A remark on differentiable functions with partial derivatives in L^{p}

Cristina Di Bari *, Calogero Vetro

Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, Italy
Received 6 November 2003
Available online 3 September 2004
Submitted by B.S. Thomson

Abstract

We consider a definition of p, δ-variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p, δ-variation extends the definition of n-variation of Malý and the definition of p-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula. © 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be an open set of \mathcal{R}^{n} and let E be a subset of Ω. We denote by $\mathcal{L}^{n}(\cdot)$ (respectively by $\left.\mathcal{L}_{e}^{n}(\cdot)\right)$ the measure (respectively the outer measure) of Lebesgue in \mathcal{R}^{n}. For every $x \in \mathcal{R}^{n}$ and for every real number $r \geqslant 0$ we set $B(x, r)=\left\{y \in \mathcal{R}^{n}:\|y-x\| \leqslant r\right\}$. A function $\delta: E \rightarrow[0,+\infty]$ is a gage on E if $\mathcal{L}_{e}^{n}(\{x \in E: \delta(x)=0\})=0$. We denote with $\Delta(E)$ the family of all the gages on E. For every open set $G \subset \Omega$ the function $\delta_{G}: G \rightarrow[0,+\infty]$ associating to each $x \in G$ its distance from the boundary of G is a gage on G. For every $\eta>0$ the function $\delta_{\eta}: \Omega \rightarrow[0,+\infty]$ with $\delta_{\eta}=\min \left\{\eta, \delta_{\Omega}\right\}$ is a gage on Ω.

[^0]A partition P in Ω is a countable disjoint family $\left\{B\left(x_{i}, r_{i}\right)\right\}$ with $B\left(x_{i}, r_{i}\right) \subset \Omega$ for all i. If for all $i, x_{i} \in E$, the partition $P=\left\{B\left(x_{i}, r_{i}\right)\right\}$ is called tagged by E. For every gage δ on E, a partition P in Ω is called δ-fine if $r_{i}<\delta\left(x_{i}\right)$ as soon as $\delta\left(x_{i}\right)>0$ and $r_{i}=0$ otherwise. We denote with $\mathcal{P}(E, \delta)$ the family of all partitions δ-fine in Ω that are tagged by E.

Let $f: \Omega \rightarrow \mathcal{R}$ and let $B(x, r) \subset \Omega$. We denote with $\omega(f, B(x, r))$ the oscillation of the function f in $B(x, r)$, that is the diameter of the image $f(B(x, r))$. For every positive number p, we set

$$
f_{p}(B(x, r))=\omega^{p}(f, B(x, r)) r^{n-p}
$$

and for every $P=\left\{B\left(x_{i}, r_{i}\right)\right\} \in \mathcal{P}(E, \delta)$,

$$
f_{p}(P)=\sum_{i} f_{p}\left(B\left(x_{i}, r_{i}\right)\right) .
$$

For every $\delta \in \Delta(E)$, we associate to the function f the extended real number

$$
V_{p}(f, E, \delta)=\sup \left\{f_{p}(P): P \in \mathcal{P}(E, \delta)\right\} .
$$

$V_{p}(f, E, \delta)$ is the p, δ-variation of the function f over E. If there exists $\delta \in \Delta(E)$ such that $V_{p}(f, E, \delta)<+\infty$, we say that f is of bounded p, δ-variation on E.

In [4] Malý proved that the functions with bounded n-variation, that is, the functions with bounded n, δ_{Ω}-variation on Ω, are differentiable almost everywhere in Ω and have gradient in $L^{n}(\Omega)$. In [1] D. Bongiorno proved that the functions with bounded p-variation, that is, the functions with bounded p, δ_{η}-variation in Ω with $1 \leqslant p \leqslant n$, are differentiable almost everywhere in Ω. In this paper, we show that the functions with bounded p, δ-variation, in a measurable subset E of Ω, are differentiable almost everywhere in E and have partial derivatives that belong to $L^{p}(E)$. The variation introduced in this paper is weaker in comparison to those considered in [1,4]. We conclude with a result of change of variables, based on coarea formula, for the functions that have bounded p, δ-variation.

2. Properties of the functions with bounded p, δ-variation

In this section, Ω will denote an open set of \mathcal{R}^{n}, E a measurable subset of Ω and p a positive real number. To $f: \Omega \rightarrow \mathcal{R}$ we associate the function $\operatorname{lip}(f, \cdot): \Omega \rightarrow[0,+\infty]$ defined by

$$
\operatorname{lip}(f, x)=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{\|y-x\|}
$$

We have the following result.
Theorem 1. If the function $f: \Omega \rightarrow \mathcal{R}$ has bounded p, δ-variation in E, then it is differentiable almost everywhere in E.

