# Algebraic (2, 2)-transformation groups 

C. Bartolone, A. Di Bartolo, K. Strambach


#### Abstract

In this paper we determine all algebraic transformation groups $G$, defined over an algebraically closed field k , which operate transitively, but not primitively, on a variety $\Omega$, provided the following conditions are fulfilled. We ask that the (non-effective) action of $G$ on the variety of blocks is sharply 2-transitive, as well as the action on a block $\Delta$ of the normalizer $G_{\Delta}$. Also we require sharp transitivity on pairs $(X, Y)$ of independent points of $\Omega$, i.e. points contained in different blocks.


Although classifications of imprimitive permutation groups appeared already at beginning of the last century (see [10]) and imprimitive actions play an important role in geometry, the corresponding literature is actually less well-developed than the one concerning primitive groups. For finite groups some classification has been done (see for instance [1], [5] and [11]). In [1] by using wreath products, the best-known construction principle to get imprimitive groups, a classification of finite imprimitive groups, acting highly transitively on blocks and satisfying conditions very common in geometry, is achieved.

The present paper arises with the aim to obtain classifications for infinite imprimitive groups belonging to well-studied categories. We start with an imprimitive algebraic group $G$, over an algebraically closed field $k$, operating on an algebraic variety $\Omega$ of positive dimension in such a way that the induced actions on the set $\bar{\Omega}$ of blocks and on a block $\Delta$ are both sharply 2 -transitive. Moreover we ask the group to act sharply transitively on pairs of points lying in different blocks. The latter condition, frequently occurring in geometry (see for instance [2]), avoids a too general context. For the classification we do not need the group actions be bi-regular morphisms but we just ask that the orbit maps be separable morphisms. It turns out that $G$ is the semidirect product of a 3-dimensional unipotent connected group $G_{u}$ by a 1-dimensional connected torus $T$, both acting on the points of an affine plane over $k$ with a full set of parallel lines as the blocks.

There are two subgroups which play a fundamental role for the classification: the kernel $G_{[\bar{\Omega}]}$ of the representation on $\bar{\Omega}$ (the so-called inertia subgroup) and its stabilizer $G_{[\bar{\Omega}]_{O}}$ of a fixed point $O$, which turns out to be even the point-wise stabilizer of the block containing $O$. There exists a $G$-invariant transversal $L$ of $G$ with respect to $G_{[\bar{\Omega}]_{O}}$ which is essential for the classification. $L$ is a subgroup precisely if $G_{u} / \mathfrak{z}\left(G_{u}\right)$ is commutative, in such a case $G_{u} / \mathfrak{z}\left(G_{u}\right)$ is even a vector group. Fixing the structure of $L$, the classification (see the main theorem) depends on four (not necessarily independent) integer parameters which distinguish the isomorphism class of $G$. But if the char $k$ is positive, then for suitable values of the integer parameters it happens that $L$ could be both a vector group and a non-commutative group.

We refer to [13] for well-known results about non-affine algebraic groups and to [9] about affine algebraic groups.
§1. Throughout the paper $G$ will denote an algebraic group defined over an algebraically closed field k , operating effectively on the points of a variety $\Omega$ of positive dimension. We assume that the orbit maps $g \mapsto g(X)$ are separable morphisms $G \rightarrow \Omega$ and $G$ acts transitively with a nontrivial system of imprimitivity $\bar{\Omega}$. Moreover, putting

- the normalizer $G_{\Delta}:=\{g \in G: g(\Delta)=\Delta\}$ of $\Delta \in \bar{\Omega}$,
- the centralizer $G_{[\Delta]}:=\left\{g \in G_{\Delta}: g(X)=X \forall X \in \Delta\right\}$ of $\Delta \in \bar{\Omega}$,
- the inertia subgroup $G_{[\bar{\Omega}]}:=\{g \in G: g(\Delta)=\Delta \forall \Delta \in \bar{\Omega}\}$,
we require the following transitivities:

1. $G_{\Delta} / G_{[\Delta]}$ acts sharply 2-transitively on $\Delta$,
2. $G / G_{[\bar{\Omega}]}$ acts sharply 2-transitively on $\bar{\Omega}$,
3. $G$ acts sharply transitively on $\Lambda:=\left\{(X, Y) \in \Omega^{2}: \Delta_{X} \neq \Delta_{Y}\right\}$, where $\Delta_{Z} \in \bar{\Omega}$ denotes the block containing $Z \in \Omega$.
We call such a triple $\mathrm{G}=(G, \Omega, \bar{\Omega})$ a (2,2)-imprimitive algebraic group. Since the stabilizer of a point is not trivial, conditions 3 and 1 guarantiy that the centre of $G$ consists just of the identity. Hence the algebraic group $G$ must be affine.

## 1. Proposition:

i) Every block $\Delta \in \bar{\Omega}$ is closed and $G_{\Delta}=G_{[\bar{\Omega}]} G_{X}$ for any $X \in \Delta$;
ii) the inertia subgroup $G_{[\bar{\Omega}]}$ is closed.

Proof: Every block $\Delta \in \bar{\Omega}$ is a constructible set as the union, for $X \in \Delta$, of two $G_{X}$-orbits, $\{X\}$ and $\Delta \backslash\{X\}$, so $\Delta$ is closed by Theorem 1.6 in $[7]$. Then $G_{[\bar{\Omega}]}$ is the intersection of all closed subgroups $G_{\Delta}$. Finally $G_{\Delta}=G_{[\bar{\Omega}]} G_{X}$ follows from the fact that the normal subgroup $G_{[\bar{\Omega}]}$ acts transitively on $\Delta$.
2. Remark: As orbit maps are separable morphisms $G \rightarrow \Omega$, by the universal mapping property we may identify $\Omega$ with the homogeneous space $G / G_{O}$ for a fixed stabilizer $G_{O}=\{g \in G: g(O)=O\}, O \in \Omega$. As well as, in view of Proposition 1, we may identify $\bar{\Omega}$ with the homogeneous space $G / G_{\Delta}$.
3. Proposition: For all $X \in \Omega$ the centralizer $G_{[\bar{\Omega}]_{X}}=\left\{g \in G_{[\bar{\Omega}]}: g(X)=X\right\}$ is contained in $G_{\left[\Delta_{X}\right]}$ and $G_{[\bar{\Omega}]}=G_{[\bar{\Omega}]_{X}} \times G_{[\bar{\Omega}]_{Y}}$ for any $(X, Y) \in \Lambda$.
Proof : $G_{[\bar{\Omega}]_{X}}$ acts (effectively and) sharply transitively on the block $\Delta_{Y}$, the centralizer $G_{X, Y}$ being trivial. If blocks contain finitely many points the order of $G_{[\bar{\Omega}]_{X}}$ is $|\Delta|$. In such a case $G_{[\bar{\Omega}]_{X}}$ operates non-effectively on $\Delta_{X} \backslash\{X\}$ with orbits of the same length $\theta$, since $G_{[\bar{\Omega}]_{X, X^{\prime}}}=G_{[\bar{\Omega}]} \cap G_{\left[\Delta_{X}\right]}$ for any $X^{\prime} \in \Delta \backslash\{X\}$. But $\operatorname{gcd}(|\Delta|-1,|\Delta|)=1$ forces $\theta=1$.

