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ABSTRACT 

Lesser kestrel is a facultative colonial raptor mostly breeding in man-made structures. During 2009-

2011 we checked the fate of 545 nests found in 18 colonies located in south-eastern Sicily. We 

determined the reproductive success of breeding pairs by analysing the survival time of each egg to 

hatching (n = 2495) and each nestling to fledging (n = 1849) with the Linear Hazard model of 

survival times. We determined whether egg and nestling survival differed between years with a 

Gehan-Wilcoxon test. By Cox regressions, we related the survival times with nest and colony 

features. Egg and nestling survival times showed a strong annual effect. The two reproductive 

stages of lesser kestrel when controlled for the annual effect demonstrated a significant effect for 

some nest and colony features. Most of them, like height from the ground, nest depth, reused nests 

and the presence of jackdaws, are likely related to the predation pressure faced by lesser kestrel 

nests. Westward and southward nests had a better egg survival respect to those in the cold sides and 

in the interior of buildings. The location of colony in the agricultural plain and human disturbance 

ranked as the most important variables, with core location of a colony and high disturbance levels 

negatively affecting the reproductive success of lesser kestrel in the Gela Plain, so urging a more 

environment-aware land use management of this Important Bird Area. 
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1. INTRODUCTION  

Nest survival (Dinsmore et al., 2002), the probability that a nest survives to completion by 

producing at least one fledging, is one of the components of bird fitness and a major parameter of 

avian population dynamics. Studies of nest survival aim to estimate the reproductive success of 

birds and therefore their annual capability to rear offspring, an indispensable element to maintain 

sustainable populations. Species living in grassland habitats (Vickery and Herkert, 2001; Brennan 

and Kuvlesky, 2005) and farmlands (Pain and Pienkowski, 1997) have been showing declining 

population trends. In Europe, many threatened bird species live in steppe-like habitats (Tucker and 

Heath, 1994), where low intensity cereal agriculture is rapidly changing as a result of intensification 

in farming practices and land abandonment (Donald et al., 2001). The decline of European farmland 

birds currently presents a major conservation challenge, therefore understanding the factors that are 

associated with nest survival, as well as determining the source-sink status of focal populations 

(Donovan et al., 1995; Bader and Bednarz, 2009), is critical for developing effective conservation 

and land management strategies. 

Nest survival of birds may depend on several factors that include local weather and climate 

(Bennets et al., 2002), habitat and food quality and quantity (Peak et al., 2004; Hood and Dinsmore, 

2007; Knutson et al., 2007), habitat loss, fragmentation and degradation (Drever et al., 2007; 

Newmark and Stanley, 2011; Saab et al., 2011), predation (Jones and Dieni, 2007; Bader and 

Bednarz, 2009; Liebezeit et al., 2009; Ryder et al., 2010), parasites, life history traits and individual 

quality of partners (Ortego et al., 2009). In the first place, nest success is, however, influenced by 

the nest micro- and macro-characteristics (Hansell, 2000). Raptor species that rely on human 

artefacts for their nest sites have been particularly susceptible to agriculture and land use changes 

with important repercussions on nest local availability, intra- and inter-specific competition for 

sites, intensity of predation (including human disturbance), and local traditions (Newton, 1979, 

Forero et al., 1996, Franco et al., 2005; Sarà, 2010). 

The lesser kestrel (Falco naumanni) is a secondary-cavity nester, that in most of its range, 

breeds in urban habitats (Tella et al., 1996; Liven-Schulman et al., 2004) or in other man-made 

structures surrounded by open and dry cereal steppes (Serrano et al., 2001; Serrano and Tella, 2003; 

Franco et al., 2005; Sarà, 2010), where nests are found under roof tiles and inside balcony and wall 

crevices. Like most other Falco species, the lesser kestrel does not build a nest but lays its eggs 

directly on the cavity floor after scraping its substrate (Cramp and Simmons, 1980). This colonial 

raptor has undergone a dramatic decline throughout its South European and Asian range, as well as 

in its African wintering grounds (BirdLife International, 2004). Only recently has such a vulnerable 



species had its conservation status changed to “least concern” (IUCN, 2011), due to effective 

conservation actions in part of the range. 