Proof. Let $\delta \in \Delta(E)$ be such that $V_{p}(f, E, \delta)<+\infty$. We set

$$
\begin{equation*}
E_{\infty}=\{x \in E: \operatorname{lip}(f, x)=+\infty\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{0}=\{x \in E: \delta(x)>0\} . \tag{2}
\end{equation*}
$$

By Stepanoff's Theorem [3, Theorem 3.1.9], it is enough to prove that

$$
\mathcal{L}_{e}^{n}\left(E_{\infty}\right)=0 .
$$

For every positive integer k, we consider the set

$$
E_{k}=\left\{x \in E_{0}: \forall \sigma>0 \exists y \in \Omega \text { with }\|y-x\| \leqslant \sigma \text { and }|f(y)-f(x)|>k\|y-x\|\right\} .
$$

If we set $B=\mathcal{L}^{n}(B(0,1))$, we will show that

$$
\mathcal{L}_{e}^{n}\left(E_{k}\right) \leqslant B k^{-p} V_{p}(f, E, \delta) .
$$

To every point $x \in E_{k}$, we associate the family $\mathcal{B}(x)$ of the closed balls $B(x, r) \subset \Omega$ with $0<r<\delta(x)$ such that $\omega(f, B(x, r))>k r$. The family $\bigcup_{x \in E_{k}} \mathcal{B}(x)$ forms a Vitali cover for E_{k}. Hence there exists a countable disjoint subfamily $\left\{B\left(x_{i}, r_{i}\right)\right\}$ with

$$
x_{i} \in E_{k}, \quad r_{i}<\delta\left(x_{i}\right), \quad B\left(x_{i}, r_{i}\right) \subset \Omega \quad \text { and } \quad \omega\left(f, B\left(x_{i}, r_{i}\right)\right)>k r_{i}
$$

for all i, such that

$$
\mathcal{L}_{e}^{n}\left(E_{k} \backslash \bigcup_{i} B\left(x_{i}, r_{i}\right)\right)=0
$$

We have

$$
\begin{aligned}
\mathcal{L}_{e}^{n}\left(E_{k}\right) & \leqslant \mathcal{L}_{e}^{n}\left(E_{k} \backslash \bigcup_{i} B\left(x_{i}, r_{i}\right)\right)+\mathcal{L}_{e}^{n}\left(\bigcup_{i} B\left(x_{i}, r_{i}\right)\right)=\mathcal{L}^{n}\left(\bigcup_{i} B\left(x_{i}, r_{i}\right)\right) \\
& =\sum_{i} \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right)=B \sum_{i} r_{i}^{n} \leqslant B k^{-p} \sum_{i} \omega^{p}\left(f, B\left(x_{i}, r_{i}\right)\right) r_{i}^{n-p} .
\end{aligned}
$$

Consequently,

$$
\mathcal{L}_{e}^{n}\left(E_{k}\right) \leqslant B k^{-p} V_{p}(f, E, \delta)
$$

From

$$
E_{0} \cap E_{\infty} \subset \bigcap_{k=1}^{+\infty} E_{k}
$$

we get that

$$
\mathcal{L}_{e}^{n}\left(E_{\infty}\right) \leqslant B k^{-p} V_{p}(f, E, \delta)
$$

for all k and for $k \rightarrow+\infty$ we obtain $\mathcal{L}_{e}^{n}\left(E_{\infty}\right)=0$.
Theorems 2 and 3 give results regarding the link between the integrability of the function $\operatorname{lip}(f, \cdot)$ and the p, δ-variation of f.

Theorem 2. If the function $f: \Omega \rightarrow \mathcal{R}$ is such that $V_{p}(f, E, \delta)<+\infty$, with $\delta \in \Delta(E)$, then

$$
\int_{E} \operatorname{lip}^{p}(f, \cdot) d x \leqslant C V_{p}(f, E, \delta), \quad \text { where } C \in \mathcal{R}_{+}
$$

Proof. For all $x \in E$, we assume that $0 \leqslant \delta(x)<1$ and we consider the function $h: \Omega \rightarrow$ $\left[0,+\infty\left[\right.\right.$ defined by $h(x)=\operatorname{lip}^{p}(f, x)$ if $x \in E_{0} \backslash E_{\infty}$ and $h(x)=0$ otherwise, where E_{∞} and E_{0} are as in (1) and (2). Let $g: \Omega \rightarrow[0,+\infty[$ be an upper semicontinuous function with $g \leqslant h$. Proceeding as in [4, Theorem 3.3], we deduce that

$$
\int_{E} h d x=\int_{\Omega} h d x=\sup \left\{\int_{\Omega} g d x: g \text { is u.s.c., } 0 \leqslant g \leqslant h\right\} \leqslant C V_{p}(f, E, \delta)
$$

