

X CONGRESSO NAZIONALE DI CHIMICA SUPRAMOLECOLARE

Perugia 25-28 settembre 2011

PROCEEDINGS

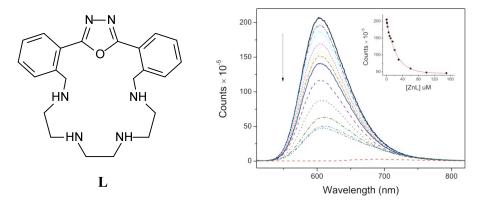
Università degli Studi di Perugia

Dipartimento di Chimica

Società Chimica Italiana Università degli Studi di Perugia

X CONGRESSO NAZIONALE DI CHIMICA SUPRAMOLECOLARE

Proceedings


Perugia, 25-28 settembre 2011

DNA binding and biological activity of Cu(II) and Zn(II) complexes of a 2,5-diphenyl[1,3,4]oxadiazole macrocycle ligand.

Gianluca Ambrosi,^a Giampaolo Barone,^b <u>Elisa Borgogelli</u>,^a Mirco Fanelli,^c Mauro Formica,^a Vieri Fusi,^{a,*} Luca Giorgi,^a Mauro Micheloni,^{a,*} Roberto Pontellini,^a Alessio Terenzi,^b Vincenzo Turco^b and Maria Antonietta Varrese^a

^aDepartment of Base Sciences and Fundamentals, Chemistry Section, University of Urbino, P.zza Rinascimento 6, I-61029 Urbino, Italy; ^bDepartment of Chemistry "S. Cannizzaro" University of Palermo, via delle Scienze, Parco d'Orleans II, I-90128 Palermo, Italy; ^cDepartment of Biomolecular Sciences, Molecular Patology Lab., University of Urbino, via Arco d'Augusto 2, I-61032 Fano, Italy. Email: <u>e.borgogelli@campus.uniurb.it</u>

The interaction of native DNA with $[CuL(ClO_4)]ClO_4 \cdot H_2O$ and $[ZnLBr]Br \cdot H_2O$ complexes^[1] in aqueous solution at neutral pH, was investigated by variable-temperature UV-vis absorption, circular dichroism and fluorescence spectroscopy. The values of the DNA-binding constants of these complexes, determined by competitive binding spectrofluorimetric titrations of ethidium bromide (EB)-DNA solutions, are $(6.7 \pm 0.5) \times 10^6 \text{ M}^{-1}$ for $[CuL]^{2+}$ and $(4.7 \pm 0.5) \times 10^5 \text{ M}^{-1}$ for $[ZnL]^{2+}$. These data together with a throughout analysis of the spectroscopic behaviour consistently suggest that both compounds are strong DNA binders, being DNA-intercalation the main interaction mechanism.

Figure 1. (a) Representation of the ligand L; (b) Effect of addition of [ZnLBr]Br to EB–DNA complex fluorescence. ($\lambda_{ex} = 500 \text{ nm}$, [DNA_{phosphate}]=30 μ M; [EB]=10 μ M, [ZnL]/[DNA_{phosphate}]=0.00-5.00. The intensity at 600 nm as a function of [ZnL]²⁺ is reported in the inset.

The DNA-binding strength of both complexes has been found to be correlated to their *in vitro* cytotoxic activity toward mammalian carcinoma cells. In fact, flow cytometric assays showed that, when the compounds are delivered through the cell membrane within their intracellular environment by a lipidic carrier, cell survival is sensibly reduced, of 40% with $[CuL(ClO_4)]ClO_4 \cdot H_2O$ and of 24% with $[ZnLBr]Br \cdot H_2O$.

1. (a) G. Ambrosi, M. Formica, V. Fusi, L. Giorgi, E. Macedi, M. Micheloni, G. Piersanti, R. Pontellini, *Org. Biomol. Chem* **2010**, 8, 1471-1478; (b) G. Ambrosi, M. Formica, V. Fusi, L. Giorgi, E. Macedi, M. Micheloni, P. Paoli, R. Pontellini, P. Rossi, *Inorganic Chemistry* **2010**, 49, 9940-9948.