Factors that affect breeding success of lesser kestrel have been studied to some extent in Spain 

(Negro et al., 1993; Rodriguez and Bustamante, 1993; Forero et al., 1996) but are virtually 

unexplored in the remaining part of its Palaearctic breeding range. In Spanish populations, 

successful reproduction of both single individuals and whole colonies are perceived by conspecifics 

as cues to detect high quality habitats. Accordingly, the reproductive success drives dispersal by 

attracting more individuals toward large colonies placed in high quality habitats (Serrano and Tella, 

2003). When in large colonies, potential nest cavities are all occupied, nest site availability limits 

the growth of lesser kestrel populations because adults prevent dispersing yearlings from joining the 

colony (Serrano et al., 2005a). Whether, before reaching the colony carrying capacity, individuals 

use cavities with sub-optimal characteristics for successful reproduction is still an open question.  

Nest location can be therefore critical for nest survival of lesser kestrel and, in our knowledge 

no attempt has been made to test the role played by such a factor upon the reproductive 

performance of this species. We have hence categorized factors potentially influencing nest survival 

of our long-term study of a lesser kestrel population (Sarà, 2008; 2010); separating those external to 

the colony – i.e. ‘extrinsic’ – such as local weather, global climate or agricultural use around the 

colonies; from those directly related, - i.e. ‘intrinsic’ – to the colony structure itself. In this first 

contribution we test the relationships between nest survival and the influential intrinsic factors 

represented by nest and colony building characteristics.  

 

2. MATERIAL AND METHODS 

2.1 Study area 

Our study population of lesser kestrel is the largest in Sicily and one of the most important in 

Italy (Sarà 2010). The study area, the Gela Plain (approximately 474 km
2 

- 37°07’N; 14°20’E), 

occurs in south-eastern Sicily, and includes a Special Protection Area (SPA, ITA050001), a Site of 

Community Importance (SCI, ITA050011) and is found within the Important Bird Area (IBA) no. 

166 (Brunner et al., 2004). The scarce precipitation (350 mm/year) makes this area a typical 

pseudo-steppe habitat, characterized by a thermo-Mediterranean dry bioclimate and surrounded by 

calcareous, sand and clay hills. Most territory (> 80%) includes cropland mainly represented by 

wheat (Triticum spp.) and artichoke (Cynara spp.) alternated with grassland and other cultivations 

(E.E.A., 2000). The remaining territory (≈ 15%) is shaped by Mediterranean maquis, small thickets 

of Quercus ilex and Q. suber, together with Stipa capensis garrigues, Hyparrhenia hirta grasslands 



and small artificial Eucalyptus stands. Across the plain and in the surrounding hills, numerous rural 

buildings, often partially destroyed or abandoned, host lesser kestrel colonies (Figure 1). 

 

2.2 Sampling Procedure and Data Collection  

We conducted our investigation in April - July of 2009 - 2011. Lesser kestrel nests were first 

identified by observing colony structures with 10*50 binoculars and 20*60 spotting scopes. When 

at least one pair of kestrels showed reproductive behaviour at the observed building (i.e. male 

delivering prey to female, copulation, inspection of nest chambers; Serrano et al., 2001), we 

proceeded to inspect potential nest-sites. Field observations and nest checks allowed us to quantify 

the total number of resident pairs per colony (i.e., one building hosting potentially breeding lesser 

kestrels).  

In the three study years, we counted 789 potential breeding sites in 18 ± 2 colonies (per year 

mean ± SD). Out of the total, in 545 nests (69.1%) we could record at least one egg laid, while the 

other 244 sites were excluded from the analyses because inaccessible (i.e., they were over 6-m 

above the ground, out of our ladder range or in collapsing sides of buildings) or proved to be 

temporary roosts or laying attempts (i.e. without eggs in it).  