We obtain the conclusion observing that

$$
\int_{E} \operatorname{lip}^{p}(f, \cdot) d x=\int_{E} h d x
$$

Theorem 3. Let E be a measurable subset of Ω with $\mathcal{L}^{n}(E)<+\infty$. If the function $f: \Omega \rightarrow \mathcal{R}$ is such that $\int_{E} \operatorname{lip}^{p}(f, \cdot) d x<+\infty$, then there exists $\delta \in \Delta(E)$ such that

$$
V_{p}(f, E, \delta) \leqslant C \int_{E} \operatorname{lip}^{p}(f, \cdot) d x, \quad \text { with } C \in \mathcal{R}_{+}
$$

Proof. From $\int_{E} \operatorname{lip}^{p}(f, \cdot) d x<+\infty$, we deduce that $\mathcal{L}^{n}\left(E_{\infty}\right)=0$. Let $h: \Omega \rightarrow[0,+\infty[$ be the function defined by $h(x)=\operatorname{lip}^{p}(f, x)$ if $x \in E \backslash E \infty$ and $h(x)=0$ otherwise.

Let $G \subset \Omega$ be an open set such that $E \subset G$ and $\mathcal{L}^{n}(G)<+\infty$. For a fixed $\epsilon>0$, we consider the function $\delta_{\epsilon} \in \Delta(E)$ defined as follows: $\delta_{\epsilon}(x)=0$ in every point of E where the derivative of $\int_{B(x, r)} h d x$ does not coincide with lip ${ }^{p}(f, \cdot)$. Moreover, for any other $x \in E$, we choose $\delta_{\epsilon}(x)<\delta_{G}(x)$ so that for every ball $B(x, r) \subset G$ with $r<\delta_{\epsilon}(x)$,

$$
\begin{equation*}
\left|\int_{B(x, r)} h d x-\operatorname{lip}^{p}(f, \cdot) \mathcal{L}^{n}(B(x, r))\right|<\epsilon \mathcal{L}^{n}(B(x, r)) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(f, B(x, r)) \leqslant 3 \operatorname{lip}(f, x) r \quad \text { if } \operatorname{lip}(f, x)>0 \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega(f, B(x, r)) \leqslant \epsilon^{1 / p} r \quad \text { if } \operatorname{lip}(f, x)=0 \tag{5}
\end{equation*}
$$

holds.
For every partition $P=\left\{B\left(x_{i}, r_{i}\right)\right\} \in \mathcal{P}\left(E, \delta_{\epsilon}\right)$ we consider sets $I_{1}=\left\{i: \operatorname{lip}\left(f, x_{i}\right)>0\right\}$ and $I_{2}=\left\{i: \operatorname{lip}\left(f, x_{i}\right)=0\right\}$. Using (3)-(5) we get

$$
\begin{aligned}
& \sum_{i} \omega^{p}\left(f, B\left(x_{i}, r_{i}\right)\right) r_{i}^{n-p} \\
& \quad \leqslant \sum_{i \in I_{1}} 3^{p} \operatorname{lip}^{p}\left(f, x_{i}\right) r_{i}^{n}+\sum_{i \in I_{2}} \epsilon r_{i}^{n} \\
& \quad=3^{p} B^{-1} \sum_{i \in I_{1}} \operatorname{lip}^{p}\left(f, x_{i}\right) \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right)+\epsilon B^{-1} \sum_{i \in I_{2}} \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right) \\
& \quad<3^{p} B^{-1}\left(\mathcal{L}^{n}(G) \epsilon+\sum_{i} \int_{E \cap B\left(x_{i}, r_{i}\right)} \operatorname{lip}^{p}(f, \cdot) d x\right)
\end{aligned}
$$

Since ϵ is arbitrary and $\mathcal{L}^{n}(G)<+\infty$, it follows that

$$
V_{p}\left(f, E, \delta_{\epsilon}\right) \leqslant C \int_{E} \operatorname{lip}^{p}(f, \cdot) d x
$$

with $C \in \mathcal{R}_{+}$, and the proof is completed.

The following result concerning the differentiability and the integrability of partial derivatives of the function with bounded p, δ-variation.

Theorem 4. Let $f: \Omega \rightarrow \mathcal{R}$, let $E \subset \Omega$ be a set with finite measure and let p be a positive real number. Then the following conditions are equivalent:
(i) the function f is differentiable almost everywhere in E with partial derivatives belonging to $L^{p}(E)$;
(ii) f is a function with bounded p, δ-variation in E.