If blocks contain infinitely many points, $G_{[\bar{\Omega}]_{X}}$ acts on $\Delta_{Y}$ as the kernel of the Frobenius group $G_{\Delta_{Y}} / G_{\left[\Delta_{Y}\right]}$. So $G_{[\bar{\Omega}]_{X}}$ is a 1-dimensional connected unipotent group by [7] (Theorem 1.10), hence must act trivially on $\Delta_{X}$ by Proposition 1 in [8]. Therefore in any case $G_{[\bar{\Omega}]_{X}}<G_{\left[\Delta_{X}\right]}$ and this forces $G_{[\bar{\Omega}]_{X}}$ to be a normal subgroup of $G_{[\bar{\Omega}]}$. The last claim follows from the sharply transitivity of $G$ on $\Lambda$.

## 4. Proposition:

a) $\bar{\Omega}$ contains infinitely many blocks and every block contains infinitely many points;
b) $G_{O}$ is the semidirect product of the 1-dimensional connected unipotent subgroup $G_{[\bar{\Omega}]_{O}}$ by a 1-dimensional connected torus $T$;
c) $G / G_{[\bar{\Omega}]}$ is a 2-dimensional Frobenius algebraic group with complement $\simeq T$;
d) For all $\Delta \in \bar{\Omega}, G_{\Delta} / G_{[\Delta]}$ is a 2-dimensional Frobenius algebraic group whose 1-dimensional kernel is isomorphic to $G_{[\bar{\Omega}]_{X}}$ for any $X \in \Omega \backslash \Delta$.
Proof: The group $G_{O} / G_{[\bar{\Omega}]_{O}}$ acts effectively and sharply transitively on $\bar{\Omega} \backslash\left\{\Delta_{O}\right\}$ and maps surjectively onto $G_{O} / G_{\left[\Delta_{O}\right]}$ by Proposition 3. Thus $|\bar{\Omega}|<\infty$ implies $\left|\Delta_{O}\right|<\infty$ and $\Omega$ would be of finite cardinality. So infinitely many blocks occur and the kernel of the Frobenius algebraic group $G / G_{[\bar{\Omega}]}$ is a 1-dimensional connected unipotent group ( $[7]$, Theorems 1.8 and 1.10 ) with a 1-dimensional connected torus as the complement $G_{\Delta_{O}} / G_{[\bar{\Omega}]}=G_{[\bar{\Omega}]} G_{O} / G_{[\bar{\Omega}]} \simeq G_{O} / G_{[\bar{\Omega}]_{O}}$ ([8], Proposition 1).

Finally the non-trivial factor group $G_{O} / G_{\left[\Delta_{O}\right]}$, as a continuous epimorphic image of $G_{O} / G_{[\bar{\Omega}]_{O}}$, must be a 1-dimensional connected torus, as well. So $G_{O}$ must split over the unipotent group $G_{[\bar{\Omega}]_{O}}$ by a 1-dimensional connected torus $T$.
5. Proposition: $G$ is a solvable connected affine group of dimension 4 and $G$ is the semidirect product of its unipotent radical $G_{u}$ by the torus $T$. Moreover the centre $\mathfrak{z}\left(G_{u}\right)$ of $G_{u}$ is contained in $G_{[\bar{\Omega}]}$ and for any $X \in \Omega$ we have $G_{[\bar{\Omega}]}=\mathfrak{z}\left(G_{u}\right) \times G_{[\bar{\Omega}]_{X}}$.
Proof: As $G_{[\bar{\Omega}]}$ is a 2 -dimensional connected unipotent group by Propositions 4.d and 3 and $G / G_{[\bar{\Omega}]}$ is a connected solvable 2-dimensional group by Proposition 4.c, the unipotent radical $G_{u}$ has codimension 1 and acts transitively on $\Omega$. We have $\mathfrak{z}\left(G_{u}\right)<G_{[\bar{\Omega}]}$ since $\mathfrak{z}\left(G_{u}\right)$ centralizes each $G_{[\bar{\Omega}]_{X}}$. Finally $\mathfrak{z}\left(G_{u}\right)$ is transitive on every block $\Delta$, hence sharply transitive, the group $G_{\Delta} / G_{[\Delta]}$ being primitive.
6. Remark: If we denote by $g_{u}$ and $g_{s}$ the images of $g \in G$ under the projections $G_{u} \times T \rightarrow G_{u}$ and $G_{u} \times T \rightarrow T$, respectively, the mapping $\pi: G \rightarrow G_{u} / G_{[\bar{\Omega}]_{O}}$ with $\pi(g)=g_{u} G_{[\bar{\Omega}]_{O}}$ turns out to be a separable morphism of algebraic varieties. The fibres of $\pi$ are precisely the cosets $g G_{O}$, so $g G_{O} \mapsto g_{u} G_{[\bar{\Omega}]_{O}}$ yields an isomorphism $G / G_{O} \rightarrow G_{u} / G_{[\bar{\Omega}]_{O}}$. So we may take the homogeneous space $G_{u} / G_{[\bar{\Omega}]_{O}}$ as $\Omega$ and

$$
\left(g, h G_{[\bar{\Omega}]_{O}}\right) \mapsto g h g_{s}^{-1} G_{[\bar{\Omega}]_{O}} \quad\left(g \in G, h \in G_{u}\right)
$$

as the action of $G$ on $\Omega$ since $\left(g_{1} g_{2}\right)_{u}=\left(g_{1}\right)_{u}\left(g_{1}\right)_{s}\left(g_{2}\right)_{u}\left(g_{1}\right)_{s}^{-1}$. In particular $\Omega \simeq$ $G_{u} / G_{[\bar{\Omega}]_{O}}$ is a 2-dimensional (irreducible affine) variety with

$$
\bar{\Omega}=\bigcup_{g \in G_{u}} \Delta_{g(O)} \simeq \bigcup_{g \in G_{u}} g_{\mathfrak{z}}\left(G_{u}\right) G_{[\bar{\Omega}]_{O}} .
$$

