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Abstract

We consider a definition op, §-variation for real functions of several variables which gives
information on the differentiability almost everywhere and the absolute integrability of its partial
derivatives on a measurable set. This definitiop of-variation extends the definition afvariation
of Maly and the definition ofp-variation of Bongiorno. We conclude with a result of change of
variables based on coarea formula.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let £2 be an open set dR”" and letE be a subset of2. We denote by " (-) (respec-
tively by £7(-)) the measure (respectively the outer measure) of Lebesgere ifior every
x € R" and for every real number> 0 we setB(x,r) = {y e R": ||y — x|| <r}. A func-
tions: E — [0, 4+o0] is agageon E if L ({x € E: §(x) =0}) = 0. We denote withA (E)
the family of all the gages oR. For every open s&t C §2 the functiondg : G — [0, +00]
associating to each € G its distance from the boundary ¢f is a gage orG. For every
n > 0 the functions, : 2 — [0, +o0] with §,, = min{n, §} is a gage or2.
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A partition P in £2 is a countable disjoint familyB(x;, r;)} with B(x;,r;) C 2 for
alli.Ifforall i, x; € E, the partitionP = { B(x;, r;)} is calledtagged by E. For every gage
8 on E, a partitionP in £2 is calleds-fineif r; < §(x;) as soon as(x;) >0 andr; =0
otherwise. We denote witR (E, §) the family of all partitionss-fine in £2 that are tagged
by E.

Let f:£2 — R and letB(x,r) C £2. We denote withw(f, B(x, r)) the oscillation of
the functionf in B(x, r), that is the diameter of the imag&B(x, r)). For every positive
numberp, we set

fr (B(x, r)) =’ (f, B(x, r))r"_p
and for everyP = {B(x;,r;)} € P(E, §),

fr(PY=" fp(Bxi, ).

For everys € A(E), we associate to the functigfithe extended real number
Vy(f, E,8) =sup{ f,(P): P € P(E,$)}.

V,(f, E, 8) is thep, §-variation of the functionf overE. If there exists$ € A(E) such
thatV,(f, E, §) < 400, we say thatf is of bounded p, §-variationon E.

In [4] Maly proved that the functions with boundedvariation, that is, the func-
tions withbounded 7, §;-variation on £2, are differentiable almost everywhereghand
have gradient inL"(£2). In [1] D. Bongiorno proved that the functions with bounded
p-variation, that is, the functions withounded p, §,-variation in £2 with 1 < p <n,
are differentiable almost everywheredh. In this paper, we show that the functions with
boundedp, §-variation, in a measurable subggetof §2, are differentiable almost every-
where inE and have partial derivatives that belongit8(E). The variation introduced
in this paper is weaker in comparison to those considered in [1,4]. We conclude with a
result of change of variables, based onreagormula, for the functions that have bounded
p, 8-variation.

2. Propertiesof thefunctionswith bounded p, §-variation

In this section$2 will denote an open set d®", E a measurable subset & and p
a positive real number. Tg : 2 — R we associate the function lif, -) : 2 — [0, +-00]
defined by

lip(f, x) =Ilim supw_

y—=x ly — x|l

We have the following result.

Theorem 1. If the function f: 2 — R has bounded p, §-variation in E, then it is differ-
entiable almost everywherein E.

Proof. Lets € A(E) be suchthav,(f, E, §) < +oo. We set
Eooz{er: |ip(f,x)=+oo} Q)
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and
Eo={x € E: §(x) > 0}. (2)
By Stepanoff’s Theorem [3, Theorem 3.1.9], it is enough to prove that
L (Eso) =0.
For every positive integér, we consider the set
Ex={x € Ep: Yo > 03y € 2 with |y — x| <o and| f(y) — f(x)| > klly — x]l}.
If we setB = L"(B(0, 1)), we will show that
L)(Ex) < Bk PV,(f.E,$).

To every pointx € Ey, we associate the famil§(x) of the closed ballB(x,r) C 2
with 0 < r < 8(x) such thatw(f, B(x,r)) > kr. The family Uerk B(x) forms a Vitali
cover forEy. Hence there exists a countable disjoint subfarpllyx;, r;)} with

xi € Eg, ri <8(xi), B(xi,rj)C 2 and o(f, B(xi,ri)) > kri,

for all i, such that
cr <Ek\ B, r,-)) =0.
We have |
Ly (Ep) < Ly (Ek\ B, r,-)) + L0 (U B(xi, r,-)) v (U B(x;, r,-))
= ZE"(B();, r))=BY r'< I;k_” > ol (f, B(xi,lr,-))rinp.