Proof. (i) \Rightarrow (ii). By [2, Theorem 3] there exist an increasing sequence (E_{k}) of measurable subsets of E and an increasing sequence (M_{k}) of positive numbers, with

$$
\mathcal{L}^{n}\left(E \backslash \bigcup E_{k}\right)=0 \quad \text { and } \quad M_{1}^{p} \mathcal{L}^{n}\left(E_{1}\right)+\sum_{k=1}^{+\infty} M_{k+1}^{p} \mathcal{L}^{n}\left(E_{k+1} \backslash E_{k}\right)<+\infty
$$

such that, for every $x \in E_{k}, \operatorname{lip}(f, x)<M_{k}$. It follows that

$$
\begin{aligned}
\int_{E} \operatorname{lip}^{p}(f, \cdot) d x & =\int_{E_{1}} \operatorname{lip}^{p}(f, \cdot) d x+\sum_{k=1}^{+\infty} \int_{E_{k+1} \backslash E_{k}} \operatorname{lip}^{p}(f, \cdot) d x \\
& \leqslant M_{1}^{p} \mathcal{L}^{n}\left(E_{1}\right)+\sum_{k=1}^{+\infty} M_{k+1}^{p} \mathcal{L}^{n}\left(E_{k+1} \backslash E_{k}\right) .
\end{aligned}
$$

The proof of (ii) is obtained using Theorem 3.
(ii) \Rightarrow (i). Theorem 1 assures that f is differentiable almost everywhere in E and consequently f has partial derivatives $f_{x_{i}}(i=1,2, \ldots, n)$ almost everywhere in E. Being $\left|f_{x_{i}}\right| \leqslant \operatorname{lip}(f, \cdot)(i=1,2, \ldots, n)$ we have
$\int_{E}\left|f_{x_{i}}\right|^{p} d x \leqslant \int_{E} \operatorname{lip}^{p}(f, \cdot) d x$
and Theorem 2 gives that $\int_{E}\left|f_{x_{i}}\right|^{p} d x<+\infty$.

3. Change of variables via coarea formula

In this section using the technique of Malý a result of change of variables is obtained via coarea formula for the functions having bounded p, δ-variation.

Theorem 5. Let $f: \Omega \rightarrow \mathcal{R}^{m}$ with $m<n$. If the function f has bounded p, δ-variation in Ω with $m<p$ and $\delta(x)>0$ for every $x \in \Omega$, then

$$
\begin{equation*}
\int_{\mathcal{R}^{m}} \mathcal{H}^{n-m}\left(E \cap f^{-1}(y)\right) d y=0 \tag{6}
\end{equation*}
$$

as soon as $\mathcal{L}^{n}(E)=0$ and $E \subset \Omega$.
Proof. For fixed $\eta>0$, let G be an open set with $E \subset G$ and $\mathcal{L}^{n}(G)<\eta$. For every $x \in$ E we consider a closed ball $B(x, r(x)) \subset G$ and $0<2 r(x)<\delta_{\eta, G}(x)$, where $\delta_{\eta, G}(x)=$ $\min \left\{\eta, \delta(x), \delta_{G}(x)\right\}$ for every $x \in E$. Besicovitch's Theorem assures that there exist N sets $A_{1}, \ldots, A_{N} \subset E$, with N depending only on n, such that

$$
E \subset \bigcup_{i=1}^{N} \bigcup_{x \in A_{i}} B(x, r(x))
$$

and for every $i=1, \ldots, N$, the family $\left\{B(x, r(x)): x \in A_{i}\right\}$ is disjoint. Then for every $y \in \mathcal{R}^{m}$ we have

$$
\mathcal{H}_{\eta}^{n-m}\left(E \cap f^{-1}(y)\right) \leqslant C \sum_{i=1}^{N} \sum_{x \in A_{i}}\left\{r^{n-m}(x): x \in A_{i}, y \in f(B(x, r(x)))\right\},
$$

where C is a constant that can vary from member to member in what follows. Consequently

$$
\begin{aligned}
& \int_{\mathcal{R}^{m}} \mathcal{H}_{\eta}^{n-m}\left(E \cap f^{-1}(y)\right) d y \\
& \quad \leqslant C \sum_{i=1}^{N} \sum_{x \in A_{i}} r^{n-m}(x) \mathcal{L}^{m}(f(B(x, r(x)))) \\
& \quad \leqslant C \sum_{i=1}^{N} \sum_{x \in A_{i}} r^{n-m}(x) \omega^{m}(f, B(x, r(x)))
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C \sum_{i=1}^{N}\left(\sum_{x \in A_{i}} r^{n}(x)\right)^{(p-m) / p}\left(\sum_{x \in A_{i}} r^{n-p}(x) \omega^{p}(f, B(x, r(x)))\right)^{m / p} \\
& \leqslant C \eta^{(p-m) / p}\left(V_{p}\left(f, \Omega, \delta_{\eta, G}\right)\right)^{m / p}
\end{aligned}
$$

As $\eta \rightarrow 0$, we obtain (6).

