this case to separate mode | and modehB. spatial
structure of mode | is visible in figure E)( which reports the
instantaneous distribution in the equatorial midplaof the
secondary flow velocity component, directed along the
toroidal radiusfp. Here, the influence of mode Il is minor and

manifests itself only as a slight departure fromaax
streamwise periodicity of the pattern shown. Thgribution
exhibits k=16 identical cells; the whole structure (or, more
exactly, its pure mode | component) rotates rigialigng the
torus as a travelling wave having a linear celesfty1.05].

Since this is close to the mean fluid velocity, thave leads



the fluid in the inner region and lags behind ittie outer
region. The above values &f and of the linear celerity are
compatible with those reported by Webster & HumpHhies]
for the lower curvaturé=5.5107

The spatial structure of mode Il is shown in figa@b),
which reports the instantaneous distribution of wadl shear
stress module on the surface of the toroidal pigeere the
influence of mode | is marginal. This distributi@xhibits
K'=36 cells; the whole structure (or, more exactty, pure
mode-Il component) rotates rigidly along the tomgh a
linear celerity of ~0.38_,, much less than the mean fluid

velocity and than the linear celerity of mode-I wav

1.6E-03
1.2E-03
8.0E-04
~ 4.0E-04
|~ 0.0E+00

-4.0E-04
-8.0E-04
-1.2E-03
-1.6E-03

Figurel0. Test case D1-QP

(Re=56585=0.1):
instantaneous distribution of the velocity compdradang the
torus’ radiusuy, in the equatorial midplaneb)(instantaneous
distribution of the wall shear stress moduajeon the torus’
surface. Directions and angular celerities of tHag waves |

and Il are indicated.

@

Summarizing, the unsteady flow exhibited by testeca
D1-QP can be described, as
superposition of two independent systems of tringellvaves;
unlike in case D3-QP, the fluctuating flow field
instantaneously symmetric with respect to the emyisdt
midplane of the torus.

All the quasi-periodic cases simulated for the same
curvatured=0.1, ranging from Re=5208 to 6280, exhibited the

is

in case D3-QP, as the

same modes and the same number of wavelengthsafbr e
mode k'=16, k"=36). The modal frequenciés andf" varied
only negligibly with Re with respect to the valugstained for
the reference case D1-QP (0.27 and 0.20, respbgtive

A further QP case was obtained by starting from the
solution for case D1-QP (Re=5658) and letting tlegri®lds
number decrease to ~4920, well below the criticayri®lds
number of ~5175 for transition to unsteady flow.isThase,
unattainable “from below” (i.e., by letting Re iease starting
from still fluid or from any lower-Re solution), bibited the
same general features of other quasi-periodic ¢cduats a
reduced number of wavelength&'=(12) and a larger
dimensionless frequenc§/'€0.36) for mode |, while, for mode
I, k" andf" were still 36 and 0.20 as in the other QP cases
computed fordo=0.1.

As anticipated in Section 3, using the D1-QP sohuti
(Re=232, Re=5658) as initial condition and imposingdo
friction Reynolds numbers Rgielded periodic flow (D1-P) at
Re=4600, 4108 and 3800 (RRe=-575 -1067 and-1375,
respectively), well below the critical Reynolds rhen of
~5175 for transition to unsteady flow.

6 CHAOTIC FLOW

The highest Reynolds numbers for which clearly guas
periodic solutions were obtained were 7888(Q(3) and 6280
(6=0.1). For the higher curvaturé«0.3), a moderate increase
of Re to 8160 was sufficient to yield a clearly ati@ solution.
For =0.1, Reynolds numbers in the rarngg00-8000 gave
rise to long and erratic transients while clearlgaatic
solutions were obtained only for ReB000. For both
curvatures, results will be presented for a Reysmaoldmber of
8160 (cases D3-C and D1-C).

6.1 CaseD3-C (0=0.3, Re=8160)

For this case, figure 14) reports time samples of the
streamwise velocity fluctuations-(us) at two arbitrary points
of the cross section, located in the secondary fhowndary
layer and in the Dean vortex region. Frequency tspexf the
two velocities, taken over a time interval of ~2@€¢ reported
in figure 116). For both locations, spectra exhibit an almost
continuous distribution of frequencies, charactierisf highly
chaotic flow. Although some peaks stand out on kihead-
band background, there is no clear residual of riualal
frequenciesf('=0.4, f "=0.165) observed in the corresponding
quasi-periodic case D3-QP. Similar broad-band speate
obtained for different points of the flow field ardifferent
flow quantities.

