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Abstract

We consider a definition ofp, δ-variation for real functions of several variables which giv
information on the differentiability almost everywhere and the absolute integrability of its p
derivatives on a measurable set. This definition ofp, δ-variation extends the definition ofn-variation
of Malý and the definition ofp-variation of Bongiorno. We conclude with a result of change
variables based on coarea formula.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be an open set ofRn and letE be a subset ofΩ . We denote byLn(·) (respec-
tively byLn

e (·)) the measure (respectively the outer measure) of Lebesgue inRn. For every
x ∈Rn and for every real numberr � 0 we setB(x, r) = {y ∈Rn: ‖y − x‖ � r}. A func-
tion δ :E → [0,+∞] is agage onE if Ln

e ({x ∈ E: δ(x) = 0}) = 0. We denote with∆(E)

the family of all the gages onE. For every open setG ⊂ Ω the functionδG :G → [0,+∞]
associating to eachx ∈ G its distance from the boundary ofG is a gage onG. For every
η > 0 the functionδη :Ω → [0,+∞] with δη = min{η, δΩ} is a gage onΩ .

* Corresponding author.
E-mail address: dibari@math.unipa.it (C. Di Bari).
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.06.044



228 C. Di Bari, C. Vetro / J. Math. Anal. Appl. 299 (2004) 227–234

-

ed

ith
-

ith a
ed
A partition P in Ω is a countable disjoint family{B(xi, ri )} with B(xi, ri ) ⊂ Ω for
all i. If for all i, xi ∈ E, the partitionP = {B(xi, ri )} is calledtagged by E. For every gage
δ on E, a partitionP in Ω is calledδ-fine if ri < δ(xi) as soon asδ(xi) > 0 andri = 0
otherwise. We denote withP(E, δ) the family of all partitionsδ-fine in Ω that are tagged
by E.

Let f :Ω → R and letB(x, r) ⊂ Ω . We denote withω(f,B(x, r)) the oscillation of
the functionf in B(x, r), that is the diameter of the imagef (B(x, r)). For every positive
numberp, we set

fp

(
B(x, r)

) = ωp
(
f,B(x, r)

)
rn−p

and for everyP = {B(xi, ri )} ∈ P(E, δ),

fp(P ) =
∑

i

fp

(
B(xi, ri )

)
.

For everyδ ∈ ∆(E), we associate to the functionf the extended real number

Vp(f,E, δ) = sup
{
fp(P ): P ∈P(E, δ)

}
.

Vp(f,E, δ) is thep, δ-variation of the functionf overE. If there existsδ ∈ ∆(E) such
thatVp(f,E, δ) < +∞, we say thatf is of bounded p, δ-variation onE.

In [4] Malý proved that the functions with boundedn-variation, that is, the func
tions withbounded n, δΩ -variation on Ω , are differentiable almost everywhere inΩ and
have gradient inLn(Ω). In [1] D. Bongiorno proved that the functions with bound
p-variation, that is, the functions withbounded p, δη-variation in Ω with 1 � p � n,
are differentiable almost everywhere inΩ . In this paper, we show that the functions w
boundedp, δ-variation, in a measurable subsetE of Ω , are differentiable almost every
where inE and have partial derivatives that belong toLp(E). The variation introduced
in this paper is weaker in comparison to those considered in [1,4]. We conclude w
result of change of variables, based on coarea formula, for the functions that have bound
p, δ-variation.

2. Properties of the functions with bounded p, δ-variation

In this section,Ω will denote an open set ofRn, E a measurable subset ofΩ andp

a positive real number. Tof :Ω → R we associate the function lip(f, ·) :Ω → [0,+∞]
defined by

lip(f, x) = lim sup
y→x

|f (y) − f (x)|
‖y − x‖ .

We have the following result.

Theorem 1. If the function f :Ω → R has bounded p, δ-variation in E, then it is differ-
entiable almost everywhere in E.