After field observations during colony initiation and egg-laying (late March – late April), each 

nest was checked at least 3-4 times per season: at the time of late incubation (late April – mid May), 

hatching (mid May – early June) and fledging (mid June – late June); extra visits were added to 

account for late fledging (early July). This schedule allowed us to collect sufficient data to ascertain 

reproductive success while simultaneously minimizing disturbance at the reproductive sites. During 

nest checks, we recorded the number of eggs and nestlings inside each nest. Samples of eggs were 

candled for checking embryo development and incubation stage (Authors in prep.). Nestlings were 

aged as A1 (chick coated with first down, not standing up and not open eyes, 1-3
rd

 day); A2 (chick 

with first down, standing up and open eyes, 4-8
th

 day); B (chick with first down and emerged 

primary pins, 9-15
th

 day); C (first down in regression and outer primaries emerged ≤ 1/3 of their 

length, 16-22
nd

 day); D1 (large remains of first down still on head and body and outer primaries 

emerged > 1/3 of length, 23-27
th

day); D2 (first down absent or little traces on head and mantle, 

outer primaries completely emerged, 28-32
nd

day). As part of a larger investigation, captured adults 

and nestlings were marked with numbered aluminium and plastic coloured rings for remote 

identification of individuals.  

We tested (see § 2.3) the effect of the following nest features on survival: i) nest position, ii) 

solar exposure, iii) nest-height from the ground, iv) nest-height, v) nest-width, vi) nest-depth, vii) 

nest-volume, viii) use frequency. We also tested the effects of the following colony features: i) 



colony location: core vs edge of the agricultural plain, ii) colony size, iii) presence/absence of 

breeding jackdaw (Corvus monedula), iv) avian species richness, v) competitor/predator score, and 

vi) human-disturbance index.  

During nest checks, the height from a ground, the height, width, depth and volume (h*w*d) of 

a random sample of 279 nests were measured by a rigid tape measure to the nearest 1 cm (10 cm in 

the case of height from a ground). We also recorded the nest position in a hole or under tiles, and 

the solar exposure by a compass. Every building side was photographed with a Leica D-Lux 4. 

Every year, nest numbers were first chalk written on the wall beside them, and then nests were 

recognized on the photographs of each colony side and numbered accordingly. The comparison of 

photographs of colony sides allowed recording the use frequency of a given nest, i.e. new use vs 

reuse from the previous year. A given nest occupied in 2009, not in 2010 and again in 2011 was 

considered a new use. 

A colony was assigned to a core location in the agricultural plain when the area of all cropland 

land uses summed ≥ 50% in a circular plot with radius of 500 m around the colony, as assessed by 

GIS databases of CORINE land uses digital maps (http://dataservice.eea.europa.eu/dataservice/); 

and to an edge location when the entire cropland area was < 50%. 

During lesser kestrel field observations and nest checks, we recorded the presence and 

breeding of jackdaw and other birds, mammals and reptiles, to collect information on the avian 

species richness, the competitors for the nesting space, and the predators of eggs and nestlings 

(Appendix 1). Broken eggs and dead nestlings were carefully examined to know the cause of loss 

and determine the predator species. Competitor/predator scores were attributed per annum on a 0-1 

scale, with 0 representing low, 0.5 intermediate and 1 strong interference effect of other species 

breeding in the colony (e.g., the rock pigeon [Columba livia], a strong nest competitor, was scored 

as 1; while the jackdaw, a strong nest competitor plus frequent predator of lesser kestrel eggs, had a 

double effect, hence summing a score of 2, etc).  

Human activities in the strict proximity (i.e. 0-100 m) of colonies were also recorded annually 

and synthesized in a human-disturbance index for the season. This latter index resulted from the 

sum of a 0-3 scores (i.e., 0 lowest and 3 highest disturbance) attributed to each of seven 

anthropogenic variables: presence of agricultural activities/machineries; stubble-fires/wildfires; 

road-yards and general human activity; proximity to high speed roads; proximity to secondary roads 

or rural trails; presence of nest robberies/vandals/offenders; frequency of ornithological visits. 

 

 

 



2.3 Statistical analysis 

In avian ecology literature, two general approaches have been used: the analysis of nest fates, 

by quantifying the number of nests surviving over discrete periods; and the analysis of survival 

times quantifying the time until nest failure (Rotella, 2007). The analysis of discrete survival data 

has dominated nest-survival literature (Jehnle et al., 2004; Rotella et al., 2004; Jones and Geupel, 

2007; Cao et al., 2009) probably because it is also implemented in user-friendly software (Rotella, 

2007). The analysis of survival times (Hosmer and Lemeshow, 1999), successfully applied to many 

different kinds of events across a range of disciplines, has received so far less attention from 

ornithologists. Nur et al. (2004) applied survival time analysis to loggerhead shrike (Lanius 

ludovicianus) nesting success and showed that its use is particularly powerful when explanations of 

nest mortality variation across the nesting period, and models of nest failure related to quantitative 

variables, are sought.  

