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We study the decay of quantum nonlocality, identi¯ed by the violation of the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to

independent baths with broadband spectra typical of solid state nanodevices. The bath noise can

be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point

out the qualitative di®erent e®ects on quantum nonlocal correlations induced by adiabatic and
quantum noise. A quantitative analysis is performed for typical noise ¯gures in Josephson

systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of

entanglement.
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1. Introduction

The presence of quantum correlations in composite nanosystems is an essential

resource for quantum information processing.1 Amongst the most relevant aspects of

quantum correlations, of both fundamental and applicative role, are: entanglement,2

quantum discord3 and nonlocality.1,4,5 Studying these quantities for realistic quan-

tum systems that are promising candidates for realizing a quantum computer is an

interesting issue. Considerable development has been recently made towards the

implementation of a solid-state quantum computer. In particular, superconducting

high-¯delity6�10 single qubit gates with coherence times of �1�s are now avail-

able.11,12 Two-qubit logic gates have been proved in di®erent laboratories13�15 and

Bell states have been prepared up to 75% of ¯delity.16�19 In a circuit quantum

electrodynamic framework, highly entangled two-qubit states with concurrence up to
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94% have been also generated, allowing the ¯rst implementation of basic quantum

algorithms with a superconducting quantum processor.20

In order to process quantum information, it is important to establish how long the

relevant quantum correlations can be maintained in noisy nanocircuits. Solid state

noise may indeed represent a serious limitation towards this goal. Josephson junc-

tion-based experimental setups are often in°uenced by broadband and structured

noise, whose typical power spectra show a 1=f low-frequency behavior up to some

cut-o® frequency followed by a white or ohmic behavior.21�23 The presence of slow

components in the environment makes the decay of the coherent signal strongly

dependent on the experimental protocol being used.12,24 Measurement protocols

requiring numerous repetitions are particularly sensitive to the unstable device

calibration due to low-frequency °uctuations. The main e®ect is dephasing due to

defocusing of the measured signal. Incoherent energy exchanges between system and

environment, leading to relaxation and decoherence, occur at typical operating

frequencies (about 10GHz) where noise is white or ohmic.

Low- and high-frequency noise a®ects quite di®erently single-qubit gates: adia-

batic (low-frequency) noise typically leads to algebraic decay, while quantum (high-

frequency) noise to exponential behavior.21,24 It is therefore important to evaluate

the e®ect on quantum correlations time evolution of adiabatic noise and of its

interplay with quantum noise. This analysis has been recently addressed in detail for

entanglement.25 Here we extend this study to the aspect of nonlocality.

Nonlocal correlations, i.e. correlations not reproducible in the framework of Bell

inequality tests by any classical local model, are particularly important for quantum

cryptography purposes.26 In this paper, we consider two noninteracting qubits sub-

ject to independent environments with typical broadband spectra. We use the

Clauser-Horne-Shimony-Holt (CHSH) inequality and the maximum of the related

Bell function4,5,27 to identify nonlocal correlations for classes of entangled initial

states currently obtainable in laboratory. In particular, we study the sensitivity of the

time evolution of nonlocal correlations to the initial state purity and degree of

entanglement.

2. Model

We consider a system composed by two identical superconducting qubits, namely A

and B, each interacting with independent baths characterized by a broadband

spectrum. The total Hamiltonian is Htot ¼ HA þHB, where each single-qubit

Hamiltonian is given by ð} ¼ 1Þ24,25

H� ¼ HQ;� � �̂��z;�=2; HQ;� ¼ �~�� � ~��=2; ð1Þ
where HQ;� refers to the qubit � ¼ A;B; ~�� is the Pauli matrices vector, j~��j � ��

the qubit frequency splitting and �̂� are collective environmental variables whose

power spectra are 1=f at f 2 ½�m; �M � (low-frequency noise) and white or ohmic at

frequencies of the order of the qubit splittings (high-frequency noise). According to a

64 B. Bellomo et al.



standard model, noise with 1=f spectrum can be originated by an ensamble of bis-

table °uctuators (BFs).28 The physical origin of the °uctuators depends on the

speci¯c setup. For instance, charge based devices are extremely sensitive to back-

ground charge °uctuations.24,29�31 Noise at higher frequencies instead may either

originate from quantum impurities,22,23 possibly of the same physical origin, or being

due to the circuitry.

