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Abstract. In this paper a strategy to perform elastoplastic analysis by using the Symmetric Boundary 
Element Method (SBEM) for multidomain type problems is shown. This formulation uses a self-stresses 
equation to evaluate the trial stress in the predictor phase, and to provide the elastoplastic solution in the 
corrector one. Since the solution is obtained through a return mapping involving simultaneously all the 
plastically active bem-elements, the proposed strategy does not depend on the path of the plastic strain 
process and it is characterized by computational advantages due the considerable decrease of the plastic 
iterations number. This procedure has been developed inside Karnak.sGbem code [1] by introducing an 
additional module. 

Introduction 

A multi-domain SBEM strategy [2], based on an initial strain approach, is applied for the analysis of 2D 
structures, in the hypothesis of elastic-perfectly plastic behaviour, von Mises model, associated flow rules 
and strain plane state. Let us start from the discretization of the domain in substructures (in analogy with the 
finite elements methods), called bem-elements, where the plastic strain accumulation have to be valuated. 
Then let us impose the regularity conditions, in strong form on the displacements (nodal compatibility) and 
in weak form on the tractions (generalized equilibrium) both evaluated on the interfaces boundary, and let us 
effectuate a strong variable condensation. This procedure provides a self-equilibrium stresses equation 
governing the elatoplastic problem and connecting stresses, valuated on the each bem-e strain points, to 
plastic strains, treated as volumetric distortions, through an influence matrix (stiffness matrix), negative 
semi-definite as for the finite elements. The same equation is used both in order to valuate the predictors 
within the elastic phase, and to correct the elastic solution. 
In the first phase the use of only self-stresses equation offers the advantage to evaluate the predictor in 
simple way. Indeed this equation contains influence coefficients depending on both known imposed plastic 
strains and the external actions amplified by load multiplier. For the generic load increment, it permits to 
locate all the bem-elements in which the plastic admissibility condition is violated, i.e. to define the active 
macro-zones which require correction techniques. Then, in the second phase, the trial solution is corrected by 
a return mapping algorithm, which is defined in according at the extremal paths theory [3],,in this approach 
used within a discrete problem. 
The proposed algorithm permits the simultaneous correction of the elastic solution in all the plastically active 
bem-elements and utilizes the same self-stresses equation in a nonlinear global system of 4xa equations in 
4xa unknowns, where a is the active bem-elements number. In the present approach the approximate solution 
is easily obtained by using the well-known standard Newton-Raphson procedure, just used  in elastoplastic 
problems within the Bem formulations by some authors [4,5]. 
In order to prove the efficiency of the proposed strategy, a numeral test, performed by the Karnak.sGbem 
code [1], is shown at the end of this paper. 

 



1. Self-stresses equation via multidomain SBEM  

In this section the procedure utilized to obtain, by using the SBEM for multi-domain type problems, the 
equation connecting the stresses to the imposed volumetric strains, through a stiffness matrix involving all 
the bem-elements in the discretized system, is shown.  
Let us consider a bi-dimensional body having domain Ω  and boundary Γ , subjected to actions acting in its 
plane: 
- forces f  at the portion 2Γ  of free boundary, 
- displacements u  imposed at the portion 1Γ  of constrained boundary, 
- body forces b  and plastic strains ε p  in Ω . 
The external actions , ,f u b  may increase separately or simultaneously through the multiplier β . 
In the hypothesis that the physical and geometrical characteristics of the body are zone-wise variables, an 
appropriate subdivision of the domain in bem-elements is introduced. This subdivision involves the 
introduction of an interface boundary 0Γ  between contiguous bem-elements and, as a consequence, two new 
unknown quantities rising in the analysis problem, i.e. the displacements 0u  and the tractions 0t  vectors, 
both referred to interface boundaries.  
The adopted strategy [2] contemplates the study of each bem-e embedded in a unlimited domain having the 
same physical properties and the same thickness of the examining bem-e. It is necessary to distinguish the 
boundary as Γ  of Ω  or as +Γ  of the complementary domain \∞Ω Ω . As a consequence the boundary 
quantities take on a different meaning: the forces acting on the boundary must be interpreted as layered force 
distribution, whereas the displacements must be thought as a double layered displacement one. 