Proof. Let δ ∈ ∆(E) be such thatVp(f,E, δ) < +∞. We set

E∞ = {
x ∈ E: lip(f, x) = +∞}

(1)
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func-
and

E0 = {
x ∈ E: δ(x) > 0

}
. (2)

By Stepanoff’s Theorem [3, Theorem 3.1.9], it is enough to prove that

Ln
e (E∞) = 0.

For every positive integerk, we consider the set

Ek = {
x ∈ E0: ∀σ > 0 ∃y ∈ Ω with ‖y − x‖ � σ and

∣∣f (y) − f (x)
∣∣ > k‖y − x‖}.

If we setB = Ln(B(0,1)), we will show that

Ln
e (Ek) � Bk−pVp(f,E, δ).

To every pointx ∈ Ek , we associate the familyB(x) of the closed ballsB(x, r) ⊂ Ω

with 0 < r < δ(x) such thatω(f,B(x, r)) > kr. The family
⋃

x∈Ek
B(x) forms a Vitali

cover forEk . Hence there exists a countable disjoint subfamily{B(xi, ri)} with

xi ∈ Ek, ri < δ(xi), B(xi , ri) ⊂ Ω and ω
(
f,B(xi, ri )

)
> kri,

for all i, such that

Ln
e

(
Ek

∖⋃
i

B(xi, ri )

)
= 0.

We have

Ln
e (Ek) � Ln

e

(
Ek

∖⋃
i

B(xi , ri )

)
+Ln

e

(⋃
i

B(xi , ri )

)
= Ln

(⋃
i

B(xi , ri )

)

=
∑

i

Ln
(
B(xi, ri )

) = B
∑

i

rn
i � Bk−p

∑
i

ωp
(
f,B(xi, ri )

)
r
n−p
i .

Consequently,

Ln
e (Ek) � Bk−p Vp(f,E, δ).

From

E0 ∩ E∞ ⊂
+∞⋂
k=1

Ek,

we get that

Ln
e (E∞) � Bk−p Vp(f,E, δ)

for all k and fork → +∞ we obtainLn
e (E∞) = 0. �

Theorems 2 and 3 give results regarding the link between the integrability of the
tion lip(f, ·) and thep, δ-variation off .
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Theorem 2. If the function f :Ω → R is such that Vp(f,E, δ) < +∞, with δ ∈ ∆(E),
then ∫

E

lipp(f, ·) dx � CVp(f,E, δ), where C ∈ R+.

Proof. For all x ∈ E, we assume that 0� δ(x) < 1 and we consider the functionh :Ω →
[0,+∞[ defined byh(x) = lipp(f, x) if x ∈ E0 \ E∞ andh(x) = 0 otherwise, whereE∞
andE0 are as in (1) and (2). Letg :Ω → [0,+∞[ be an upper semicontinuous functi
with g � h. Proceeding as in [4, Theorem 3.3], we deduce that∫

E

hdx =
∫
Ω

hdx = sup

{∫
Ω

g dx: g is u.s.c., 0 � g � h

}
� CVp(f,E, δ).

We obtain the conclusion observing that∫
E

lipp(f, ·) dx =
∫
E

hdx. �

Theorem 3. Let E be a measurable subset of Ω with Ln(E) < +∞. If the function
f :Ω → R is such that

∫
E lipp(f, ·) dx < +∞, then there exists δ ∈ ∆(E) such that

Vp(f,E, δ) � C

∫
E

lipp(f, ·) dx, with C ∈ R+.

Proof. From
∫
E

lipp(f, ·) dx < +∞, we deduce thatLn(E∞) = 0. Leth :Ω → [0,+∞[
be the function defined byh(x) = lipp(f, x) if x ∈ E \ E ∞ andh(x) = 0 otherwise.