E®ects of the di®erent parts of the spectrum can be treated in a multi-stage

approach introduced in Ref. 24. E®ects of low- and high-frequency components of the

noise are distinguished by decomposing �̂� ! ��ðtÞ þ �̂f;�.
32 Stochastic variables ��

ðtÞ describe low-frequency 1=f noise, and can be treated in the adiabatic and longi-

tudinal approximation. High-frequency ð! � ��Þ °uctuations �̂f;� are modeled by a

Markovian bath mainly leading to spontaneous decay. Therefore, populations relax

due to quantum noise (T1-type times), which also leads to secular dephasing

(T2 ¼ 2T1-type). Low-frequency noise provides a defocusing mechanism determining

further coherences decay. In the Hamiltonian of Eq. (1), both the operating point

(angle �� between z and ~��) and the qubit splitting �� are tunable. In the following

we will consider both qubit operating at the optimal working point, �� ¼ �=2, where

partial reduction of defocusing is achieved.12,21 In addition we will focus on the case of

identical qubits �� � �.

The two-qubit density matrix elements will be evaluated in the computational

basis B ¼ fj1i � j11i; j2i � j01i; j3i � j10i; j4i � j00ig, where for each qubit we have

HQ;�j0i ¼ �ð�=2Þj0i, HQ;�j1i ¼ ð�=2Þj1i. Each subsystem \qubit+ environment"

evolves independently so that, once known the single-qubit dynamics,24 the evolved

two-qubit density matrix will be readily obtained by a procedure reported in

Refs. 33, 34.

3. Maximum of the Bell Function

In this section we report the expression of the maximum of the Bell function for the

class of two-qubit states whose density matrix �̂X, in the standard computational

basis B, has a \X structure", i.e.

�̂X ¼
�11 0 0 �14
0 �22 �23 0

0 ��
23 �33 0

��
14 0 0 �44

0
BB@

1
CCA: ð2Þ

This class of states is general enough to include the most common two-qubit states,

like Bell states (pure two-qubit maximally entangled states) and Werner states

(mixture of Bell states).1,2,34 Such a X form density matrix may arise in a variety of

physical situations.35�37 A further remarkable feature of X states is that, under

various kinds of dynamics, their structure is maintained during time evolution.33,34

Using the Horodecki criterion,27,38 the maximum of the Bell function can be

expressed in terms of three functions u1, u2 and u3 of the density matrix elements as
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B ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxj>kfuj þ ukg

p
, where j; k ¼ 1; 2; 3. The CHSH inequality reads like

B � 2, so that no classical local models are admitted for states such that B is larger

than the classical threshold 2. The three functions uj are
38,39

u1 ¼ 4ðj�14j þ j�23jÞ2; u2 ¼ ð�11 þ �44 � �22 � �33Þ2; u3 ¼ 4ðj�14j � j�23jÞ2: ð3Þ

Being u1 always larger than u3, the maximum of the Bell function for X states is

B ¼ maxfB1;B2g; B1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u2

p
; B2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 þ u3

p
: ð4Þ

This quantity has already been studied in dynamical contexts of independent qubits

each coupled to a bosonic reservoir (cavity) with Markovian40 and non-Markovian41

characteristics. In the following, we shall investigate the maximum of the Bell

function, B, for our system of two independent Josephson qubits each interacting

with individual baths.

4. Initial States

We consider extended Werner-like (EWL) two-qubit initial states34

�̂� ¼ rj�ih�j þ ð1� rÞI4=4; �̂� ¼ rj�ih�j þ ð1� rÞI4=4; ð5Þ
whose pure parts are the one/two-excitation Bell-like states j�i ¼ aj01i þ bj10i,
j�i ¼ aj00i þ bj11i, where jaj2 þ jbj2 ¼ 1. The purity parameter r quanti¯es the

mixedness and a sets the degree of entanglement of the initial state. The density

matrix of EWL states, in the computational basis, is non-vanishing only along the

diagonal and anti-diagonal (X form) and this structure is maintained at t > 0 in the

system we are considering. Using concurrence42 C to quantify entanglement, one can

also notice that the initial entanglement is equal for both the EWL states of Eq. (5)

and reads C �
� ð0Þ ¼ C�

� ð0Þ ¼ 2maxf0; ðjabj þ 1=4Þr� 1=4g. Initial states are thus

entangled for r > r� ¼ ð1þ 4jabjÞ�1.

Entangled states with purity �0:87 and ¯delity to ideal Bell states �0:90 have

been experimentally generated.20 These states may be approximately described as

EWL states with rexp � 0:91.