$\S$ 2. Let $G=U \rtimes T$ be a semidirect product of an $n$-dimensional connected unipotent group $U$ by a 1-dimensional connected torus $T$. According to Serre [14], p. 172, the group $U$ has a representation on the affine space $\mathrm{k}^{n}$ in such a way the subspaces

$$
\left.U_{i}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{k}^{n}: x_{i+1}=\ldots=x_{n}=0\right)\right\}
$$

are normal subgroups of $G$, the product is given by $\left(x_{1}, \ldots, x_{n}\right)\left(y_{1}, \ldots, y_{n}\right)=$

$$
\left(x_{1}+y_{1}+\psi_{1}\left(x_{2}, \ldots, x_{n}, y_{2}, \ldots, y_{n}\right), \ldots, x_{n-1}+y_{n-1}+\psi_{n-1}\left(x_{n}, y_{n}\right), x_{n}+y_{n}\right),
$$

for suitable polynomials $\psi_{j} \in \mathrm{k}\left[x_{j}, \ldots, x_{n}, y_{j+1}, \ldots, y_{n}\right]$, and the automorphism of $U$ induced by an element $\tau \in T$ maps $\left(x_{1}, \ldots, x_{n}\right)$ to

$$
\left(a_{\tau}^{e_{1}} x_{1}+\varphi_{1}^{(\tau)}\left(x_{2}, \ldots, x_{n}\right), \ldots, a_{\tau}^{e_{n-1}} x_{n-1}+\varphi_{n-1}^{(\tau)}\left(x_{n}\right), a_{\tau}^{e_{n}} x_{n}\right)
$$

with $a_{\tau} \in \mathrm{k}^{*}$, an element depending bi-regularly on $\tau$, the map $\varphi_{j}^{(\tau)}$ a morphism $U_{n} / U_{j} \rightarrow U_{j} / U_{j-1}$ and $e_{j}$ a fixed integer.
7. Lemma: Let $n \geq 2$. Then for any $\tau \in T$ the morphism $\varphi_{n-1}^{(\tau)}$ yields a group homomorphism $U_{n} / U_{n-1} \rightarrow U_{n-1} / U_{n-2}$. Moreover we may take as $\psi_{n-1}$
a) the zero polynomial, if $U_{n} / U_{n-2}$ is a vector group,
b) $\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x_{n}^{i p^{r}} y_{n}^{(p-i) p^{r}}$, if $U_{n} / U_{n-2}$ is an Abelian group of exponent $p^{2}$,
c) $x_{n}^{p^{r}} y_{n}^{p^{s}}, \quad$ if $U_{n} / U_{n-2}$ is not commutative,
where, in the cases b) and c), $p=$ chark $>0, r$ and $s$ are nonnegative integers such that $r<s$ and $e_{n-1}=e_{n} \operatorname{deg}\left(\psi_{n-1}\right)$.
Proof: We may take as $\psi_{n-1}\left(x_{n}, y_{n}\right)$ (see for instance Lemma 7.1 in [6])

$$
\begin{array}{lll}
- & 0, & \text { if } U_{n} / U_{n-2} \text { is a vector group, } \\
- & b \sum_{i=1}^{p-1} \frac{1}{p}\left({ }_{i}^{p}\right) x_{n}^{i p^{r}} y_{n}^{(p-i) p^{r}}, & \text { if } U_{n} / U_{n-2} \text { is Abelian but not a vector group, } \\
- & b x_{n}^{p^{r}} y_{n}^{p^{s}}, & \text { if } U_{n} / U_{n-2} \text { is not commutative, }
\end{array}
$$

for some non-negative integers $r, s$ with $r<s$ and a non-zero scalar $b$, that may assumed 1 thanks to the isomorphism

$$
\left(\ldots, x_{n-1}, x_{n}\right) U_{n-2} \mapsto\left(\ldots, b x_{n-1}, x_{n}\right) U_{n-2} .
$$

Now the fact that $\tau$ operates on $U_{n}$ as an automorphism group implies that the co-boundary

$$
\delta^{1}\left(\varphi_{n-1}^{(\tau)}\right)\left(x_{n}, y_{n}\right)=\varphi_{n-1}^{(\tau)}\left(y_{n}\right)-\varphi_{n-1}^{(\tau)}\left(x_{n}+y_{n}\right)+\varphi_{n-1}^{(\tau)}\left(x_{n}\right)
$$

is one of the following

$$
\begin{array}{lll}
\text { - } 0, & \text { if } U_{n} / U_{n-2} \text { is a vector group; } \\
\text { - } & \left(a_{\tau}^{e_{n-1}}-a_{\tau}^{e_{n} \operatorname{deg} \psi_{n-1}}\right) \psi_{n-1}\left(x_{n}, y_{n}\right), & \text { otherwise. }
\end{array}
$$

In the latter case the fact that $\psi_{n-1}$ is not a co-boundary forces each $a_{\tau}$ to be a root of the polynomial $\mathrm{T}^{e_{n} \operatorname{deg}\left(\psi_{n-1}\right)}-\mathrm{T}^{e_{n-1}}$ and this forces the condition $e_{n-1}=$ $e_{n} \operatorname{deg}\left(\psi_{n-1}\right)$. As a consequence $\delta^{1}\left(\varphi_{n-1}^{(\tau)}\right)$ must be in any case the zero polynomial, which means that $\varphi_{n-1}^{(\tau)}$ yields a group homomorphism $U_{n} / U_{n-1} \rightarrow U_{n-1} / U_{n-2}$.
8. Remark: It follows from [3] that the action of a 1-dimensional torus on a 2 dimensional connected unipotent group $U$ may be given by diagonal $(2 \times 2)-$ matrices with entries in $k$. The following lemma, which generalizes both the lemma on p. 109 in [12] and Corollary 2.9 in [7], shows that this can be done without destroying the group structure of $U$.
9. Lemma: $\operatorname{Let} \varphi_{2}^{(\tau)}=\ldots=\varphi_{n-1}^{(\tau)}=0$ and assume $\varphi_{1}^{(\tau)}$ is a group homomorphism $U_{n} / U_{n-1} \rightarrow U_{1}$. Then there exists a bi-regular section $\sigma: U_{n} / U_{n-1} \rightarrow U_{n}$ such that $\sigma\left(x_{n} U_{n-1}\right)=\left(f\left(x_{n}\right), 0, \ldots, 0, x_{n}\right)$ with $\delta^{1}(f)=0$ and $\sigma\left(U_{n} / U_{n-1}\right)$ invariant under $T$.