In our study, nest searching started at the beginning of each annual breeding season and 

allowed us to find virtually all the accessible nests in a colony. Nest-checks intervals were short 

(10-15 days) relatively to the lesser kestrel reproductive schedule and this allowed us to identify the 

initiation date of each nest (1
st
 laying day) with reasonable confidence. The initiation date and the 

day between reproductive stages were derived from both nest-checks, egg candling, aging all 

nestlings, and a backdating process based on 5-7 days for laying, 28-29 days for incubation and 28-

32 days for fledging periods (Cramp and Simmons, 1980; Serrano et al., 2001, Authors unpubl.). 

Unhatched or missing eggs and dead or missing nestlings were considered failed on the day 

corresponding to the mid-point between the last two consecutive visits (Mayfield, 1975; Serrano et 

al., 2001). Our data treatment avoided left-truncation (initiation date not known, early nest failures 

before the start of study) which is one concern for the use of survival time analysis of avian nests 

(Heisey et al., 2007, Jonhson, 2007). To account for possible heterogeneity in survival rate through 

the nesting period, we conducted one survival time analysis for each nesting stage, thus one for the 

incubation (including laying) and another for the brooding stage. We preferred to treat separately 

each egg and nestling, due to the asynchrony of incubation and hatching time of lesser kestrel 

(Authors unpubl.) that results in an independent fate (i.e. survival probability) of each egg and 

nestling. This treatment prevents the risk of introducing an underestimate of the breeding success, 

contrarily to more traditional survival analyses, which are based on nests as sampling units and 

therefore equally treat as successful nests those producing one or five nestlings.  

We fitted the major theoretical survival time distributions (Exponential, Linear Hazard, 

Gompertz, Weibull) to eggs and nestlings data using the ordinary unweighted (wi = 1; i.e., all 

weights equal to 1) and weighted (wi = ni*hi where hi and ni are the interval width and number of 



observations exposed to risk in the i’th interval, respectively) least squares method. We also 

determined the hazard estimate as the probability per time unit that an egg or a nestling survived to 

the beginning of the respective interval will fail in that interval. Two-day intervals (hi = 2) were 

time slots in which the reproductive stages of lesser kestrel were divided, starting from day 0, to 

compute the hazard estimate and weighted least squares. In total, 19 intervals for the 36 days of 

laying and incubation and 17 intervals for the 32 days of brooding were considered. We determined 

whether egg and nestling survival differed between years with a Gehan-Wilcoxon test by treating 

the study year as an independent factor and survival time as the dependent variable and quantified 

the effect of nest and colony characteristics (see § 2.2) by Cox’s proportional hazard regression 

models (Fox, 2001).  

Final comparison among survival time models and significant predictors was made by the 

Akaike’s information criterion (AIC; Akaike, 1973) and Akaike model weight (wi) computed on 

ΔAIC (Conroy and Carroll, 2009). Statistical significance for all analyses was set at p ≤ 0.05, mean 

were reported ± standard errors (SE). All analyses were performed by using Statistica 8.0 for 

Windows (StatSoft, 2007). 

 

3. RESULTS  

3.1 Egg survival time 

The cumulative proportion of surviving eggs for all years combined, was 0.738 ± 0.009 (n = 

2495) during the 36 days of laying and incubation (red line in Figure 2). Although they were very 

low for all the 2-days intervals (min: 0.0001 ± 0.0001; max: 0.0032 ± 0.0013), hazards rates peaked 

up to 0.1229 ± 0.0052 and 0.0216 ± 0.0024 at the 11
th

 and 12
th

 intervals, respectively. This 

indicated a heavy egg failure occurred after the second week of incubation (i.e., 20-23 day after the 

first laying day) in both 2009 and 2011 (Figure 2). The cumulative proportion of surviving eggs 

best fitted to a Linear Hazard model, showing a decline of egg survival times (Figure 3) with better 

(lower AIC) parameter estimates of the weighted (Lambda = 0.001535 ± 0.000125; AIC = 6319.93) 

distribution than the unweighted (Lambda = 0.003407 ± 0.000212; AIC = 6398.08). 