1.1 Characteristic equations of the bem-e  

Let us start by imposing for each bem-e the following Dirichlet and Neumann conditions: 

1 1=u u       on 1Γ , 2 2=t f       on 2Γ  (1a,b)  

and introducing the Somigliana Identities (S.I.) of the displacements and of the tractions in the previous 
eqs.(1a,b). The following integral equation system is obtained:  
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where the vector ε p  represents the inelastic strains due to thermal or plastic actions, whose presence requires 
domain integrals having singular kernels, suitably studied [6,7]. 
The eqs.(2a-c) have to be interpreted as the response of the body on the boundaries 1

+Γ , 2
+Γ , 0

+Γ , 
respectively, with the free terms opposite in sign, whereas eq.(2d) has the meaning of traction valued on the 
actual interface boundary 0Γ .  
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In addiction, let us introduce the stress vector: 

1 2 0 0 2 1[ , , , ] [ , , ] [ ]              on   pβ= − − + ⋅ − + Ωσ σ f u f u σ f u b σ ε    (3e) 

and the boundary discretization into boundary elements by making the following modelling of all the known 
and unknown quantities:  

1 t 1 2 t 2 0 t 0 2 u 2 1 u 1 0 u 0 p,   ,   ,   ,   ,  ,    =f = Ψ F f = Ψ F t = Ψ F u = Ψ U u = Ψ U u = Ψ U ε Ψ pp   (4a-g) 



where tΨ  and uΨ  are shape functions regarding the boundary quantities, while pΨ  are domain shape 
functions used to model plastic strains p  connected to the Gauss points of  the bem-e. Besides, the capital 
letters F  and U  indicate the nodal vectors of the forces ( 1F  on 1Γ  and 0F  on 0Γ ) and of the displacements 
( 2U  on 2Γ  and 0U  on 0Γ ) defined on the boundary elements. 
Let us perform the weighting of all the coefficients of the eqs.(3a-d). For this purpose, the same shape 
functions as those modelling the causes have been employed, but introduced in an energetically dual way in 
according to the Galerkin approach. In this way it is possible to obtain the following block system: 
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where the first and second rows represent the Dirichlet and Neumann conditions (1a,b) written in weighted 
form 
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f c  and of the tractions at the interface zone. In particular the vector 

0
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u  in eq.(3d) 
collects the generalized tractions defined on the boundary elements of 0Γ . 
The influence matrix, containing 4x4 block matrices, is symmetric. The introduced coefficient β  is the 
multiplier of the boundary 1( )−U , 2F  and domain b  actions. 
Eq.(3e) defines the field stress, obtained through the S.I., i.e.: 
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The eqs.(5a-e) may be expressed in compact form in the following way: 
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where the vector X  collects the sub-vectors 1F , ( )2U−  and 0F , whereas the ( )0U−  and p  vectors 
characterize the displacements of the nodes in the interface zone, changed in sign, and the nodal plastic 
strains, respectively.  
The vector 0P  represents the generalized (or weighted) traction vector defined in the boundary elements of 
the interface zone, obtained as a weighted response to all the known, amplified by β , and unknown actions, 
regarding boundary and domain quantities. The vector σ  represents the stress, valued at the Gauss points, 
due to the all the known, amplified by β , and unknown actions. 
By performing a variables condensation through the replacement of the X  vector extracted from eq.(6a) into 
eqs.(6b,c), one obtains: 
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These latter are the equations characteristic of each bem-e. They relate the generalized (or weighted) 
tractions 0P  defined on the interface zone 0Γ  and the stresses σ  at the bem-e domain to the nodal 
displacements 0U , to the plastic strains p  and the two load terms 0P̂  and σ̂  amplified by β , respectively. 
These latter represent the generalized tractions vector along the interface boundary and the stresses vector in 
the domain with reference to each bem-e, as elastic response. Moreover, 00D , 0σD , 0σd , σσd  are the 
stiffness matrices of the bem-e, being 00D  and σσd  square matrices, 0σD  and 0σD  rectangular ones. 



