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Abstract 
 
The object of the paper concerns a consistent formulation of the classical Signorini's theory 
regarding the frictionless unilateral contact problem between two elastic bodies in the hypothesis of 
small displacements and strains. A variational approach, employed within the symmetric Boundary 
Element Method, leads to an algebraic formulation based on nodal quantities. The contact problem 
is decomposed into two sub-problems: one is purely elastic, and the other pertains to the unilateral 
contact condition alone. Following this methodology, the contact problem, faced with symmetric 
BEM, is characterized by symmetry and sign definiteness of the coefficient matrix, thus admitting a 
unique solution. 
The solution of the frictionless unilateral contact problem can be obtained 
- through a step-by-step analysis utilizing generalized quantities as check elements in the zones of 

potential contact or detachment. Indeed, the detachment or the contact phenomenon may happen 
when the weighted traction or the weighted displacement is greater than the weighted cohesion 
or weighted minimum reference gap, respectively; 

- through a quadratic programming problem based on the minimum of the total potential energy. 



In the example, given in the paper, the detachment phenomenon is considered and some 
comparisons of the solution between the step-by-step analysis and the direct approach which utilizes 
the quadratic programming will be shown. 
 
 
1    Mixed variable multidomain approach 
 

This section shows the procedure utilized to obtain, using the mixed variable multidomain 
approach through the symmetric Boundary Element Method (SBEM) [1], an equation connecting 
mechanical and kinematical weighted quantities in the contact boundaries to mechanical and 
kinematical nodal quantities defined in the same contact boundaries, and to the known boundary 
(forces and imposed displacements) and domain (body forces) actions. This expression is 
characterized by elastic operators containing the geometry and constitutive data.  

Consider the classical Somigliana Identities (S.Is.), written for one of two contact bodies, i.e.: 

( )
  

        u G f G u G buu ut uud d d                                                                                (1a) 

( )
  

        t G f G u G btu tt tud d d                                                                                 (1b) 

having domain   and boundary  . 
It is subjected to plane actions: 
- forces 2f  at the portion 2  of the free boundary, 
- displacements 1u  imposed at the portion 1  of the constrained boundary, 
- body force b  in  . 
The contact between the two bodies involves the presence of the boundary 0 . 

We want to obtain the elastic response to the external actions in terms of displacements 2u  on 

2  and reactive forces 1f  on 1 , but also in terms of the displacements 0u  and tractions 0t  at the 
contact boundary 0  and in terms of stresses σ  in the domain of each body by using the mixed 
variable multidomain SBEM approach [1]. 
 
1.1   Governing equations of the body 
 

Consider a generic body, here called bem-element (bem-e), characterized by the boundary   
distinguished into three parts, free 2 , constrained 1  and contact 0 . For this bem-e the following 
Dirichlet and Neumann conditions can be written: 
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                                                                                                                    (2a,b) 

If we introduce in Eqs.(2a,b) the S.Is. of the displacements and tractions, the following boundary 
integral equations can be obtained: 
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where a symbolic form has been used and where the typologies of the boundary are characterized by 
the indices introduced in the displacement and traction vectors. 

It is necessary to define the unknowns 0u  and 0t , related to the contact boundary 0  
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where the terms 0[ ] PVu u  and 0[ ]PVt t  include the presence of integrals as the Cauchy Principal 
Values, while the terms where 1

2  occurs are the corresponding free terms. 

Eqs.(3a,b) have to be rewritten in a different way 
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whereas Eqs.(4a,b) remain unchanged. 
We introduce the boundary discretization into the boundary elements by performing the 

following modelling of all the known and unknown quantities:  

1 t 1 2 t 2 0 t 0 2 u 2 1 u 1 0 u 0, , , , ,     f Ψ F f Ψ F t Ψ F u Ψ U u Ψ U u Ψ U ,                                  (6a-f) 

where tΨ  and uΨ  are appropriate matrices of shape functions regarding the boundary quantities, 
further, the capital letters indicate the nodal vectors of the forces ( 1F , 2F  and 0F ) and of the 
displacements ( 1U , 2U  and 0U ) defined on the boundary nodes. 