Eggs survival time significantly differed across years (Chi
2

(3) = 97.70; p < 0.001), with the 

highest survival proportion of 0.870 in 2010 and the lowest survival proportion in 2009 (0.700) and 

2011 (0.669). We therefore conducted successive analyses per year, thus by taking into account the 

annual effect (i.e., analyses were stratified by year with same β-vectors of regression coefficients, 

different baseline hazard functions h0, n groups: 3).  

Egg survival time was influenced by only 2 out 8 of the nest characteristics (Table 1), the nest 

height from the ground and the solar exposure with highest and westward/southward nests enjoying 



longer survival times. More colony characteristics (4 out 6) affected egg survival times (Table 1), 

which were longer in the colonies with high avian richness values and low human disturbance. 

Further, absence of jackdaws and colony locations at the edge of the agricultural plain positively 

affected the survival of eggs.  

Among both nest and colony features, colony location outweighed all the others for the 

relative importance of its effect on egg survival (Table 2, Figure 3).  

 

3.2 Nestling survival time 

The cumulative proportion of surviving nestlings was 0.699 ± 0.028 (n = 1849) during the 32 

days of fledging (blue line in Figure 2). Most nestling deaths occurred by the first two weeks from 

hatch, with the highest hazard rate at the 8
th

 – 9
th

 days (0.033 ± 0.003). As for eggs, Linear Hazard 

model best fitted to data with equivalent parameter estimates of the unweighted (Lambda = 

0.015188 ± 0.002231; AIC = 3781.82) and weighted (Lambda = 0.014103 ± 0.001019; AIC = 

3781.36) distributions models. The unweighted (solid blue line) and weighted (dashed blue line) 

Linear Hazard functions of nestling survival times are shown in Figure 3 indicating a more or less 

regular decline throughout the nestling stage. As for eggs, nestling survival varied significantly 

across years (Chi
2

(3) = 24.07; p < 0.001), with the highest survival of 0.838 in 2010 and the lowest 

in 2009 (survival of 0.771) and 2011 (0.729), so that also in this case the annual effect was taken 

into account. 

Nestling survival time was affected by three nest characteristics: height from the ground, nest 

use frequency and nest-depth, with higher and deeper nests, reused from previous year showing 

longer nestling survival (Table 1). Three out 6 colony characteristics: avian species richness, human 

disturbance and colony location, affected nestling survival times (Table 1). High avian species 

richness, low human disturbance and a peripheral colony location also allowed longer nestling 

survival times. On ranking the significant nest and colony features, the Akaike model weight 

showed human disturbance and the location of the colony as the most important variables 

influencing nestling survival time (Table 2). 

 

4. DISCUSSION 

Despite its key role in avian population dynamics, little is known about nest site-specific 

features shaping nest survival in raptors. Research has generally focussed on post-fledging survival 

of juveniles and survival rates of adults, dealing with the effect of ecological conditions in wintering 

or breeding areas (Gould and Fuller, 1995; Prugnolle et al., 2003; Grande et al., 2009; Minhoub et 

al., 2010). Accessibility of nests in a large population has allowed us to provide a first contribution 



revealing the role played by the intrinsic characteristics of nests and colonies on the nest survival of 

lesser kestrels in a dry cereal steppe habitat. Other nest survival studies have found variation in the 

daily survival rate throughout the nest cycle, some of them recorded a decline during the laying 

and/or incubation stage (Sockman, 1997; Peak et al., 2004), whereas others have found a decline 

during the nestling stage (Burhans et al., 2002; Jehle et al., 2004; Brown and Collopy, 2008). 

Consistently with the clutch and brood reduction commonly found in raptors (Newton, 1979), our 

results showed a decline of both egg and nestling survival of lesser kestrel. A massive egg failure in 

the mid of two fairly constant daily rates happened at the end of the second week of incubation 

(Figure 2 and 3). More factors than the intrinsic here addressed could be involved to explain such 

concentrate egg mortality; for instance the sudden and violent spring storms occurred during 

incubation in 2009 and 2011. Nestling failures were instead concentrated during the early nestling 

stage when chicks still do not move well and are becoming a manifest visual and acoustic (for loud 

cheeping) cue to nest predators (Appendix 1). 