5. Time Behavior of the Maximum of the Bell Function

In this section, we shall analyze the dynamics of the maximum of the Bell function, B

of Eq. (4), initially considering the case when only adiabatic noise is present and in a

second stage including the e®ect of quantum noise. We shall also compare the

dynamics of B and of the concurrence C.

5.1. Adiabatic noise

The e®ect of low-frequency noise components is obtained by the Hamiltonian Eq. (1)

with �̂ � �ðtÞ treated in the adiabatic and longitudinal approximation, for which
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single-qubit populations do not evolve in time.24,25 The main e®ect of low-frequency

°uctuations is dephasing due to defocusing processes. The leading order e®ect

depends only on the noise variance, which can be estimated by independent

measurements of the amplitude of the 1=f power spectrum on the uncoupled qubits,

as follows S 1=fð!Þ ¼ ��2½lnð�M=�mÞ!��1. By exploiting the single-qubit coherences

determined in this case,24 we can construct the two-qubit density matrix33,25 at time

t. Choosing initial states of the form (5) B is obtained from Eq. (4).

We ¯nd that, under adiabatic noise, BðtÞ � BadðtÞ is the same for both the initial

EWL states of Eq. (5). The explicit expressions of BadðtÞ and of the times when

Bad ¼ 2, that is when a Bell inequality \violation sudden death" (VSD) occurs, are

given by

BadðtÞ ¼ 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jabj2�2

�2 þ �4t2

r
; tadVSD ¼ �

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jabj2r2
ð1� rÞ2 � 1

s
: ð6Þ

For any r < 1, the Bell inequality is violated at a ¯nite time. Instead, for pure

initial entangled states ðr ¼ 1Þ;BadðtÞ approaches asymptotically the classical

threshold. The evolution of BadðtÞ is displayed in Fig. 1 for �=� ¼ 0:02, which is a

typical ¯gure of 1=f noise in single-qubit experiments.12,21,24 The dependence on

the initial degree of entanglement, parameterized by jaj2, for ¯xed r ¼ 0:9, is

reported in panel (a). Sensitivity to the initial purity r, for ¯xed a ¼ 1=
ffiffiffi
2

p
, is

shown in panel (b). We note that the maintenance of nonlocal correlations ðB > 2Þ
strongly depends on the purity of the initial state r, while the dependence on jaj2 is
weaker and symmetric around jaj2 ¼ 1=2. The \violation sudden death" of BadðtÞ
for r < 1 is also clearly visible.
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Fig. 1. Maximum of the Bell function, B, at � ¼ �=2 and �=� ¼ 0:02 under adiabatic (low frequency)

noise. Panel (a) B as a function of dimensionless time �t and jaj2ðr ¼ 0:9Þ; Panel (b) B as a function of

dimensionless time �t and rða ¼ 1=
ffiffiffi
2

p Þ.
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5.2. Interplay of adiabatic and quantum noise

We now analyze the interplay of adiabatic and quantum noise simultaneously

a®ecting the two units.

When quantum noise (high-frequency, f � �) is included, it adds up to the

defocusing channel leading to both extra exponential decay of the coherences and

evolution of the populations. This is due to the fact that, in practical situations,

decay rates are much less sensitive than phases to °uctuations of control parameters.

Single-qubit populations are obtained by the Born-Markov master equation. They

decay with a relaxation rate T �1
1 ¼ Sfð�Þ=2 to asymptotic values which depend in

general on � and on temperature T .25 For typical values of � (�1011 rad/s) and T

(�0:04 K), asymptotic values of the excited, j4i, and of the ground state, j1i,
populations are practically zero and one, respectively. On the other hand, the

coherences acquire an additional exponential decaying factor.24,25 Using the reported

single-qubit density matrix elements for this case,24 we construct the new two-qubit

density matrix33,25 from which we determine BðtÞ. The maximum of the Bell func-

tions for the two initial EWL states are now formally nonequivalent, this is a

qualitative di®erence with the adiabatic noise case. However, for the typical exper-

imental parameters involved in such nanosystems, quantitatively they do not di®er

signi¯cantly (their di®erence being always .10�3 in the violation region). We are

interested to the VSD times tVSD when B ¼ 2. These times are plotted in Fig. 2 as a

function of the purity r for ¯xed a ¼ 1=
ffiffiffi
2

p
(maximally entangled pure part), with

noise parameters having values retrieved in experiments.12,21 In particular, the white

noise level is Sf ¼ 2	 106s�1. We distinguish the cases of only adiabatic noise, only

quantum noise and their interplay. For r < 1, adiabatic noise suppresses nonlocal
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Fig. 2. Dependence of the VSD time on the purity rða ¼ 1=
ffiffiffi
2

p Þ for initial state �̂�. The behavior for �̂� is

also quantitatively similar. The blue dashed curve is �tadVSD, red dot-dashed curve is for quantum noise,
black curve is the result of adiabatic and quantum noise altogether. Noise parameters are