Let $f: \Omega \rightarrow \mathcal{R}^{m}$ with $m<n$. We denote by $f^{\prime}(x)$ the Jacobi matrix of all the partial derivatives of f at x and by $J_{m} f(x)$ the row matrix having as elements the minors of order m of $f^{\prime}(x)$.

Theorem 6. Let $f: \Omega \rightarrow \mathcal{R}^{m}$, with $m<n$, be a function with bounded p, δ-variation in Ω, with $m<p$ and $\delta(x)>0$ for all $x \in \Omega$. For every measurable function u on a measurable set $E \subset \Omega$ such that $u\left\|J_{m} f\right\| \in L^{1}(E)$, we have that

$$
\begin{equation*}
\int_{E} u(x)\left\|J_{m} f(x)\right\| d x=\int_{\mathcal{R}^{m}}\left(\int_{E \cap f^{-1}(y)} u(x) d \mathcal{H}^{n-m}\right) d y . \tag{7}
\end{equation*}
$$

Proof. Since Theorem 1 holds for functions with values in \mathcal{R}^{m} the function f is differentiable almost everywhere in Ω. Therefore, a succession $\left(f_{j}\right)$ of Lipschitz functions of \mathcal{R}^{n} to \mathcal{R}^{m} exists such that

$$
\mathcal{L}^{n}\left(\Omega \backslash \bigcup_{j}\left\{x: f_{j}(x)=f(x) \text { and } f_{j}^{\prime}(x)=f^{\prime}(x)\right\}\right)=0
$$

Since (7) holds for Lipschitz functions [3, Theorem 3.2.12] it is enough to examine the case $\mathcal{L}^{n}(E)=0$ when the function u is the characteristic function of the set E. Under such hypotheses, we obtain (7) using Theorem 5.

Remark. Let $E \subset \Omega$ and $\delta \in \Delta(E)$. We say that a function $f: \Omega \rightarrow \mathcal{R}$ is p, δ-absolutely continuous in E if for every $\varepsilon>0$ there exists $\bar{\eta}>0$ such that

$$
\sum_{i} \omega^{p}\left(f, B\left(x_{i}, r_{i}\right)\right) r_{i}^{n-p}<\varepsilon,
$$

for each $\left\{B\left(x_{i}, r_{i}\right)\right\} \in \mathcal{P}(E, \delta)$ with $\sum_{i} \mathcal{L}^{n}\left(B\left(x_{i}, r_{i}\right)\right)<\bar{\eta}$.
We observe that Theorem 5 holds also if f is p, δ-absolutely continuous in Ω and $p \geqslant m$. In fact, we fix $\varepsilon>0$ and choose $\bar{\eta}>0$ as in the definition of p, δ-absolutely continuous function. Proceeding as in the proof of Theorem 5 , for every $\eta \leqslant \bar{\eta}$, we deduce that

$$
\int_{\mathcal{R}^{m}} \mathcal{H}_{\eta}^{n-m}\left(E \cap f^{-1}(y)\right) d y \leqslant C \eta^{(p-m) / p} \varepsilon^{m / p}
$$

and we obtain that (6) holds if $p \geqslant m$.
Since Theorem 1 holds for p, δ-absolutely continuous functions, we deduce that Theorem 6 is also valid if f is p, δ-absolutely continuous and $p \geqslant m$.

References

[1] D. Bongiorno, A regularity condition in Sobolev spaces $W_{\mathrm{loc}}^{1, p}\left(\mathcal{R}^{n}\right)$ with $1 \leqslant p<n$, Illinois J. Math. 46 (2002) 557-570.
[2] C. Di Bari, Sulla differenziabilità delle funzioni a valori in uno spazio reale di Banach riflessivo, Rend. Circ. Mat. Palermo 28 (1979) 229-238.
[3] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
[4] J. Malý, Absolutely continuous functions of several variables, J. Math. Anal. Appl. 231 (1999) 492-508.

[^0]: * Corresponding author.

 E-mail address: dibari@math.unipa.it (C. Di Bari).