We now perform the weighting of all the coefficients of Eqs.(4) and (5). For this purpose, the 
same shape functions as those modelling the causes are employed, but introduced in an 
energetically dual way according to the Galerkin approach [6], thus obtaining the following 
generalized equations: 

1 2 0 0
1 1 2 2 0 0 0 0( ) , ( ) , ,

   
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f u f u                                       (7a-d) 

As a consequence, Eqs.(7a-d) are rewritten in the following symbolic form: 
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or in the following equivalent block system: 

1u1,u1 u1,f 2 u1,u0 u1,f 0 1

f 2,u1 f 2,f 2 f 2,u0 f 2,f 0 22
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ˆ
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                                                                   (9) 

In the latter block equation the matrix A  is symmetric. Moreover, the submatrices and the 
subvectors ˆ ˆ,W P  are formed by coefficients obtained through a double integration according to the 
SBEM strategy. In detail, the first and second rows represent the Dirichlet and Neumann conditions 
written in weighted form 1 1 W W 0  and 2 2 P P 0 . The remaining rows regard the weighting of 
the displacements and tractions in the contact zones. The terms 0, 0 0, 0u f f uA A  are symmetric and 
include the weighting of the CPV integrals and of the corresponding free terms. 

In Eq.(9) some coefficients show singular or hyper-singular kernels. These difficulties were 
overcome within the SBEM approach by using different techniques. The reader can refer to Panzeca 
et al. [1, 3] for a more detailed discussion of the computational aspects and for the related 
references. 

Eq.(9) can be expressed in compact form in the following way: 

0 0

0 0 00 0 0

ˆ

ˆ
  

  

0 A X A X L

Z A X A X LT
                                                                                                    (10a,b) 

where the following positions were set 
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                                              (11a-e) 

The vector 0Z  collects the generalized (or weighted) displacement 0W  and traction 0P  
subvectors defined at the boundaries in contact, obtained as the response to all the known and 
unknown actions, regarding the boundary and domain quantities. By performing variable 
condensation through the replacement of the vector X  extracted from Eq.(10a) into Eq.(10b), one 
obtains: 

0 00 0 0
ˆ Z D X Z                                                                                                                        (12) 

where one sets 
1 1

00 0 0 00 0 0 0
ˆ ˆ ˆ, ,     D A A A A Z A A L LT T                                                                            (13a,b) 



Eq.(12) is a characteristic equation written for each bem-e. It relates the generalized (or 
weighted) displacements and tractions, collected in 0Z , defined at the contact zone 0  , to the force 

and displacement nodal quantities 0X  and to the load vector 0Ẑ . Moreover 00D  is an appropriate 
stiffness-flexibility matrix of the bem-e being examined. 
 
1.2   Bem-element assembly 
 

This strategy is based on the approach of multi-connected bodies handled by using the 
symmetric BEM, recently introduced [1-3]. 

Let us start by considering the two bodies in contact and for each of these Eq.(12). Thus we 
obtain two global relations related to the bem-elements considered, i.e.: 

11 1 1
00 00 0

2 2 2 2
0 00 0 0

ˆ

ˆ
 

ZZ D 0 X
Z 0 D X Z

                                                                                                          (14) 

or in compact form 

0 00 0 0
ˆ Z D X Z                                                                                                                   (15) 

formally equal to Eq.(12). 
We introduce the nodal vector 0Y  of the mechanical and kinematical unknowns related to the 

assembled system regarding the 0  boundary and perform a suitable nodal variable condensation 
through the matrices of equilibrium LT  and of compatibility N , respectively: 

1 1
0

1 1
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2 2
0

( )

. .
( )


 




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T

T i e                                                                             (16) 

The latter relation has to be considered as a strong regularity condition related to the nodal 
quantities. The same transposed matrices L  and NT  define the weighted equilibrium and 
compatibility, respectively. 

1
0
11 2
0

021 2
0
2
0

. .
( ) ( )

 

W
0PL L

E Z 0
0WN N

P

T
T T i e                                                             (17) 

The latter relation has to be considered as a weak regularity condition related to the weighted 
quantities. Eqs.(16,17) utilized with Eqs.(15) give rise to the following relation: 

00 0 0̂ K Y f 0                                                                                                                            (18) 

where 

00 00 0 0
ˆ ˆ, K E D E f E ZT T                                                                                                  (19) 



Eq.(18) can be rewritten in the following form 

W0W0W0 W0P0 0

P0W0 P0P0 0 P0

ˆ

ˆ 


LK K F 0
K K U 0L

                                                                                        (20) 

By performing a diagonalization process of Eqs. (20), one obtains 
W0W0 W00

0P0P0 P0

 

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

 
                                                                                         (21) 

where 
1 1 1

P0P0 P0P0 W0P0 W0W0 W0P0 P0 P0 W0P0 W0W0 W0 W0 W0 W0P0 P0P0 P0
ˆ ˆ ˆ, ,       K K K K K L L K K L L L K K L    T T   

                                                                                                                                        (22) 
The two equations extracted from Eq.(21) W0W0 0 W0 K F L 0  and P0P0 0 P0( )  K U L 0   

represent the force and the displacement methods, respectively, based on the mixed boundary values 
in terms of the symmetric BEM. These equations can be used obtaining the solution in a contact-
detachment process through a linear complementary problem, following a step-by-step procedure, 
or solving a minimum problem of the total potential energy through quadratic programming. 
 