Let G ⊂ Ω be an open set such thatE ⊂ G andLn(G) < +∞. For a fixedε > 0, we
consider the functionδε ∈ ∆(E) defined as follows:δε(x) = 0 in every point ofE where
the derivative of

∫
B(x,r) h dx does not coincide with lipp(f, ·). Moreover, for any othe

x ∈ E, we chooseδε(x) < δG(x) so that for every ballB(x, r) ⊂ G with r < δε(x),∣∣∣∣∣
∫

B(x,r)

h dx − lipp(f, ·)Ln
(
B(x, r)

)∣∣∣∣∣ < εLn
(
B(x, r)

)
(3)

and

ω
(
f,B(x, r)

)
� 3 lip(f, x)r if lip (f, x) > 0 (4)

or

ω
(
f,B(x, r)

)
� ε1/pr if lip (f, x) = 0 (5)

holds.
For every partitionP = {B(xi, ri )} ∈ P(E, δε) we consider setsI1 = {i: lip(f, xi) > 0}

andI2 = {i: lip(f, xi) = 0}. Using (3)–(5) we get



C. Di Bari, C. Vetro / J. Math. Anal. Appl. 299 (2004) 227–234 231

tial
∑
i

ωp
(
f,B(xi, ri)

)
r
n−p
i

�
∑
i∈I1

3p lipp(f, xi)r
n
i +

∑
i∈I2

εrn
i

= 3pB−1
∑
i∈I1

lipp(f, xi)Ln
(
B(xi, ri )

) + εB−1
∑
i∈I2

Ln
(
B(xi, ri )

)

< 3pB−1

(
Ln(G)ε +

∑
i

∫
E∩B(xi,ri )

lipp(f, ·) dx

)
.

Sinceε is arbitrary andLn(G) < +∞, it follows that

Vp(f,E, δε) � C

∫
E

lipp(f, ·) dx,

with C ∈R+, and the proof is completed.�
The following result concerning the differentiability and the integrability of par

derivatives of the function with boundedp, δ-variation.

Theorem 4. Let f :Ω → R, let E ⊂ Ω be a set with finite measure and let p be a positive
real number. Then the following conditions are equivalent:

(i) the function f is differentiable almost everywhere in E with partial derivatives be-
longing to Lp(E);

(ii) f is a function with bounded p, δ-variation in E.

Proof. (i) ⇒ (ii). By [2, Theorem 3] there exist an increasing sequence(Ek) of measur-
able subsets ofE and an increasing sequence(Mk) of positive numbers, with

Ln
(
E

∖⋃
Ek

)
= 0 and M

p

1 L
n(E1) +

+∞∑
k=1

M
p

k+1L
n(Ek+1 \ Ek) < +∞

such that, for everyx ∈ Ek , lip(f, x) < Mk . It follows that

∫
E

lipp(f, ·) dx =
∫
E1

lipp(f, ·) dx +
+∞∑
k=1

∫
Ek+1\Ek

lipp(f, ·) dx

� M
p

1 L
n(E1) +

+∞∑
k=1

M
p

k+1L
n(Ek+1 \ Ek).

The proof of (ii) is obtained using Theorem 3.
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(ii ) ⇒ (i). Theorem 1 assures thatf is differentiable almost everywhere inE and con-
sequentlyf has partial derivativesfxi (i = 1,2, . . . , n) almost everywhere inE. Being
|fxi | � lip(f, ·) (i = 1,2, . . . , n) we have∫

E

|fxi |p dx �
∫
E

lipp(f, ·) dx

and Theorem 2 gives that
∫
E |fxi |p dx < +∞. �

3. Change of variables via coarea formula

In this section using the technique of Malý a result of change of variables is obt
via coarea formula for the functions having boundedp, δ-variation.

Theorem 5. Let f :Ω → Rm with m < n. If the function f has bounded p, δ-variation in
Ω with m < p and δ(x) > 0 for every x ∈ Ω , then∫

Rm

Hn−m
(
E ∩ f −1(y)

)
dy = 0 (6)

as soon as Ln(E) = 0 and E ⊂ Ω .

