

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 299 (2004) 227-234

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

A remark on differentiable functions with partial derivatives in L^p

Cristina Di Bari*, Calogero Vetro

Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, Italy Received 6 November 2003 Available online 3 September 2004

Submitted by B.S. Thomson

Abstract

We consider a definition of p, δ -variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p, δ -variation extends the definition of *n*-variation of Malý and the definition of *p*-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula.

© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be an open set of \mathbb{R}^n and let E be a subset of Ω . We denote by $\mathcal{L}^n(\cdot)$ (respectively by $\mathcal{L}^n_e(\cdot)$) the measure (respectively the outer measure) of Lebesgue in \mathbb{R}^n . For every $x \in \mathbb{R}^n$ and for every real number $r \ge 0$ we set $B(x, r) = \{y \in \mathbb{R}^n : \|y - x\| \le r\}$. A function $\delta : E \to [0, +\infty]$ is a *gage* on E if $\mathcal{L}^n_e(\{x \in E : \delta(x) = 0\}) = 0$. We denote with $\Delta(E)$ the family of all the gages on E. For every open set $G \subset \Omega$ the function $\delta_G : G \to [0, +\infty]$ associating to each $x \in G$ its distance from the boundary of G is a gage on G. For every $\eta > 0$ the function $\delta_\eta : \Omega \to [0, +\infty]$ with $\delta_\eta = \min\{\eta, \delta_\Omega\}$ is a gage on Ω .

^{*} Corresponding author. E-mail address: dibari@math.unipa.it (C. Di Bari).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.06.044

A partition *P* in Ω is a countable disjoint family $\{B(x_i, r_i)\}$ with $B(x_i, r_i) \subset \Omega$ for all *i*. If for all *i*, $x_i \in E$, the partition $P = \{B(x_i, r_i)\}$ is called *tagged* by *E*. For every gage δ on *E*, a partition *P* in Ω is called δ -fine if $r_i < \delta(x_i)$ as soon as $\delta(x_i) > 0$ and $r_i = 0$ otherwise. We denote with $\mathcal{P}(E, \delta)$ the family of all partitions δ -fine in Ω that are tagged by *E*.

Let $f: \Omega \to \mathcal{R}$ and let $B(x, r) \subset \Omega$. We denote with $\omega(f, B(x, r))$ the oscillation of the function f in B(x, r), that is the diameter of the image f(B(x, r)). For every positive number p, we set

$$f_p(B(x,r)) = \omega^p(f, B(x,r))r^{n-p}$$

and for every $P = \{B(x_i, r_i)\} \in \mathcal{P}(E, \delta)$,

$$f_p(P) = \sum_i f_p(B(x_i, r_i)).$$

For every $\delta \in \Delta(E)$, we associate to the function *f* the extended real number

$$V_p(f, E, \delta) = \sup \{ f_p(P) \colon P \in \mathcal{P}(E, \delta) \}.$$

 $V_p(f, E, \delta)$ is the p, δ -variation of the function f over E. If there exists $\delta \in \Delta(E)$ such that $V_p(f, E, \delta) < +\infty$, we say that f is of bounded p, δ -variation on E.

In [4] Malý proved that the functions with bounded *n*-variation, that is, the functions with *bounded* n, δ_{Ω} -variation on Ω , are differentiable almost everywhere in Ω and have gradient in $L^n(\Omega)$. In [1] D. Bongiorno proved that the functions with bounded *p*-variation, that is, the functions with *bounded* p, δ_{η} -variation in Ω with $1 \leq p \leq n$, are differentiable almost everywhere in Ω . In this paper, we show that the functions with bounded p, δ -variation, in a measurable subset E of Ω , are differentiable almost everywhere in E and have partial derivatives that belong to $L^p(E)$. The variation introduced in this paper is weaker in comparison to those considered in [1,4]. We conclude with a result of change of variables, based on coarea formula, for the functions that have bounded p, δ -variation.

2. Properties of the functions with bounded p, δ -variation

In this section, Ω will denote an open set of \mathcal{R}^n , E a measurable subset of Ω and p a positive real number. To $f: \Omega \to \mathcal{R}$ we associate the function $\lim(f, \cdot): \Omega \to [0, +\infty]$ defined by

$$\operatorname{lip}(f, x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{\|y - x\|}$$

We have the following result.