Proof: We may suppose $\varphi_{1}^{(\tau)} \in \mathrm{k}\left[x_{n}\right]$ with $\varphi_{1}^{(\tau)}\left(x_{n}\right)=\sum_{i \in I, j \in J} c_{i j} a_{\tau}^{j} x_{n}^{i}$ for some finite sets $I$ and $J$ of integers with

$$
I= \begin{cases}\{1\}, & \text { if char } \mathrm{k}=0 \\ \text { a finite set of } p \text {-powers, } & \text { if char } \mathrm{k}=p>0\end{cases}
$$

The product $\tau_{1} \tau_{2}$ of two elements of $T$ gives

$$
\varphi_{1}^{\left(\tau_{1} \tau_{2}\right)}\left(x_{n}\right)=a_{\tau_{1}}^{e_{1}} \varphi_{1}^{\left(\tau_{2}\right)}\left(x_{n}\right)+\varphi_{1}^{\left(\tau_{1}\right)}\left(a_{\tau_{2}}^{e_{n}} x_{n}\right),
$$

hence for each $i \in I$

$$
\sum_{j \in J} c_{i j} a_{\tau_{1}}^{j} a_{\tau_{2}}^{j}=\sum_{j \in J} c_{i j}\left(a_{\tau_{1}}^{e_{1}} a_{\tau_{2}}^{j}+a_{\tau_{1}}^{j} a_{\tau_{2}}^{i e_{n}}\right) .
$$

By comparing we infer that just $c_{i, e_{1}}$ and $c_{i, i e_{n}}$ can occur as nonzero entries. So

$$
c_{i, e_{1}} a_{\tau_{1}}^{e_{1}} a_{\tau_{2}}^{e_{1}}+c_{i, i e_{n}} a_{\tau_{1}}^{i e_{n}} a_{\tau_{2}}^{i e_{n}}=c_{i, e_{1}}\left(a_{\tau_{1}}^{e_{1}} a_{\tau_{2}}^{e_{1}}+a_{\tau_{1}}^{e_{1}} a_{\tau_{2}}^{i e_{n}}\right)+c_{i, i e_{n}}\left(a_{\tau_{1}}^{e_{1}} a_{\tau_{2}}^{i e_{n}}+a_{\tau_{1}}^{i e_{n}} a_{\tau_{2}}^{i e_{n}}\right),
$$

or $c_{i, e_{1}}+c_{i, i e_{n}}=0$. Therefore $\varphi_{1}^{(\tau)}\left(x_{n}\right)=\sum_{i \in I} c_{i, e_{1}}\left(a_{\tau}^{e_{1}}-a_{\tau}^{i e_{n}}\right) x_{n}^{i}$ and

$$
\left\{\left(-\sum_{i \in I} c_{i, e_{1}} x_{n}^{i}, 0, \ldots, 0, x_{n}\right): x_{n} \in \mathrm{k}\right\}
$$

turns out to be $T$-invariant with $\delta^{1}: \sum_{i \in I} c_{i, e_{1}} \mathrm{~T}^{i} \mapsto 0$.
Set $M:=\left\{\left(0, \ldots, 0, x_{n}\right): x_{n} \in \mathbf{k}\right\}$ and let $v=(0, \ldots, 0, u) \in M$. We have
10. Lemma: Let $n \geq 3$. Assume the centralizer $\mathfrak{C}_{U_{n-1}}(v)$ of $v$ in $U_{n-1}$ satisfies the condition $\mathfrak{C}_{U_{n-1}}(v)=U_{n-2} \bmod U_{n-3}$ for all $v \in M$. Then the automorphism $\rho_{v}$ of $U_{n-1} / U_{n-3}$ induced by conjugation by $v$ maps

$$
\left(\ldots, x_{n-2}, x_{n-1}, 0\right) U_{n-3} \longmapsto\left(\ldots, x_{n-2}+u^{h} x_{n-1}^{k}, x_{n-1}, 0\right) U_{n-3}
$$

with $h$ and $k$ p-powers if char $\mathrm{k}=p>0, h=k=1$ otherwise.
Proof : As $U_{n-1} / U_{n-2} \leq \mathfrak{z}\left(U_{n} / U_{n-2}\right)$, we have

$$
\rho_{v}:\left(\ldots, x_{n-2}, x_{n-1}, 0\right) U_{n-3} \longmapsto\left(\ldots, x_{n-2}+\sigma\left(u, x_{n-1}\right), x_{n-1}, 0\right) U_{n-3}
$$

for some additive polynomial $\sigma \in \mathrm{k}\left[u, x_{n-1}\right]$, which turns out to be monomial because $\mathfrak{C}_{U_{n-1}}(v)=U_{n-2} \bmod U_{n-3}$ forces $\rho_{v}$ to act fixed-point freely on $U_{n-2} / U_{n-3}$. Thus $\sigma\left(u, x_{n-1}\right)=c u^{h} x_{n-1}^{k}$ for some integers $h, k$ and scalar $c \in \mathrm{k}^{*}$ that we may assume 1, up to the isomorphism $\left.\left(\ldots x_{n-2}, x_{n-1}, x_{n}\right) U_{n-3} \mapsto \ldots x_{n-2}, c^{-\frac{1}{k}} x_{n-1}, x_{n}\right) U_{n-3}$. Clearly the integers $h$ and $k$ have to satisfy the claimed conditions.