In addition, egg and nestling survival varied significantly among years as commonly found for 

survival functions modelling temporal effects (e.g. Nur et al., 2004; Knutson et al., 2007). The two 

reproductive stages when analyzed taking into account this temporal factor pointed out the 

significant, yet different, effects of nest and colony building characteristics on reproductive 

outcome of lesser kestrels nesting in southern Sicily.  

Most of the significant features, such as height from the ground, nest depth, reused nests and 

the presence of jackdaws, are related to the predation pressure faced by lesser kestrels during the 

nesting season. Role of predation and local composition of predator communities, as in Appendix 1, 

are the main factors invoked to explain lesser kestrel nesting failures (Serrano et al., 2005b) or 

differential nest survival in raptors (Brown and Collopy, 2008; Bader and Bednarz, 2009) and birds 

(Sockman, 1997; Burhans et al., 2002; Drever et al., 2007; Jones and Dieni, 2007; Liebezeit et al., 

2009; Rydet et al., 2010). In Gela Plain, kestrel colonies without resident egg-marauders, such as 

jackdaws, benefited of longer egg survival, although interspecific interactions with this species are 

multifaceted, with reciprocal advantages in terms of decreased energetic expenditures for vigilance 

(Campobello et al., 2012). In the study area, the resident jackdaw population is increasing and 

breeds earlier than the migrating lesser kestrels (Authors unpubl.), so that lesser kestrels are obliged 

to establish in buildings already occupied. Thus, the vigilance benefits found in Campobello et al. 

(2012) could emerge as a by-product of this forced coexistence, and as an opportunistic strategy 

oriented towards shared predators like the magpie (Pica pica) and the raven (Corvus corax).  

Consistent with other investigations, nest height was found as one of the most important 

physical factors affecting nest survival (Nur et al., 2004; Newmark and Stanley, 2011), especially 



during the nestling stage (Brown and Collopy, 2008). The highest nests – especially those in wall 

crevices – might be safer against unskilled climbers like the western whip snake (Hierophis 

viridiflavus) or weasel (Mustela erminea); while the deepest nests – especially those under tiles – 

might be safer or more concealed to predatory jackdaws, magpies, or black rats (Rattus rattus). 

High and deep nest may also be overlooked by vandals and nest-plunders that often raid the 

colonies (Mascara and Sarà, 2006). As successful nests tend to be reused (Newton, 1979), the 

significant frequent use found in this study may be explained by the nest characteristics (i.e., nest 

height and depth) that significantly affected the nest success of kestrel breeding in the Gela Plain.  

Solar exposure of nests was another significant variable affecting nest survival, as eggs in 

westward and southward nests had a higher probability to hatch than those in nests exposed to 

colder sides or located in the inner part of buildings. Temperature is an important aspect of nest 

microclimate that influences egg viability (Webb, 1987). 

Species richness also exerted a positive effect on egg and nestling survival times of lesser 

kestrels in the Gela Plain. This factor might play a contrasting role with regard to predation, as more 

breeding species and their abundance would trigger a dilution of predation risk (Varela et al., 2007), 

promote earlier detection of predators (Brown and Brown, 1987) or reduce individual investment in 

vigilance (Campobello et al., 2012). Alternatively, high avian richness may be viewed as an indirect 

measure of high habitat quality and/or low human disturbance (Danchin et al., 2004).  

The lesser kestrel is a species particularly bound to cereal steppe habitats (Forero et al., 1996; 

Sarà, 2010), in which it selects buildings with suitable cavities for nesting (Franco et al., 2005). The 

location of the colony was one of the most important variables affecting egg and nestling survival of 

lesser kestrels in the Gela Plain. Survival time was longer in colonies at the periphery of the 

agricultural core, i.e. in areas with more natural vegetation and grassland. The other most important 

factor that negatively affected nest survival in Gela was, however, the human disturbance. 