For this case, the numerical simulation conductedisg
from zero velocity conditions initially yielded aigsi-periodic
flow, similar to that predicted for lower Reynoldsimbers.
However, at a certain instant an instability of theer region
manifested itself in the form of irregular vorticetich were
rapidly swept by the cross flow into the secondamyndary
layers, where they destroyed the regular vortextepat
characteristic of QP flows. Subsequently, the utagties
propagated to the Dean vortex regions until a ébdtaw
condition was attained in the whole cross sectibhese
results support the hypothesis that, for this higinvature
(6=0.3), the centrifugal instability of the main floim the
outer region appears to be the mechanism causintpdls of
stability of the quasi-periodic solution prevailirag lower
Reynolds numbers [1].
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Figurell. Test case D3-C (Re=816850.3): @) behaviour
of the streamwise velocity fluctuations at two peif the
cross section, located in the Dean vortex regioth ianthe
secondary flow boundary, respectivelyy) (corresponding
velocity power spectra (arbitrary units).

The time-averaged secondary flow in the cross @eds
not illustrated here since, once made dimensiontgsshe
average streamwise velocity, it is almost indistisgable
from that obtained for stationary flow, e.g. casg-® This
shows that flow unsteadiness, either of regularcloaotic
nature, does not significantly affect the time-méaw: for a
given curvature, as the Reynolds number incredbespDean
circulation attains rather early (well within theatsonary
range) an asymptotic shape and a dimensionlesssityte
which are little affected (in the average) by thésequent
transitions to unsteady and chaotic behaviour.

A map of the root mean square values of the velocit
fluctuations along the streamwise direction forec&3-C is
reported in figure 12(a). The outer region hasgh hével of
fluctuations and is the most unsteady. Fluctuationghis
region were almost completely absent in the quasbgic
case D3-QP, and thus appear to be purely chaotic.

A further increase of Re does not change the dvidoal
structure: figure 12(b) reports the rms streamulisetuation
for Re=13180, and exhibits no relevant differendh wespect
to case D3-C in the distribution and dimensionlatansity of
turbulence.

Figurel2. Streamwise root mean square velocity fluctuatio
for chaotic flow and>=0.3. (a) Re=8160; (b) Re=13180.

6.2CaseD1-C (6=0.1, Re=8160)

For this case, figure 18) reports time samples of the
streamwise velocity fluctuationg-(us) at two arbitrary points
of the cross section, located in the secondary fhowndary
layer and in the Dean vortex region. The time sdridigures
9(a) (case D1-QP) and 13(a) do not show any obvious
differences; however, the corresponding power speate
completely different, see parts (b) of these figure
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Figurel3. Test case D1-C (Re=816850.1): @) behaviour
of the streamwise velocity fluctuations at two peif the
cross section, located in the Dean vortex regioth ianthe
secondary flow boundary, respectivelyy) (corresponding
velocity power spectra (arbitrary units).



For case D1-C, figure 13(b), the spectra for both
monitoring points, taken over a dimensionless tinterval of
~200, exhibit a large number of peaks occurring at
incommensurate frequencies, which is a clear inidicaof
chaotic flow. In the spectrum relative to the Deantex, but
not in that relative to the boundary layer regithe spectral
peak corresponding to the frequerfcy0.27 of the mode-I
travelling wave (varicose instability of the Deaortex ring)
is still recognizable. The cluster of frequencibserved in the
spectra relative to both monitoring points in theeival[(D.1-
0.2 replaces the single frequerfd=0.2 of mode Il (oblique
vortex trail in the boundary layer region) and esponds to a
slow, non-sinusoidal, amplitude modulation of thede:-Il
vortices. Spectra obtained for different pointstaf flow field
and different flow quantities exhibit the same @lechaotic
behaviour.The time-averaged secondary flow in thess
section is very similar (once made dimensionless thy
average streamwise velocity) to the secondary flogdicted
for the stationary case D1-S and is not illustrédtece.

A map of the root mean square velocity fluctuatdong
the streamwise direction for case D1-C is repoitefigure
14(a). Of course, fluctuations include all the dpsc
components, i.e. both chaotic fluctuations propet what is
left of the low-frequency, quasi-periodic osciltats. Figure
14(a) shows that high values of the streamwisefhiton are
attained both in the Dean vortex regions and inséeondary
flow boundary layers fo@=0 or 77 while the outer region is
basically stationary despite the overall chaotiturea of the
solution. This suggests that the centrifugal ingtgbof the
main flow in this region has not yet manifestectlitat the
present Reynolds number of 8160.

Figurel4. Streamwise root mean square velocity fluctuatio
for chaotic flow and>=0.1. (a) Re=8160; (b) Re=14700.

A different picture is obtained if the Reynolds rhgnis
further increased: figure 14(b) reports the rmeatwise
fluctuation for a higher Re (14700), well into thebulent
range. In this case, fluctuations attain high valoet only in
the regions mentioned for the lower-Re case, ad akar the
outer wall, which shows that the centrifugal indtgbof the
main flow in this region has occurred at some Ré&go
number intermediate between 8160 and 14700. Sihee t
spatial resolution criteria for the DNS of turbutenare not
fully satisfied by the computational mesh for tlatter value
of Re, the corresponding case will not be analyisedetail
here and is reported only for the purpose of commparwith
the early-chaotic case D1-C.