Consequently,

LL(Er) < BK™P Vy(f, E, ).

From
+00
EoN Eeo C () Ex.
k=1
we get that

‘CZ(EOO) < Bkip Vp(f7 Ea 8)

for all k and fork — +oo we obtainl}(E«) =0. O

Theorems 2 and 3 give results regarding the link between the integrability of the func-
tion lip(f, -) and thep, §-variation of f.
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Theorem 2. If the function f:£2 — R issuch that V,(f, E, §) < 400, with § € A(E),
then

/Iip”(f, )dx < CV,(f, E,5), whereCeRy.
E

Proof. Forallx € E, we assume thatf §(x) < 1 and we consider the functidin 2 —

[0, +o0[ defined byh(x) = lip? (f, x) if x € Eg\ Ec andh(x) = 0 otherwise, wher&
and Eg are as in (1) and (2). Let: 2 — [0, +oo[ be an upper semicontinuous function
with ¢ < h. Proceeding as in [4, Theorem 3.3], we deduce that

/hdx:/hdx:sup{/gdx: gisu.s.c, Ogggh} <CV,(f, E,9).
E Q2 Q2

We obtain the conclusion observing that

/Iip”(f, -)dx:/hdx. O

E E

Theorem 3. Let E be a measurable subset of 2 with £"(E) < +oco. If the function
f 2 — Rissuchthat [E lip?(f,)dx < +00, then there exists § € A(E) such that

Vp(f,E,8)<C/Iip”(f, Jdx, withC e Ry.
E

Proof. From [ lip”(f,-)dx < 400, we deduce that" (E) = 0. Leth: 2 — [0, +o0[
be the function defined by(x) = lip? (f, x) if x € E \ E » andhi(x) = 0 otherwise.

Let G C £2 be an open set such thAtc G and£"(G) < +oo. For a fixede > 0, we
consider the functiod. € A(E) defined as followsé, (x) = 0 in every point ofE where
the derivative offB(x’r)hdx does not coincide with I f, -). Moreover, for any other
x € E, we choosé,. (x) < 8 (x) so that for every balB(x, r) C G with r < §.(x),

hdx —lip?(f, )L"(B(x,r))| < eL"(B(x,r)) (3)
B(x,r)
and
o(f, Bx,r) <3lip(f,x)r if lip(f,x) >0 (4)
or
o(f, Bx,r) <eYPr iflip(f,x)=0 (5)
holds.

For every partition? = {B(x;,r;)} € P(E, §¢) we consider setg = {i: lip(f, x;) > 0}
and/l> = {i: lip(f, x;) = 0}. Using (3)—(5) we get
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n—
pr(va(-xisri))r[ b

< 23” lip?(f, x)ri" + Zer,-"

iel ielp
=3B lip? (fox)L" (B(xi,ri)) +€B™1 Y L"(B(xi. 1))
ielp i€l
< 31’Bl<£"(G)e + Z / lip?(f, «)dx).
i ENB(xj,ri)

Sincee is arbitrary andC” (G) < +oo, it follows that

Vp(f,E,5e)<C/|ipp(f, dx,

E

with C € R4, and the proof is completed.c

The following result concerning the differentiability and the integrability of partial
derivatives of the function with bounded §-variation.

Theorem 4. Let f:2 — R, let E C £2 be a set with finite measure and let p be a positive
real number. Then the following conditions are equivalent:

(i) the function f is differentiable almost everywhere in E with partial derivatives be-
longingto L?(E);
(i) f isafunctionwith bounded p, §-variationin E.