Theorem 1. If the function $f : \Omega \to \mathcal{R}$ has bounded p, δ -variation in E, then it is differentiable almost everywhere in E.

Proof. Let $\delta \in \Delta(E)$ be such that $V_p(f, E, \delta) < +\infty$. We set $E_{\infty} = \{x \in E: \operatorname{lip}(f, x) = +\infty\}$ (1)

228

and

$$E_0 = \{ x \in E: \, \delta(x) > 0 \}.$$
⁽²⁾

By Stepanoff's Theorem [3, Theorem 3.1.9], it is enough to prove that

$$\mathcal{L}^n_{\rho}(E_{\infty}) = 0.$$

For every positive integer k, we consider the set

$$E_k = \left\{ x \in E_0 \colon \forall \sigma > 0 \; \exists y \in \Omega \text{ with } \|y - x\| \leq \sigma \text{ and } \left| f(y) - f(x) \right| > k \|y - x\| \right\}.$$

If we set $B = \mathcal{L}^n(B(0, 1))$, we will show that

$$\mathcal{L}_e^n(E_k) \leqslant Bk^{-p} V_p(f, E, \delta).$$

To every point $x \in E_k$, we associate the family $\mathcal{B}(x)$ of the closed balls $B(x, r) \subset \Omega$ with $0 < r < \delta(x)$ such that $\omega(f, B(x, r)) > kr$. The family $\bigcup_{x \in E_k} \mathcal{B}(x)$ forms a Vitali cover for E_k . Hence there exists a countable disjoint subfamily $\{B(x_i, r_i)\}$ with

$$x_i \in E_k$$
, $r_i < \delta(x_i)$, $B(x_i, r_i) \subset \Omega$ and $\omega(f, B(x_i, r_i)) > kr_i$,

for all i, such that

$$\mathcal{L}_e^n\left(E_k \setminus \bigcup_i B(x_i, r_i)\right) = 0$$

We have

$$\mathcal{L}_{e}^{n}(E_{k}) \leq \mathcal{L}_{e}^{n}\left(E_{k} \setminus \bigcup_{i} B(x_{i}, r_{i})\right) + \mathcal{L}_{e}^{n}\left(\bigcup_{i} B(x_{i}, r_{i})\right) = \mathcal{L}^{n}\left(\bigcup_{i} B(x_{i}, r_{i})\right)$$
$$= \sum_{i} \mathcal{L}^{n}\left(B(x_{i}, r_{i})\right) = B \sum_{i} r_{i}^{n} \leq Bk^{-p} \sum_{i} \omega^{p}\left(f, B(x_{i}, r_{i})\right)r_{i}^{n-p}.$$

Consequently,

$$\mathcal{L}_{e}^{n}(E_{k}) \leqslant Bk^{-p} V_{p}(f, E, \delta).$$

From

$$E_0 \cap E_\infty \subset \bigcap_{k=1}^{+\infty} E_k,$$

we get that

$$\mathcal{L}_e^n(E_\infty) \leqslant Bk^{-p} V_p(f, E, \delta)$$

for all k and for $k \to +\infty$ we obtain $\mathcal{L}_e^n(E_\infty) = 0.$

Theorems 2 and 3 give results regarding the link between the integrability of the function $lip(f, \cdot)$ and the p, δ -variation of f.

Theorem 2. If the function $f : \Omega \to \mathcal{R}$ is such that $V_p(f, E, \delta) < +\infty$, with $\delta \in \Delta(E)$, then

$$\int_{E} \operatorname{lip}^{p}(f, \cdot) \, dx \leqslant C V_{p}(f, E, \delta), \quad \text{where } C \in \mathcal{R}_{+}.$$

Proof. For all $x \in E$, we assume that $0 \le \delta(x) < 1$ and we consider the function $h : \Omega \to [0, +\infty[$ defined by $h(x) = \lim_{p \to \infty} (f, x)$ if $x \in E_0 \setminus E_\infty$ and h(x) = 0 otherwise, where E_∞ and E_0 are as in (1) and (2). Let $g : \Omega \to [0, +\infty[$ be an upper semicontinuous function with $g \le h$. Proceeding as in [4, Theorem 3.3], we deduce that

$$\int_{E} h \, dx = \int_{\Omega} h \, dx = \sup \left\{ \int_{\Omega} g \, dx: \ g \text{ is u.s.c., } 0 \leqslant g \leqslant h \right\} \leqslant C V_p(f, E, \delta).$$