7FLOW REGIME MAP

On the basis of the simulations reported aboveesilts
from the literature, and of asymptotic argumentseratative
flow regime map in the Ré-plane can be sketched as in

figure 15. This takes into account the presentlie$or 5=0.3
and 0.1, the (qualitative) experimental findingsSoéenivasan
& Strykowki [11] for =0.058, and the experimental results of
Webster & Humphrey [13] fod=0.055. Here we assumed that
the oscillatory flow regimes described by the abauthors as
periodic are actually instances of quasi-periodiowf
Moreover, the map takes account of the fact that,JE0
(straight pipe), a direct transition from stationdaminar to
turbulent (chaotic) flow occurs.

The solid lines in figure 15 denote transitions for
increasing Re, while the broken lines correspontamsitions
for decreasing Re. The regions indicated as P-BW @R-
BW are attainable only by letting the Reynolds nemb
decrease from initial conditions corresponding taigher-Re
solution.

OsS OP ©QP AC wmSBW ®PBW & QPBW
10000 _
Eq. (6) chaotic 1
8000
6000
o .
&2 i oo
4000/ e
2000
0 |
0 0.1 0.2 0.3 0.4
o

Figurel5. Flow regime map in the R&plane. Symbols:
computational or experimental results classified &s
(stationary), P (periodic), QP (quasi-periodic)®ichaotic).
S-BW, P-BW and QP-BW denote S, P or QP solutions
obtained by letting Re decrease. Solid lines: ttams for
increasing Re; broken lines: transitions for desirgp Re.
Bifurcation diagrams corresponding to differenemgls ofo
are drawn in the lower part of the figure. The dthoegion is
only hypothetical.

Schematic bifurcation diagrams corresponding to
different intervals ofd are drawn in the lower part of the
figure; in the regions close t¢=0.3 and &=0.1 they are
qualitatively identical to those reported in figsir8(a) and
3(b), respectively. H denotes a Hopf bifurcatioronir
stationary to periodic flow while H2 denotes a setary
Hopf bifurcation from periodic to quasi-periodicoW. The
details of the flow regime map in the region of\atures
intermediate between 0.1 and 0.3 are purely hypictieas
suggested by the shaded area. Moreover, a comggime
map would exhibit a finely serrated shape of thangition
curves in correspondence with the discrete junthémumber
of wavelengths of either mode | or mode ll@and Re vary,
much as in the spiral Poiseuille flow study by At al [21],
see e.g. figure 3 therein.

The transition criterion expressed by equationiglso
reported in figure 15. For any curvature, it préslia
transitional Reynolds number far larger than thedoaiated
with transition to chaotic flow on the basis of firesent work
and of the existing literature. This suggests tinahsition



correlations like (4) or (6) identify not the onsétturbulence,
but rather the attainment of turbulence levelsisieffitly high
for pressure drop to be dominated by turbulencectdf In
fact, in configurations characterized by the preserof
secondary flow, pressure drop is largely caused by
recirculation and may be significantly higher thanparallel
flow also under stationary laminar conditions; #mpearance
of unsteadiness, and even of turbulence, resulemiadded
frictional term which increases gradually with tReynolds
number and, in low turbulence flows, may repregest a
minor contribution to the overall pressure drop.

NOMENCLATURE

a pipe radius [m]
c torus radius [m]
De Dean numberRed

f Darcy-Weisbach friction coefficient

f dimensionless frequency, / f,

f, frequency scaleli,, / a [sY
k number of wavelengths in the torus

P pressure [NA]
Ps driving force per unit volume [N
dimensionlessadial polar coordinaté / a

f radial polar coordinate in cross section [m]
Mo dimensionless distance from torus a§<pisl,a

fp distance from torus axis [m]
Re bulk Reynolds numbed, 2a/v

Re, friction Reynolds numbeun,a/v

i, time scalea/(,, [s]
a,, average streamwise velocity [Mis
aj velocity components [Ms
oo scale of secondary velocity [MB
a, equilibrium friction velocity, /7, / p [ms™]
X% 9,2 Cartesian coordinates [m]
Greek symbols

1) curvaturea/c

At time interval [s]
g azimuthal polar coordinate in cross section [rads]
e azimuthal angle around torus axis [rads]
v kinematic viscosity [fs ]

) density [kg ™Y
f, equilibrium mean shear strega/ 2) p, INm™]
é angular velocity scalezsrf, [rads §']
Subscripts, superscripts, aver ages

cr critical value for transition

I,0 inner and outer sides of the pipe cross section
RAD, SEC§ grid-related subscripts, see figure 1.b

r along cross section radius

rp along torus radius

rms root mean square value of a fluctuation

S component along pipe axis

I, 1l modes of oscillatory flow

0 equilibrium

A dimensional quantity
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