Proof. (i) = (ii). By [2, Theorem 3] there exist an increasing sequdiife of measur-
able subsets of and an increasing sequen@é;) of positive numbers, with

+00
o (E\ U Ek) =0 and M{L'(ED+ Y M} L' (Exs1)\ Ex) < +00
k=1

such that, for every € Ey, lip(f, x) < M. It follows that

+00
/Iip”(f, -)dx:/lip”(f, Ndx+ ) / lip? (f, ) dx

E Ey k=1 E\E
+00
<M{L(ED) + ) M| L" (Exy1 \ Ep).
k=1

The proof of (ii) is obtained using Theorem 3.
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(i) = (i). Theorem 1 assures thgtis differentiable almost everywhere i and con-
sequentlyf has partial derivativegy, (i =1,2,...,n) almost everywhere itE. Being
| fo| <lip(f,-) i=1,2,...,n) we have

/Ifx,-l”dx</|ip”(f, ) dx
E E

and Theorem 2 gives thd, | fy,|? dx < +o0. O

3. Change of variablesvia coarea formula

In this section using the technique of Maly a result of change of variables is obtained
via coarea formula for the functions having bounged-variation.

Theorem 5. Let f: 2 — R™ with m < n. If the function f has bounded p, §-variation in
2 withm < p and §(x) > O for every x € £2, then

[ (En o) ay=o (6)
R}N
assoonasL"(E)=0and E C £2.

Proof. For fixedn > 0, letG be an open set witlk ¢ G and£"(G) < n. For everyx €
E we consider a closed balt(x, r(x)) C G and 0< 2r(x) < §, c(x), wheres, ¢ (x) =
min{n, §(x), 8g(x)} for everyx € E. Besicovitch’s Theorem assures that there eXisets
A1, ..., Ay C E, with N depending only om, such that

EC LNJ U B(x, r(x))

i=1x€A;

and for everyi = 1,..., N, the family {B(x, r(x)): x € A;} is disjoint. Then for every
y € R™ we have

N
Hy(ENFTH)<SC Y0 Y T v € Ay e f(Blx.r ()},

i=1 xeA;

whereC is a constant that can vary from member to member in what follows. Consequently

[ Eastonay

Rm

CCY T L (1 (B (e ro)

i=1 XEA;

N
<C Z Z ()™ (f, B(x, r(x)))

i=1 xeA;
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m/p

N (p—m)/p
< CZ( Z r"(x)) ( Z r"P(x)wP (f, B(x, r(x))))

i=1 “x€A; X€EA;
<PV, (f, 2,8,6))"".

As n — 0, we obtain (6). O

Let f: 2 — R™ with m < n. We denote byf’(x) the Jacobi matrix of all the partial
derivatives off atx and byJ,, f (x) the row matrix having as elements the minors of order
m of f'(x).

Theorem 6. Let f: 2 — R™, withm < n, beafunctionwith bounded p, §-variationin £2,
withm < p and §(x) > Ofor all x € £2. For every measurable function u on a measurable
set E C 2 suchthat u||J,, f|| € L1(E), we have that

/u(x)”]mf(x)H dx:/( / u(x)d’H”_m) dy. (7)

E R CENf)

Proof. Since Theorem 1 holds for functions with valuesiff the functionf is differen-
tiable almost everywhere i2. Therefore, a successi@if;) of Lipschitz functions ofR"
to R™ exists such that

L <.Q\U{x1 fi() = fx)and fi(x) = f/(x)}) =0.
J

Since (7) holds for Lipschitz functions [3, Theorem 3.2.12] it is enough to examine the
caseL" (E) = 0 when the functiom is the characteristic function of the s&t Under such
hypotheses, we obtain (7) using Theorem &

Remark. Let E C £2 ands € A(E). We say that a functioif : 2 — R is p, §-absolutely
continuousin E if for every e > 0 there existg > 0 such that

Za)p(f, B(x;, r,'))rinfp <e,

for each{B(x;,ri)} € P(E, 8) with )", L"(B(x;,ri)) <1].

We observe that Theorem 5 holds alsofifis p, §-absolutely continuous i2 and
p = m. In fact, we fixe > 0 and choose; > 0 as in the definition ofp, §-absolutely
continuous function. Proceeding as in the proof of Theorem 5, for everyj, we deduce
that

/ Hy " (EN 1)) dy < Cp'P=m/pemlp
Rm
and we obtain that (6) holds if > m.

Since Theorem 1 holds fgr, §-absolutely continuous functions, we deduce that Theo-
rem 6 is also valid iff is p, §-absolutely continuous anel > m.
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