We obtain the conclusion observing that

$$\int_{E} \operatorname{lip}^{p}(f, \cdot) \, dx = \int_{E} h \, dx. \qquad \Box$$

Theorem 3. Let *E* be a measurable subset of Ω with $\mathcal{L}^n(E) < +\infty$. If the function $f: \Omega \to \mathcal{R}$ is such that $\int_E \operatorname{lip}^p(f, \cdot) dx < +\infty$, then there exists $\delta \in \Delta(E)$ such that

$$V_p(f, E, \delta) \leq C \int_E \operatorname{lip}^p(f, \cdot) dx, \quad \text{with } C \in \mathcal{R}_+.$$

Proof. From $\int_E \operatorname{lip}^p(f, \cdot) dx < +\infty$, we deduce that $\mathcal{L}^n(E_\infty) = 0$. Let $h: \Omega \to [0, +\infty[$ be the function defined by $h(x) = \operatorname{lip}^p(f, x)$ if $x \in E \setminus E_\infty$ and h(x) = 0 otherwise.

Let $G \subset \Omega$ be an open set such that $E \subset G$ and $\mathcal{L}^n(G) < +\infty$. For a fixed $\epsilon > 0$, we consider the function $\delta_{\epsilon} \in \Delta(E)$ defined as follows: $\delta_{\epsilon}(x) = 0$ in every point of E where the derivative of $\int_{B(x,r)} h \, dx$ does not coincide with $\operatorname{lip}^p(f, \cdot)$. Moreover, for any other $x \in E$, we choose $\delta_{\epsilon}(x) < \delta_G(x)$ so that for every ball $B(x, r) \subset G$ with $r < \delta_{\epsilon}(x)$,

$$\left| \int_{B(x,r)} h \, dx - \operatorname{lip}^p(f, \cdot) \mathcal{L}^n(B(x,r)) \right| < \epsilon \mathcal{L}^n(B(x,r))$$
(3)

and

$$\omega(f, B(x, r)) \leq 3 \operatorname{lip}(f, x) r \quad \text{if } \operatorname{lip}(f, x) > 0 \tag{4}$$

or

$$\omega(f, B(x, r)) \leqslant \epsilon^{1/p} r \quad \text{if } \operatorname{lip}(f, x) = 0 \tag{5}$$

holds.

For every partition $P = \{B(x_i, r_i)\} \in \mathcal{P}(E, \delta_{\epsilon})$ we consider sets $I_1 = \{i: \operatorname{lip}(f, x_i) > 0\}$ and $I_2 = \{i: \operatorname{lip}(f, x_i) = 0\}$. Using (3)–(5) we get

230

$$\begin{split} &\sum_{i} \omega^{p} \left(f, B(x_{i}, r_{i}) \right) r_{i}^{n-p} \\ &\leqslant \sum_{i \in I_{1}} 3^{p} \operatorname{lip}^{p}(f, x_{i}) r_{i}^{n} + \sum_{i \in I_{2}} \epsilon r_{i}^{n} \\ &= 3^{p} B^{-1} \sum_{i \in I_{1}} \operatorname{lip}^{p}(f, x_{i}) \mathcal{L}^{n} \left(B(x_{i}, r_{i}) \right) + \epsilon B^{-1} \sum_{i \in I_{2}} \mathcal{L}^{n} \left(B(x_{i}, r_{i}) \right) \\ &< 3^{p} B^{-1} \left(\mathcal{L}^{n}(G) \epsilon + \sum_{i} \int_{E \cap B(x_{i}, r_{i})} \operatorname{lip}^{p}(f, \cdot) dx \right). \end{split}$$

Since ϵ is arbitrary and $\mathcal{L}^n(G) < +\infty$, it follows that

$$V_p(f, E, \delta_\epsilon) \leqslant C \int_E \operatorname{lip}^p(f, \cdot) dx,$$

with $C \in \mathcal{R}_+$, and the proof is completed. \Box

The following result concerning the differentiability and the integrability of partial derivatives of the function with bounded p, δ -variation.