� ¼ 0:02�;Sfð!Þ ¼ 2	 106 s�1. In addition, � ¼ 1011 rad/s, � ¼ �=2;T ¼ 0:04K. The inset zooms the

region where r � 1. The point Pexp corresponds to rexp � 0:91 where �tVSD � 3350.
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correlations on a much shorter time scale than quantum noise. For high purity levels,

the VSD time due to quantum noise is instead shorter than the adiabatic VSD time

(inset of Fig. 2), which goes to in¯nity for pure states (see Eq. (6)). However, a quan-

titative estimate of the amount of nonlocal correlations preserved before B ¼ 2 indi-

cates that, for typical amplitudes of 1=f and white noise, adiabatic noise considerably

reduces the amount of nonlocal correlations on a short time scale even for r ! 1.

A ¯nite value of tVSD is ensured for any initial state only because of quantum noise.

5.3. Maximum of the Bell function versus concurrence

Here we compare the dynamics of the maximum of the Bell function B with the

evolution of the concurrence C, so to establish their connection in such a solid-state

system. We consider initial preparation in the two Bell states j�i ¼ ðj01i þ j10iÞ= ffiffiffi
2

p
and j�i ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

. The behavior for di®erent initial values of a and r does

not di®er qualitatively. Remarkably, for the considered system there is a one-to-one

correspondence between B and C during the dynamics for both initial states, as

shown in Fig. 3. This property has already been observed in other physical con-

texts39,41 (atomic qubits in cavities). However, the common behavior for both initial

states is not predictable a priori. In general, it may strongly depend on the physical

system and on the speci¯c initial state.39

The slightly di®erent time dependence for the two Bell states is evidenced by the

di®erent distance along the curves of the dots pointing to times 10�3 �t ¼
iði ¼ 1; . . . ; 5Þ. In addition, the threshold value of C below which there is no violation

anymore is clearly visible. Starting from the initial state j�iðj�iÞ we ¯nd that for

C � 0:43ðC � 0:38Þ the maximum of the Bell function B � 2, so that we cannot be

sure of the presence of nonlocal correlations in this region.
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Fig. 3. Maximum of the Bell function B versus concurrence C for the two initial Bell states j�i (blue solid
curve) and j�i (red dotted curve) in the presence of both adiabatic and quantum noise. The points on the

curves labeled with i ¼ 1; 2; . . . ; 5 indicates the values of ðC;BÞ at times 10�3�t ¼ i. B for j�i decays a
little bit faster than that for j�i. Noise parameters as in Fig. 2.
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6. Conclusion

In this paper we have investigated the time evolution of nonlocal correlations

(nonlocality), identi¯ed by the maximum of the Bell function B when it violates the

CHSH-Bell inequality ðB > 2Þ, between two noninteracting Josephson qubits subject

to independent baths with broadband noise typical of solid state nanosystems. In

particular, an adiabatic (low-frequency) noise and a quantum (high-frequency) noise

can be distinguished. We have shown that, while adiabatic noise has the main e®ect

on nonlocality decay, it is the quantum noise that induces a complete disappearance

of quantum nonlocal correlation for any initial state (even for pure maximally

entangled states). In particular, we have also reported the times when B ¼ 2 ðtVSDÞ,
after which there is no more certainty of the presence of quantum nonlocal corre-

lations. We have ¯nally compared, for this system, the dynamics of nonlocal corre-

lations and that of entanglement, quanti¯ed by the concurrence C. We have found

that a one-to-one correspondence between B and C occurs in time, independently on

the form of the initial two-qubit state. Moreover, we obtained thresholds values of C

below which the Bell inequality is not violated ðB � 2Þ.
The results presented in this paper provide new insights towards the possibility to

exploit nonlocal quantum correlations for quantum information processing with

superconducting nanocircuits.
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