 
2    Contact-detachment problem 
 

The analysis process concerns two bodies in contact, A and B, which are subjected to external 
actions, constant or variable in time. In both hypotheses, the problem appears nonlinear because the 
external actions modify the zones that characterize the boundary of the two bodies: in particular the 
typifying of the boundaries 2  and 0  changes partially. 

Let us consider the boundary conditions of the Signorini unilateral contact problem rewritten in 
nodal form, as discussed in a more extensive form by Panzeca et al. in [4]: 

 2 2 ,   A A Bn W W H C 0  gap condition                                           (23a) 

0 ,  A An P C H 0  contact condition                                      (23b) 

 2 2 0 0        A A B A An W W H n P C  complementarity condition                         (23c) 

where the vector An  is the external unit vector at the discretized boundary elements of the body A 
and where the following positions are valid: 

2 0

,
 

  H ψ C ψ f uh c                                                                (24a,b) 

The vector H  represents the weighted distance between two boundary elements of 2
A  and  

2
B , computed along the normal vector An , in the zone of potential contact, whereas the vector C  

indicates the weighted cohesion between the boundary elements which are in contact, in the zone of 
potential detachment. In this paper, only the detachment approach is considered. 

The solution of the frictionless detachment problem can be obtained as a solution of a linear 
complementarity problem through a recursive step-by-step analysis verifying at every step when the 
inequality (23b) is verified. As a consequence, a change in the typifying of the boundaries 2  and 

0  of the bodies, which are in contact, occurs. 



The same solution can be obtained directly as a quadratic programming problem through the 
introduction of the total potential energy in terms of discrete variables associated with the boundary 
nodes involved in the detachment phenomenon. For this purpose, let us consider the functional 

0
( ) F , similarly to what is shown by Polizzotto [6], where the variables on the interface boundary 

are considered as the average of the nodal quantities, evaluated in the direction defined by the 
normal vector An , i.e.: 

   0 0 W0W0 0 0 W0

1( )
2

  F F K F F L
T T

                                                                                    (25) 

obtained by using the first of Eqs.(21), 
According to this strategy the solution of the detachment problem is obtained as the minimum of 

the functional (25) in the following way: 

0
0 0( )

( ) , s.t. min
F

F F C                                                                                                        (26) 

The condition 
0
F C  has to be considered as the limit condition for the detachment phenomenon. 

 
 
3    Numerical results 
 

In order to show the efficiency of the proposed method, the following test was performed. As 
shown in Fig.1a the beam is subjected to a load q 1000 daN / m . The material characteristics are 
Young’s modulus E 50000 daN / cmq , Poisson’s ratio 0.22  and c 0 . Moreover, the beam 
is subdivided into two substructures whose contact zone, discretized into 104 boundary elements, 
each being cm 0.38 long, was analyzed. In Fig.1b a diagram is given which shows the nodal forces 
of the contact nodes, provided by step-by-step analysis using the SBEM strategy, as a function of 
the contact boundary. The results, in terms of the detachment zone, provided by using the SBEM 
code Karnak.sGbem [5] and by quadratic programming using Matlab, are compared in Fig.1c. 

It is appropriate to remember that the detachment is found by considering the normal weighted 
forces using a step-by-step analysis and the average of the nodal forces, evaluated in the normal 
direction, by using a quadratic programming problem. 

In the step-by-step analysis with the Karnak.sGbem program [5], the weighted tangential 
stresses are present, whereas in the minimum of the functional   these quantities are not 
considered. Obviously, in the case examined the two approaches coincide because of the symmetry 
of the beam. 

When the beam became squat, we noted a difference in the results of the detachment zone. 
 

 



 
 

Fig.1 a) Beam built-in at the extremities, b) Diagram of the contact forces in function of the contact 
boundary, c) Comparison between the step-by-step analysis and quadratic programming 
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