Theorem 4. Let $f : \Omega \to \mathcal{R}$, let $E \subset \Omega$ be a set with finite measure and let p be a positive real number. Then the following conditions are equivalent:

- (i) the function f is differentiable almost everywhere in E with partial derivatives belonging to L^p(E);
- (ii) f is a function with bounded p, δ -variation in E.

Proof. (i) \Rightarrow (ii). By [2, Theorem 3] there exist an increasing sequence (E_k) of measurable subsets of *E* and an increasing sequence (M_k) of positive numbers, with

$$\mathcal{L}^n\left(E\setminus\bigcup E_k\right)=0\quad\text{and}\quad M_1^p\mathcal{L}^n(E_1)+\sum_{k=1}^{+\infty}M_{k+1}^p\mathcal{L}^n(E_{k+1}\setminus E_k)<+\infty$$

such that, for every $x \in E_k$, $\lim(f, x) < M_k$. It follows that

$$\int_{E} \operatorname{lip}^{p}(f, \cdot) dx = \int_{E_{1}} \operatorname{lip}^{p}(f, \cdot) dx + \sum_{k=1}^{+\infty} \int_{E_{k+1} \setminus E_{k}} \operatorname{lip}^{p}(f, \cdot) dx$$
$$\leq M_{1}^{p} \mathcal{L}^{n}(E_{1}) + \sum_{k=1}^{+\infty} M_{k+1}^{p} \mathcal{L}^{n}(E_{k+1} \setminus E_{k}).$$

The proof of (ii) is obtained using Theorem 3.

(ii) \Rightarrow (i). Theorem 1 assures that *f* is differentiable almost everywhere in *E* and consequently *f* has partial derivatives f_{x_i} (i = 1, 2, ..., n) almost everywhere in *E*. Being $|f_{x_i}| \leq \lim(f, \cdot)$ (i = 1, 2, ..., n) we have

$$\int_{E} |f_{x_i}|^p \, dx \leqslant \int_{E} \operatorname{lip}^p(f, \cdot) \, dx$$

and Theorem 2 gives that $\int_E |f_{x_i}|^p dx < +\infty$. \Box

3. Change of variables via coarea formula

In this section using the technique of Malý a result of change of variables is obtained via coarea formula for the functions having bounded p, δ -variation.

Theorem 5. Let $f : \Omega \to \mathbb{R}^m$ with m < n. If the function f has bounded p, δ -variation in Ω with m < p and $\delta(x) > 0$ for every $x \in \Omega$, then

$$\int_{\mathcal{R}^m} \mathcal{H}^{n-m} \left(E \cap f^{-1}(y) \right) dy = 0 \tag{6}$$

as soon as $\mathcal{L}^n(E) = 0$ and $E \subset \Omega$.

Proof. For fixed $\eta > 0$, let *G* be an open set with $E \subset G$ and $\mathcal{L}^n(G) < \eta$. For every $x \in E$ we consider a closed ball $B(x, r(x)) \subset G$ and $0 < 2r(x) < \delta_{\eta,G}(x)$, where $\delta_{\eta,G}(x) = \min\{\eta, \delta(x), \delta_G(x)\}$ for every $x \in E$. Besicovitch's Theorem assures that there exist *N* sets $A_1, \ldots, A_N \subset E$, with *N* depending only on *n*, such that

$$E \subset \bigcup_{i=1}^{N} \bigcup_{x \in A_i} B(x, r(x))$$

and for every i = 1, ..., N, the family $\{B(x, r(x)): x \in A_i\}$ is disjoint. Then for every $y \in \mathbb{R}^m$ we have

$$\mathcal{H}^{n-m}_{\eta}\left(E\cap f^{-1}(y)\right)\leqslant C\sum_{i=1}^{N}\sum_{x\in A_{i}}\left\{r^{n-m}(x):\ x\in A_{i},\ y\in f\left(B\left(x,r(x)\right)\right)\right\},$$

where C is a constant that can vary from member to member in what follows. Consequently

$$\int_{\mathcal{R}^m} \mathcal{H}_{\eta}^{n-m} \left(E \cap f^{-1}(y) \right) dy$$
$$\leqslant C \sum_{i=1}^N \sum_{x \in A_i} r^{n-m}(x) \mathcal{L}^m \left(f \left(B \left(x, r(x) \right) \right) \right)$$
$$\leqslant C \sum_{i=1}^N \sum_{x \in A_i} r^{n-m}(x) \omega^m \left(f, B \left(x, r(x) \right) \right)$$