Proof. For fixedη > 0, let G be an open set withE ⊂ G andLn(G) < η. For everyx ∈
E we consider a closed ballB(x, r(x)) ⊂ G and 0< 2r(x) < δη,G(x), whereδη,G(x) =
min{η, δ(x), δG(x)} for everyx ∈ E. Besicovitch’s Theorem assures that there existN sets
A1, . . . ,AN ⊂ E, with N depending only onn, such that

E ⊂
N⋃

i=1

⋃
x∈Ai

B
(
x, r(x)

)
and for everyi = 1, . . . ,N , the family {B(x, r(x)): x ∈ Ai} is disjoint. Then for every
y ∈Rm we have

Hn−m
η

(
E ∩ f −1(y)

)
� C

N∑
i=1

∑
x∈Ai

{
rn−m(x): x ∈ Ai, y ∈ f

(
B

(
x, r(x)

))}
,

whereC is a constant that can vary from member to member in what follows. Consequ∫
Rm

Hn−m
η

(
E ∩ f −1(y)

)
dy

� C

N∑
i=1

∑
x∈Ai

rn−m(x)Lm
(
f

(
B

(
x, r(x)

)))

� C

N∑ ∑
rn−m(x)ωm

(
f,B

(
x, r(x)

))

i=1 x∈Ai
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e the

eo-
� C

N∑
i=1

( ∑
x∈Ai

rn(x)

)(p−m)/p( ∑
x∈Ai

rn−p(x)ωp
(
f,B

(
x, r(x)

)))m/p

� Cη(p−m)/p
(
Vp(f,Ω, δη,G)

)m/p
.

As η → 0, we obtain (6). �
Let f :Ω → Rm with m < n. We denote byf ′(x) the Jacobi matrix of all the partia

derivatives off atx and byJmf (x) the row matrix having as elements the minors of or
m of f ′(x).

Theorem 6. Let f :Ω → Rm, with m < n, be a function with bounded p, δ-variation in Ω ,
with m < p and δ(x) > 0 for all x ∈ Ω . For every measurable function u on a measurable
set E ⊂ Ω such that u‖Jmf ‖ ∈ L1(E), we have that∫

E

u(x)
∥∥Jmf (x)

∥∥dx =
∫
Rm

( ∫
E∩f −1(y)

u(x) dHn−m

)
dy. (7)

Proof. Since Theorem 1 holds for functions with values inRm the functionf is differen-
tiable almost everywhere inΩ . Therefore, a succession(fj ) of Lipschitz functions ofRn

to Rm exists such that

Ln

(
Ω

∖⋃
j

{
x: fj (x) = f (x) andf ′

j (x) = f ′(x)
}) = 0.

Since (7) holds for Lipschitz functions [3, Theorem 3.2.12] it is enough to examin
caseLn(E) = 0 when the functionu is the characteristic function of the setE. Under such
hypotheses, we obtain (7) using Theorem 5.�
Remark. Let E ⊂ Ω andδ ∈ ∆(E). We say that a functionf :Ω → R is p, δ-absolutely
continuous in E if for everyε > 0 there existsη > 0 such that∑

i

ωp
(
f,B(xi, ri)

)
r
n−p
i < ε,

for each{B(xi, ri)} ∈ P(E, δ) with
∑

i Ln(B(xi, ri )) < η.
We observe that Theorem 5 holds also iff is p, δ-absolutely continuous inΩ and

p � m. In fact, we fix ε > 0 and chooseη > 0 as in the definition ofp, δ-absolutely
continuous function. Proceeding as in the proof of Theorem 5, for everyη � η, we deduce
that ∫

Rm

Hn−m
η

(
E ∩ f −1(y)

)
dy � Cη(p−m)/pεm/p

and we obtain that (6) holds ifp � m.
Since Theorem 1 holds forp, δ-absolutely continuous functions, we deduce that Th

rem 6 is also valid iff is p, δ-absolutely continuous andp � m.
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