1.2 Assembled system and self-stresses equation 

Let us subdivide the body in m bem-elements and consider for each of these the eqs.(7a,b). Thus we obtain 
two global relations connecting all the generalized tractions and the stresses related to the bem-elements 
considered, formally equal to the same eqs.(7a,b), but regarding the constitutive equations of the assembled 
system. 
Let us introduce the compatibility among  the nodal displacements of the adjacent bem-elements: 

0 0=U Hξ   (8) 

where H  is a topological matrix and 0ξ  the nodal displacements vector of the assembled system, and the 
equilibrium condition among generalized tractions at the interface boundaries. 

0 =H P 0T   (9) 

Using the previous eqs.(8,9), the eqs.(7a,b) become: 
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By performing a new variables condensation through the replacement of the 0ξ  vector extracted from 
eq.(10a) into eq.(10b), it is obtained: 

ˆ sβ= + ⋅σ Zp σ   (11) 

where 
1 1

0 00 0 0 00 0̂ˆ ˆ,   − −= − + = − +Z k K K k σ k K f σsσ σ σσ σ   (12a,b) 

The eq.(11) provides the stress at the strain points of each bem-e in function of the volumetric plastic strain 
p  and of the external actions σ̂s , the latter amplified by β . The matrix Z , defined self-stresses influence 
matrix of the assembled system, is a square matrix having 3mx3m dimensions with m bem-elements number, 
full, non symmetric and semi-defined negative. The evaluation of this matrix involves only the elastic 
characteristic of the material and the structure geometry. 
The matrix Z  permits to evaluate the elastic response in the Gauss points of all the bem-elements due to the 
plastic stain vector p , whereas the vector σ̂ s  collects the influence coefficients, as response to the known 
external actions 2 1, ,−F U b .  

2. Active macro-zones analysis 

In this section the strategy to compute the plastic strains for each loading step and at every bem-e is shown. 
These approaches utilize eq.(11) both to evaluate the predictors and during the corrector phase, here after 
shown. 
Let us start computing the trial stresses, i.e. the purely elastic response at the instant 1+n  in each m bem-
elements of the discretized body. 
For thus purpose, eq.(11) provides all the predictors ( )

*
1+σ n  as function of the plastic strain ( )p n , stored up at 

the previous step and then imposed as volumetric distortions, and of load increment ( )1+β n : 

( ) ( ) ( )
*

1 1 ˆ sn n nβ+ += + ⋅σ Zp σ   (13) 

where Z  matrix is full and regards all the bem-elements, obtained by the discretization. 
The check of the plastic consistency condition of the stresses computed on appropriately chosen points is 
performed by using the yield condition expressed in this context through the von Mises law for each bem-e: 

( ) ( ) ( )
21

21 1 1[ ]   σ 0+ + += − ≤σ σ σT
yn n nF M .  (14) 

In the a bem-elements (with ≤a m ) where this latter inequality is violated, a return mapping phase occurs to 
evaluate the plastic strains and the direction of the plastic flow. 



This phase, called corrector phase, uses the same eq.(11) to obtain the elastoplastic solution at every bem-e 
where the plastic consistency condition is violated. In this phase the vector σ , representing the end step 
stress, as well as the volumetric plastic strain vector p  are unknown quantities. This latter is the plastic strain 
to impose at every active plastically bem-e in order to have the stress on the yield boundary of the elastic 
domain, through which the direction of the plastic flow may be defined. Obviously, inside of each loading 
step the corrector phase has to be repeated until all the predictors do not satisfy the plastic consistency 
conditions. 
In detail eq.(11), written for every h bem-elements ( h = 1,...,a ), is utilized to perform the elastoplastic 
analysis at 1+n  load step simultaneously in all the plastically active macro-zones individuated in the 
previous predictor phase, i.e.: 

*− − =σ σ Z p 0a a aa a   (15) 

where the subscript  1+n  has been omitted for convenience. 
The Zaa  matrix coefficients derive from the Z  matrix present in eq.(15), by extracting the blocks relative to 
the a plastically active bem-elements. The double index specifies the bem-elements where the plastic strains 
(cause) and the related stresses (effect) arise. 
Let us introduce the plastic admissibility conditions for the a bem-elements: 

[ ] , , [ ] =≤ ≥σ 0 Λ 0 Λ σ 0a a a aF F   (16a-c) 