232

$$\leqslant C \sum_{i=1}^{N} \left(\sum_{x \in A_{i}} r^{n}(x) \right)^{(p-m)/p} \left(\sum_{x \in A_{i}} r^{n-p}(x) \omega^{p} \left(f, B(x, r(x)) \right) \right)^{m/p}$$

$$\leqslant C \eta^{(p-m)/p} \left(V_{p}(f, \Omega, \delta_{\eta, G}) \right)^{m/p}.$$

As $\eta \to 0$, we obtain (6). \Box

Let $f: \Omega \to \mathbb{R}^m$ with m < n. We denote by f'(x) the Jacobi matrix of all the partial derivatives of f at x and by $J_m f(x)$ the row matrix having as elements the minors of order m of f'(x).

Theorem 6. Let $f : \Omega \to \mathbb{R}^m$, with m < n, be a function with bounded p, δ -variation in Ω , with m < p and $\delta(x) > 0$ for all $x \in \Omega$. For every measurable function u on a measurable set $E \subset \Omega$ such that $u ||J_m f|| \in L^1(E)$, we have that

$$\int_{E} u(x) \| J_m f(x) \| dx = \int_{\mathcal{R}^m} \left(\int_{E \cap f^{-1}(y)} u(x) d\mathcal{H}^{n-m} \right) dy.$$
⁽⁷⁾

Proof. Since Theorem 1 holds for functions with values in \mathcal{R}^m the function f is differentiable almost everywhere in Ω . Therefore, a succession (f_j) of Lipschitz functions of \mathcal{R}^n to \mathcal{R}^m exists such that

$$\mathcal{L}^n\left(\Omega \setminus \bigcup_j \left\{x: f_j(x) = f(x) \text{ and } f'_j(x) = f'(x)\right\}\right) = 0.$$

Since (7) holds for Lipschitz functions [3, Theorem 3.2.12] it is enough to examine the case $\mathcal{L}^n(E) = 0$ when the function *u* is the characteristic function of the set *E*. Under such hypotheses, we obtain (7) using Theorem 5. \Box

Remark. Let $E \subset \Omega$ and $\delta \in \Delta(E)$. We say that a function $f : \Omega \to \mathcal{R}$ is p, δ -absolutely continuous in E if for every $\varepsilon > 0$ there exists $\overline{\eta} > 0$ such that

$$\sum_{i} \omega^{p} \big(f, B(x_{i}, r_{i}) \big) r_{i}^{n-p} < \varepsilon,$$

for each $\{B(x_i, r_i)\} \in \mathcal{P}(E, \delta)$ with $\sum_i \mathcal{L}^n(B(x_i, r_i)) < \overline{\eta}$.

We observe that Theorem 5 holds also if f is p, δ -absolutely continuous in Ω and $p \ge m$. In fact, we fix $\varepsilon > 0$ and choose $\overline{\eta} > 0$ as in the definition of p, δ -absolutely continuous function. Proceeding as in the proof of Theorem 5, for every $\eta \le \overline{\eta}$, we deduce that

$$\int_{\mathcal{R}^m} \mathcal{H}^{n-m}_{\eta} \big(E \cap f^{-1}(y) \big) \, dy \leqslant C \eta^{(p-m)/p} \varepsilon^{m/p}$$

and we obtain that (6) holds if $p \ge m$.

Since Theorem 1 holds for p, δ -absolutely continuous functions, we deduce that Theorem 6 is also valid if f is p, δ -absolutely continuous and $p \ge m$.

C. Di Bari, C. Vetro / J. Math. Anal. Appl. 299 (2004) 227-234

References

- [1] D. Bongiorno, A regularity condition in Sobolev spaces $W_{\text{loc}}^{1,p}(\mathcal{R}^n)$ with $1 \leq p < n$, Illinois J. Math. 46 (2002) 557–570.
- [2] C. Di Bari, Sulla differenziabilità delle funzioni a valori in uno spazio reale di Banach riflessivo, Rend. Circ. Mat. Palermo 28 (1979) 229–238.
- [3] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
- [4] J. Malý, Absolutely continuous functions of several variables, J. Math. Anal. Appl. 231 (1999) 492-508.