In the remaining part of the paper we ask the torus $T$ to act sharply transitively on $U_{n} / U_{n-1}$. This means

$$
e_{n}= \begin{cases}1, & \text { if char } \mathrm{k}=0  \tag{1}\\ \text { a } p \text {-power, } & \text { if char } \mathrm{k}=p>0 .\end{cases}
$$

§3. Now we go back to the the $(2,2)$-imprimitive algebraic group $\mathrm{G}=(G, \Omega, \bar{\Omega})$. This section is devoted to the case where the 2-dimensional factor group $G_{u} / \mathfrak{z}\left(G_{u}\right)$ is commutative.
11. Proposition: $G_{u} / \mathfrak{z}\left(G_{u}\right)$ is a vector group.

Proof : Assume it is not, then char $\mathrm{k} \neq 0$ and $G_{[\bar{\Omega}]} / \mathfrak{z}\left(G_{u}\right)$ coincides with the unique 1-dimensional connected algebraic subgroup of $G_{u} / \mathfrak{z}\left(G_{u}\right)$. Consequently $G_{[\bar{\Omega}]}$ is the unique 2 -dimensional connected algebraic normal subgroup of $G_{u}$ containing $\mathfrak{z}\left(G_{u}\right)$. Furthermore $G_{u} / \mathfrak{z}\left(G_{u}\right)$ commutative and $\operatorname{dim} \mathfrak{z}\left(G_{u}\right)=1$ require that $\mathfrak{z}\left(G_{u}\right)$ is the commutator subgroup of $G_{u}$, hence that each commutator morphism $\sigma_{g}: x \mapsto[g, x]$ is a group homomorphism $G_{u} \rightarrow \mathfrak{z}\left(G_{u}\right)$, whose kernel must have dimension $\geq 2$. So $\operatorname{ker} \sigma_{g} \geq G_{[\bar{\Omega}]}$ for any $g \in G_{u}$, a contradiction since $\bigcap_{g \in G_{u}} \operatorname{ker} \sigma_{g}=\mathfrak{z}\left(G_{u}\right)$.
12. Proposition: There exists a T-invariant normal subgroup $L$ of $G_{u}$ containing the centre $\mathfrak{z}\left(G_{u}\right)$ and $G_{u}=L \rtimes G_{[\bar{\Omega}]_{O}}$.
Proof: By [12] (Lemma on p. 109) the $T$-invariant subgroup $G_{[\bar{\Omega}]} / \mathfrak{z}\left(G_{u}\right)$ of $G_{u} / \mathfrak{z}\left(G_{u}\right)$ has a $T$-invariant complement, say $L / \mathfrak{z}\left(G_{u}\right)$ for some $T$-invariant normal subgroup $L$ of $G_{u}$ containing $\mathfrak{z}\left(G_{u}\right)$.

According to the notation of $\S 2$ we may take $U_{1}=\mathfrak{z}\left(G_{u}\right), U_{2}=G_{[\bar{\Omega}]}, U_{3}=G_{u}$. In addition we may choose

$$
G_{[\bar{\Omega}]_{O}}=\left\{\left(0, x_{2}, 0\right): x_{2} \in \mathrm{k}\right\},
$$

the subgroup $G_{[\bar{\Omega}]_{O}}$ being $T$-invariant. Observing that the normal subgroup $L$ of $G$ is not contained in $U_{2}$, we may also put

$$
L=\left\{\left(x_{1}, 0, x_{3}\right): x_{1}, x_{3} \in \mathrm{k}\right\} .
$$

Thus the product $\left(x_{1}, 0, x_{3}\right)\left(y_{1}, 0, y_{3}\right)$ of two elements of $L$ is given by

$$
\left(x_{1}+y_{1}+\beta\left(x_{3}, y_{3}\right), 0, x_{3}+y_{3}\right)
$$

and by Lemma 7 we may take

$$
\beta\left(x_{3}, y_{3}\right)= \begin{cases}0, & \text { if } L \text { is a vector group, }  \tag{2}\\ \sum_{i=1}^{p-1} \frac{1}{s^{p}}\binom{p}{i} x_{3}^{i p^{r}} y_{3}^{(p-i) p^{r}}, & \text { if } L \text { is commutative of exponent } p^{2}, \\ x_{3}^{p^{r}} y_{3}^{p^{p}}, & \text { if } L \text { is not commutative },\end{cases}
$$

for some nonnegative integers $r, s$ with $r<s$. Besides an element $v=(0,0, u) \in L$ moves the block $\Delta_{O}$ to a different block $\Delta_{v(O)}$ (Remark 6), so $v$ centralizes no element in $G_{[\bar{\Omega}]_{O}}$, the intersection $G_{[\bar{\Omega}]_{O}} \cap G_{[\bar{\Omega}]_{\ell(O)}}$ being trivial. Then Lemma 10 applies and, up to the isomorphism $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, c^{\frac{1}{h_{2}}} x_{2}, x_{3}\right)$, we may claim
13. Proposition: The product $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)$ in $G_{u}$ may be defined through

$$
\left(x_{1}+y_{1}+y_{2}^{h_{2}} x_{3}^{h_{3}}+\beta\left(x_{3}, y_{3}\right), x_{2}+y_{2}, x_{3}+y_{3}\right),
$$

where $\beta$ is given by (2) and each exponent $h_{i}$ is a p-power in case char $\mathrm{k}=p>0$, $h_{i}=1$ otherwise .

As we observed in Remark 8, there is no loss of generality if we assume the action of the torus $T$ on the affine plane $L$ given by diagonal $(2 \times 2)$-matrices. But $G_{[\bar{\Omega}]_{O}}$ occurs as a further $T$-invariant subgroup of dimension 1, so the diagonal action of each $\tau \in T$ extends to the whole group $G_{u}$ via

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(a_{\tau}^{e_{1}} x_{1}, a_{\tau}^{e_{2}} x_{2}, a_{\tau}^{e_{3}} x_{3}\right) \tag{3}
\end{equation*}
$$

The value of the exponent $e_{3}$ was given by (1), whereas the possible relationship occurring between $e_{1}$ and $e_{3}$ was stated in Lemma 7 . Now by imposing that $\tau$ is a group homomorphism we find

$$
\begin{equation*}
e_{1}=e_{2} h_{2}+e_{3} h_{3} \tag{4}
\end{equation*}
$$

with $h_{i}$ arising from the product of $G_{u}$ given in Proposition 13.
§4. Assume now the factor group $G_{u} / \mathfrak{z}\left(G_{u}\right)$ to be not commutative. This requires char $\mathrm{k}=p>0$ and we are going to see that even $p>2$ holds.