In the hypothesis that, for each h-th bem-e, the shape function definite in eq.(4g) is the same of the shape 
function related to the plastic multiplier, i.e. ψ Λ=h p hλ  with ψ 0≥p , the plastic strain for the h-th active 
bem-e is expressed as: 
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The solving non linear system for all the active bem-elements is the following: 
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where σh  is the stress solution located on the yield surface of the elastic domain, *σh  the elastic predictor, 
   Λ Z σh hh hM  the direct corrective components (stress in the h-th bem-e due to distortion ph  applied on the 

same bem-e) and 
1

  ∉

=
Λ∑ Z σa h

k hk kk
M  the indirect corrective components (stress in the h-th bem-e due to 

distortion pk  applied on the k-th bem-e) respectively. 
The eqs.(18a,b) comprises a system of 4xa non linear equations in 4xa unknowns (three  stress components 
σh  and a plastic multiplier Λh  for each active bem-e).  
The approximate solution of this nonlinear problem involving all the plastically active bem-elements is here 
obtained by applying the Newton-Raphson procedure as follows: 
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which, written in compact form, becomes:  
1 1( )  ( )+ −= − Jj j j j

a a a a aX X X f X  . (20) 



The Jacobian matrix Ja  contains the derivatives of the functions defined in eqs.(18a,b), 1+j
aX  is the vector of 

the unknowns, j
aX  and  ( )j

af X  are the known vectors evaluated in the j-th step. 
The vector aX  in the j+1-th step is the solution in terms of stress and plastic multipliers evaluated on the 
Gauss points of all the plastically active bem-elements.  
Since the Jacobian operator ( )J j

a aX  usually has big dimensions which coefficients have different meaning, 
its inverse and update could require high computational cost. In order to overcome these disadvantage, the 
following strategy, able to reduce the computational burden in the iterative process, is been developed. Let us 
consider the system of eqs.(19) here rewritten in compact form: 
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and in explicit form: 
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Let us perform a condensation of variables by extracting the vector 1( )+ −σ σj j  from eq.(22a): 
1 1 1( ) ( ) [ ( ) ]+ − +

σσ σΛ σ− = − −σ σ J J Λ Λ Fj j j j j j j   (23) 

and replacing it into eq.(22b). It is obtained: 
1( )+

ΛΛ Λ− =J Λ Λ Fj j j j    (24) 

where: 
1 1( ) , ( )− −

ΛΛ Λσ σσ σΛ Λ Λσ σσ σ Λ= − = −J J J J F J J F Fj j j j j j j j j   (25a,b) 

The proposed algorithm shows high computational efficiency because the inversion is related to only two 
blocks ΛΛJ j  and σσJ j  of reduced dimensions.  
Z  is a square matrix. It is written only once and its dimension depends on the bem-elements number as a 
result of the discretization. This matrix is used twice: as Z  having n dimension in the predictor phase second 
its origininary form, as Zaa  having a h≤  dimension during the return mapping phase with reference to the 
plastically active bem-elements, i.e. those bem-elements where the predictor do not satisfy the yield 
condition. 
The peculiarity of the shown approach is that the return mapping process is used simultaneously in the 
plastically active bem-elements, avoiding the return mapping strategy for single bem-e, it showing 
arbitrariness and very onerous computational burden. 
In addition the proposal to perform simultaneously on the plastically active bem-elements involves iterative 
return mapping process with a very high saving in the computational times. 

3. Numerical results 

In order to show the efficiency of the proposed method, a traction test, by using the SBEM code 
Karnak.sGbem [1], has been performed. In the present section a square plate with circular hole is subjected 
to tensile load q 100000 daN / m= , as shown in Fig.1. The material characteristics are the Young’s modulus 
E 200000 daN / cmq=  and the Poisson’s ratio 0.29=ν , whereas the uniaxial yield value is 

y 4500 daN / cmq=σ . The plate geometry, shown in Fig.1, has unit thickness. 
The load-displacement curve is shown in Fig.2 and the solution was compared to the strongly iterative 
solution in the sphere of SBEM [8]. 
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Fig. 1. Plate with circular hole: a) problem description; b) adopted mesh. 
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Fig. 2. Load – displacement curve. 
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