Peripheral colonies may have been exposed to less intense disturbance represented by not only 

agricultural activities, but also proximity to roads and other general human impact, including 

persecution and nest plundering (Mascara and Sarà, 2006). Despite its classification as an IBA, the 

Gela Plain does not benefit of a proper wildlife management that should involve conservation 

actions, including patrolling activities of nest sites of lesser kestrels and other vulnerable steppeland 

species (Triolo et al., 2011), and prevention of agricultural intensification (Sarà, 2010).  
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 Egg stage  Nestling stage 

Nest characteristics    

 Chi² df p  Chi² df p 

Nest position  0.325  1  0.568   0.001  1  0.970 

Solar exposure 16.847 4  0.002  5.237 4  0.264 

H from the ground 3.998 1  0.045  15.262 1 < 0.001 

Nest height 0.231 1  0.564  0.074  1  0.785 

Nest  width 0.093 1  0.714  0.016 1   0.900 

Nest depth 1.481 1  0.224  7.911 1  0.005 

Nest volume 0.026  1  0.873  1.418 1  0.234 

Use frequency  0.034  1  0.853  10.122 1  0.001 

    

Colony characteristics        

 Chi² df p  Chi² df p 

Colony location 22.304 1 < 0.001  34.315 1 < 0.001 

Colony size 1.645 1  0.200  2.790 1  0.095 

Presence/absence of jackdaw 5.338 1  0.021  1.008 1   0.315 

Avian species richness 4.485 1  0.034  10.822 1   0.004 

Competitor/predator score 1.249 1  0.264  1.977 1  0.160 

Human-disturbance index 12.340 1 < 0.001  36.529 1 < 0.001 

    

 

Table 1 Results of Cox’s proportional hazard models stratified by year and applied to 

characteristics of nests and colonies in the Gela Plain. Ps ≤ 0.05 (in bold) indicate those variables 

that best predicted the survival time of lesser kestrel eggs and nestlings in the Gela plain during 

the 3-year study period. 

 



 

Rank  AIC ΔAIC wi 

 Egg stage:    

1 Colony location 8588.10 0.00 0.993 

2 Human-disturbance index 8598.24 10.14 0.006 

3 Presence/absence of jackdaw 8605.08 16.98 2E-04 

4 Avian species richness 8605.96 17.86 1E-04 

5 H from the ground 8606.56 18.46 1E-04 

6 Solar exposure 8609.74 21.64 2E-05 

     

 Nestling stage:    

1 Human-disturbance index 4919.72 0.00 0.751 

2 Colony location 4921.94 2.22 0.248 

3 H from the ground 4940.98 21.26 2E-05 

4 Use frequency 4946.12 26.40 1E-06 

5 Nest depth 4947.96 28.24 6E-07 

6 Avian species richness 4952.14 32.42 7E-08 

 

 

Table 2 Ranking of variables significantly affecting egg and nestling survival times of lesser 

kestrels in the Gela Plain. Models with a lower ΔAIC and a greater Akaike weight (wi) have more 

support. 

 

 

 



 

 Egg stage Nestling stage 

   

Colony residents   

   

Reptiles   

Western whip snake, Hierophis viridiflavus ++ ? 

   

Birds   

Magpie, Pica pica +++ +++ 

Jackdaw, Corvus monedula ++ ? 

Barn owl, Tyto alba n ++ 

Little owl, Athene noctua n ? 

European kestrel, Falco tinnuculus n ? 

   

Mammals   

Black rat, Rattus rattus +++ +++ 

Garden dormouse, Eliomys quercinus + ? 

Weasel, Mustela erminea + ++ 

   

Transients ($)   

   

Lanner falcon, Falco biarmicus n + 

Common Buzzard, Buteo buteo n + 

Raven, Corvus corax ++ ++ 

   

Human beings, Homo sapiens ? ++ 

   

 

Appendix 1 Predator community recorded in the colonies affecting the nest success of lesser kestrel 

in the dry cereal habitats of Gela Plain. + occasional, ++ frequent, +++ very frequent predation, ? 

probable predation not recorded yet, n = no predation. ($) For the sake of completeness, also 

predators not considered in the statistical analysis of such study, because not resident in the 

colonies, have been reported. 



Figure captions 

 

Figure 1 The Giaurone house, a typical abandoned building in the Gela Plain that hosted 29 ± 7 

(mean ± SD) lesser kestrel nest sites during the 3-year study. In the photo inserts, a male lesser 

kestrel entering his nest under roof tiles (up), and 16-18 day old nestlings inside a nest hole 

(below). 

 

Figure 2 Cumulative proportions of surviving eggs (red line) and nestlings (blue line) as resulting 

from raw observed data for all years combined. 

 

Figure 3 Linear Hazard survival models of lesser kestrel eggs (red) and nestlings (blue) in the Gela 

Plain. Solid lines = unweighted functions; dashed lines = weighted functions (see text).  
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