Referring to the notation of $\S 2$ we may take again $U_{3}=G_{u}, U_{2}=G_{[\bar{\Omega}]}, U_{1}=$ $\mathfrak{z}\left(G_{u}\right)$ and

$$
G_{[\bar{\Omega}]_{O}}=\left\{\left(0, x_{2}, 0\right): x_{2} \in \mathrm{k}\right\} .
$$

Also, by Lemma 7,

$$
\psi_{2}:\left(x_{3}, y_{3}\right) \mapsto x_{3}^{p^{m}} y_{3}^{p^{n}},
$$

for some integer $p$-powers $p^{m}$ and $p^{n}$ such that $m<n$. Furthermore, looking at Remark 6, we see that an element $v=\left(0,0, x_{3}\right)$ moves the block $\Delta_{O}$ to a different block $\Delta_{v(O)}$. So $v$ does not centralize any element of $G_{[\bar{\Omega}]_{O}}$ because the intersection $G_{[\bar{\Omega}]_{O}} \cap G_{[\bar{\Omega}]_{v(O)}}$ is assumed to be trivial. So Lemma 10 applies and, up to an isomorphism, we may assume that the automorphism induced on $G_{[\bar{\Omega}]}$ by an element $\left(0,0, x_{3}\right)$ maps

$$
\left(y_{1}, y_{2}, 0\right) \mapsto\left(y_{1}+y_{2}^{h_{2}} x_{3}^{h_{3}}, y_{2}, 0\right)
$$

for suitable integer $p$-powers $h_{i}=p^{l_{i}}, i=2,3$. If we represent $G_{u}$ as a noncentral extension of the vector group $G_{[\bar{\Omega}]}$ by $G_{u} / G_{[\bar{\Omega}]}$ using the cross section $\left(x_{1}, x_{2}, x_{3}\right) G_{[\bar{\Omega}]} \mapsto\left(0,0, x_{3}\right)$, the product $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)$ of two elements in $G_{u}$ can also be given by

$$
\left(x_{1}+y_{1}+y_{2}^{h_{2}} x_{3}^{h_{3}}+\beta\left(x_{3}, y_{3}\right), x_{2}+y_{2}+x_{3}^{p^{m}} y_{3}^{p^{n}}, x_{3}+y_{3}\right)
$$

with $\beta$ in $\mathrm{k}\left[x_{3}, y_{3}\right]$ such that $\beta\left(0, y_{3}\right)=\beta\left(x_{3}, 0\right)=0$ and $G_{u}$ is determined by taking

$$
\psi_{1}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=y_{2}^{h_{2}} x_{3}^{h_{3}}+\beta\left(x_{3}, y_{3}\right) .
$$

Now associative law forces the polynomial

$$
\delta^{2}(\beta)\left(z_{1}, z_{2}, z_{3}\right)=\beta\left(z_{1}, z_{2}\right)+\beta\left(z_{1}+z_{2}, z_{3}\right)-\beta\left(z_{2}, z_{3}\right)-\beta\left(z_{1}, z_{2}+z_{3}\right)
$$

to be

$$
\begin{equation*}
\delta^{2}(\beta)\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{p_{3}} z_{2}^{p_{2}+m} z_{3}^{p_{2}+n} \tag{5}
\end{equation*}
$$

and we can state
14. Proposition: $A$ necessary and sufficient condition in order that $G_{u}$ can be constructed as an extension of $\mathfrak{z}\left(G_{u}\right)$ by a non-commutative connected unipotent group is that there exists a polynomial $\beta \in \mathrm{k}\left[x_{3}, y_{3}\right]$ satisfying (5) with $\beta\left(0, y_{3}\right)=\beta\left(x_{3}, 0\right)=$ 0 . In such a case we may take $\psi_{1}\left(x_{2}, x_{3}, y_{2}, y_{3}\right)=y_{2}^{p^{t_{2}}} x_{3}^{p_{3}}+\beta\left(x_{3}, y_{3}\right)$.

The crucial question now is under what conditions such a polynomial $\beta$ there exists. Using a universal property of the operator $\delta^{2}$ we have

$$
\sum_{\pi \in \mathrm{S}_{n}} \operatorname{sign}(\pi) \delta^{2}(\beta)\left(z_{\pi(1)}, z_{\pi(2)}, z_{\pi(3)}\right)=0
$$

and this, in view of (5), is equivalent to

$$
\begin{equation*}
l_{3}-l_{2}=m, \text { or } l_{3}-l_{2}=n \tag{6}
\end{equation*}
$$

Assume now char $\mathrm{k}=2$ and $l_{2}+m>0$ and denote by $\beta_{j}$ the homogeneous component of $\beta$ of degree $j$. As in our case the operator $\delta^{2}$ is additive, (5) says that $\delta^{2}(\beta)=$ $\delta^{2}\left(\beta_{k}\right)$, where $k=2^{l_{2}}\left(2^{q}+2^{m}+2^{n}\right)$ with either $q=m$, or $q=n$ according as whether $l_{3}-l_{2}=m$, or $l_{3}-l_{2}=n$. Let

$$
\beta_{k}\left(y_{1}, y_{2}\right)=\sum_{i=0}^{k} a_{i} y_{1}^{k-i} y_{2}^{i}
$$

Then (5) becomes

$$
\sum_{i=0}^{k} a_{i}\left(z_{1}^{k-i} z_{2}^{i}+\left(z_{1}+z_{2}\right)^{k-i} z_{3}^{i}+z_{2}^{k-i} z_{3}^{i}+z_{1}^{k-i}\left(z_{2}+z_{3}\right)^{i}\right)=z_{1}^{l_{2}+q} z_{2}^{2_{2}+m} z_{3}^{2_{2}+n}
$$

Deriving this identity with respect to $z_{1}$ and evaluating at $\left(0, y_{1}, y_{2}\right)$ we obtain

$$
\begin{equation*}
a_{k-1} y_{1}^{k-1}+\frac{\partial}{\partial y_{1}} \beta_{k}\left(y_{1}, y_{2}\right)+a_{k-1}\left(y_{1}+y_{2}\right)^{k-1}=0 \tag{7}
\end{equation*}
$$

whereas deriving with respect to $z_{3}$ and evaluating at $\left(y_{1}, y_{2}, 0\right)$ we get

$$
\begin{equation*}
a_{1}\left(y_{1}+y_{2}\right)^{k-1}+a_{1} y_{2}^{k-1}+\frac{\partial}{\partial y_{2}} \beta_{k}\left(y_{1}, y_{2}\right)=0 \tag{8}
\end{equation*}
$$

As char $\mathrm{k}=2, \frac{\partial}{\partial y_{1}} \beta_{k}\left(y_{1}, y_{2}\right)$ and $\frac{\partial}{\partial y_{2}} \beta_{k}\left(y_{1}, y_{2}\right)$ are polynomials in $y_{1}^{2}$ and $y_{2}^{2}$, respectively, the identities (7) and (8) force $a_{k-1}=a_{1}=0$, hence

$$
\frac{\partial}{\partial y_{1}} \beta\left(y_{1}, y_{2}\right)=\frac{\partial}{\partial y_{2}} \beta\left(y_{1}, y_{2}\right)=0
$$

and this yields $a_{i}=0$ for all odd $i$. Thus we may do the substitution $\left(z_{1}, z_{2}, z_{3}\right) \mapsto$ $\left(z_{1}^{2}, z_{2}^{2}, z_{3}^{2}\right)$, hence $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}^{2^{l_{2}+m}}, z_{2}^{2_{2}+m}, z_{3}^{2^{l_{2}+m}}\right)$ by iterating the process. So (5) turns into

$$
\begin{equation*}
\delta^{2}(\gamma)\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{2^{q-m}} z_{2} z_{3}^{2^{n-m}} \tag{9}
\end{equation*}
$$

with $\gamma\left(y_{1}^{2^{l_{2}+m}}, y_{2}^{2^{l_{2}+m}}\right)=\beta\left(y_{1}, y_{2}\right)$. Let $\gamma_{t}$ be the homogeneous component of degree $t:=1+2^{n-m}+2^{q-m}$ of $\gamma$ and let $\gamma_{t}\left(y_{1}, y_{2}\right)=\sum_{i=0}^{t} b_{i} y_{1}^{t-i} y_{2}^{i}$. Then (9) says that $\delta^{2}(\gamma)=\delta^{2}\left(\gamma_{t}\right)$, hence

$$
\sum_{i=0}^{t} b_{i}\left(z_{1}^{t-i} z_{2}^{i}+\left(z_{1}+z_{2}\right)^{t-i} z_{3}^{i}+z_{2}^{t-i} z_{3}^{i}+z_{1}^{t-i}\left(z_{2}+z_{3}\right)^{i}\right)=z_{1}^{2^{q-m}} z_{2} z_{3}^{2^{n-m}}
$$

Likewise above we obtain

$$
\left\{\begin{array}{l}
b_{t-1} y_{1}^{t-1}+\frac{\partial}{\partial y_{1}} \gamma_{t}\left(y_{1}, y_{2}\right)+b_{t-1}\left(y_{1}+y_{2}\right)^{t-1}=(1-\epsilon) y_{1} y_{2}^{2^{n-m}} \\
b_{1}\left(y_{1}+y_{2}\right)^{t-1}+b_{1} y_{2}^{t-1}+\frac{\partial}{\partial y_{2}} \gamma_{t}\left(y_{1}, y_{2}\right)=0
\end{array}\right.
$$

where either $\epsilon=0$, or $\epsilon=1$ according as whether $q=m$, or $q=n$. So Euler's identity says that $t \gamma_{t}\left(y_{1}, y_{2}\right)$ is the polynomial

$$
b_{t-1} y_{1}\left(y_{1}^{t-1}+\left(y_{1}+y_{2}\right)^{t-1}+(1-\epsilon) y_{1} y_{2}^{2^{n-m}}\right)+b_{1} y_{2}\left(\left(y_{1}+y_{2}\right)^{t-1}+y_{2}^{t-1}\right)
$$

or the polynomial

$$
\begin{aligned}
b_{t-1}\left(y_{1}^{1+2^{n-m}} y_{2}^{2^{q-m}}+\right. & \left.y_{1}^{1+2^{q-m}} y_{2}^{2^{n-m}}+y_{1} y_{2}^{2^{n-m}+2^{q-m}}+(1-\epsilon) y_{1}^{2} y_{2}^{2^{n-m}}\right)+ \\
& +b_{1}\left(y_{1}^{2^{n-m}+2^{q-m}} y_{2}+y_{1}^{2^{n-m}} y_{2}^{1+2^{q-m}}+y_{1}^{2^{q-m}} y_{2}^{1+2^{n-m}}\right) .
\end{aligned}
$$

Let $q=m$. Then we have the polynomial identity

$$
\left(b_{t-1}+b_{1}\right)\left(y_{1}^{1+2^{n-m}} y_{2}+y_{1} y_{2}^{1+2^{n-m}}\right)+b_{1} y_{1}^{2^{n-m}} y_{2}^{2}=0
$$

which asks $b_{t-1}=b_{1}=0$ and, consequently, $\frac{\partial}{\partial y_{1}} \gamma_{t}\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{2^{n-m}}$, a contradiction. Let $q=n$. Then

$$
\gamma_{t}\left(y_{1}, y_{2}\right)=b_{t-1} y_{1} y_{2}^{2^{n-m+1}}+b_{1} y_{1}^{2^{n-m+1}} y_{2}
$$

and $\delta^{2}\left(\gamma_{t}\right)\left(x_{1}, x_{2}, x_{3}\right)=0$. This contradicts (9) and $p \neq 2$ follows.
Actually, if $p \neq 2$ the polynomials

$$
\beta\left(x_{3}, y_{3}\right)= \begin{cases}\frac{1}{2} x_{3}^{2 p^{l_{3}}} y_{3}^{p^{l_{2}+n}} & \text { if } l_{3}-l_{2}=m  \tag{10}\\ x_{3}^{p_{3}^{l_{3}}+p^{l_{2}+m}} y_{3}^{p_{3}}+\frac{1}{2} x_{3}^{p^{l_{2}+m}} y_{3}^{2 p^{l_{3}}} & \text { if } l_{3}-l_{2}=n\end{cases}
$$

satisfy the conditions required in Proposition 14. Any other polynomial satisfying the conditions of Proposition 14 differs from (10) for a co-cycle $\kappa\left(x_{3}, y_{3}\right)$ for a central extension of $k_{+}$by $k_{+}$that we are going to show it is a co-boundary.

It follows from Remark 8 that we may assume any element $\tau \in T$ acts on $G_{u}$ via

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(a_{\tau}^{e_{1}} x_{1}+\varphi_{1}^{(\tau)}\left(x_{3}\right), a_{\tau}^{e_{2}} x_{2}, a_{\tau}^{e_{3}} x_{3}\right)
$$

with the morphism $\varphi_{1}^{(\tau)}$ depending only on $x_{3}$ because $G_{[\bar{\Omega}]_{O}}$ is $T$-invariant. By imposing that $\tau$ operates as a group homomorphism we obtain first

$$
\begin{equation*}
e_{2}=e_{3}\left(p^{m}+p^{n}\right) \text { and } e_{1}=e_{2} h_{2}+e_{3} h_{3}=e_{3}\left(p^{l_{3}}+p^{l_{2}+m}+p^{l_{2}+n}\right), \tag{11}
\end{equation*}
$$

but also

$$
a_{\tau}^{e_{1}} \beta\left(x_{3}, y_{3}\right)-\beta\left(a_{\tau}^{e_{3}} x_{3}, a_{\tau}^{e_{3}} y_{3}\right)+a_{\tau}^{e_{1}} \kappa\left(x_{3}, y_{3}\right)-\kappa\left(a_{\tau}^{e_{3}} x_{3}, a_{\tau}^{e_{3}} y_{3}\right)=\delta^{1}\left(\varphi_{1}^{(\tau)}\right)\left(x_{3}, y_{3}\right),
$$

or

$$
\begin{equation*}
a_{\tau}^{e_{1}} \kappa\left(x_{3}, y_{3}\right)-\kappa\left(a_{\tau}^{e_{3}} x_{3}, a_{\tau}^{e_{3}} y_{3}\right)=\delta^{1}\left(\varphi_{1}^{(\tau)}\right)\left(x_{3}, y_{3}\right), \tag{12}
\end{equation*}
$$

because $e_{1}=e_{3} \operatorname{deg} \beta$ in view of (11). Since $e_{3}$ is a $p$-power and $p>2$, the integer $e_{1}$ can be, by (11), neither a $p$-power, nor the sum of two $p$-powers. Thus Theorem 4.6 in [4] guaranties that $\kappa$ is a co-boundary, i.e. $\kappa=\delta^{1}(g)$ for some polynomial $g \in \mathrm{k}[\mathrm{T}]$, that may be eliminated using the substitution $x_{1} \mapsto x_{1}-g\left(x_{3}\right)$. Such a replacement yields $\delta^{1}\left(\varphi_{1}^{(\tau)}\right)\left(x_{3}, y_{3}\right)=0$, i.e. $\varphi_{1}^{(\tau)}$ is additive, and we may assume the action of $T$ given by diagonal matrices, as Lemma 9 claims.
§5. Now we collect all information achieved in the previous sections and classify G according to the structure of the transversal $L$. With the aid of Remark 6 we can state:
15. Main Theorem: Every (2,2)-imprimitive algebraic group $\mathrm{G}=(G, \Omega, \bar{\Omega})$ can be constructed on the affine variety $\mathrm{k}^{3} \times \mathrm{k}^{*}$ as follows:

- define the unipotent radical $G_{u}$ on the affine space $\mathrm{k}^{3}$ through the product
$\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}+\psi_{1}\left(x_{3}, y_{2}, y_{3}\right), x_{2}+y_{2}+\psi_{2}\left(x_{3}, y_{3}\right), x_{3}+y_{3}\right)$,
where either
$\psi_{2}\left(x_{3}, y_{3}\right)=0$ and $\psi_{1}\left(x_{3}, y_{2}, y_{3}\right)=y_{2}^{h_{2}} x_{3}^{h_{3}}+\beta\left(x_{3}, y_{3}\right)$ with each $h_{i}$ an integer $p$-power $p^{l_{i}}$ in case char $\mathrm{k}=p>0, h_{i}=1$ otherwise, and $\beta\left(x_{3}, y_{3}\right)$ one of the polynomials
- 0 ;
$-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x_{3}^{i p^{r}} y_{3}^{(p-i) p^{r}}$;
$-x_{3}^{p^{r}} y_{3}^{p^{s}}$;
for suitable nonnegative integers $r, s$ such that $r<s$, or
$\psi_{2}\left(x_{3}, y_{3}\right)=x_{3}^{p^{m}} y_{3}^{p^{n}}$, with $p=$ char $\mathrm{k}>2$ and $m, n$ non-negative integers such that $m<n$, and $\psi_{1}\left(x_{3}, y_{2}, y_{3}\right)$ as above with

$$
\beta\left(x_{3}, y_{3}\right)= \begin{cases}\frac{1}{2} x_{3}^{2 p_{3}} y_{3}^{p^{l_{2}+n}}, & \text { if } l_{3}-l_{2}=m ; \\ x_{3}^{p_{3}+p^{l_{2}+m}} y_{3}^{p_{3}}+\frac{1}{2} x_{3}^{p^{l_{2}+m}} y_{3}^{2 p^{l_{3}}}, & \text { if } l_{3}-l_{2}=n ;\end{cases}
$$

- leave $a \in \mathrm{k}^{*}$ operate on $\mathrm{k}^{3}$ via

$$
\left(u_{1}, u_{2}, u_{3}\right) \mapsto\left(a^{e_{1}} u_{1}, a^{e_{2}} u_{2}, a^{e_{3}} u_{3}\right)
$$

where
$-e_{1}=e_{2} h_{2}+e_{3} h_{3}$, but also $e_{1}=e_{3} \operatorname{deg} \beta$ if $\beta$ is not the zero polynomial;
$-e_{2}=e_{3} \frac{\operatorname{deg} \beta-h_{3}}{h_{2}}$ if $\beta$ is not the zero polynomial;

- $e_{3}$ is a positive integer $p$-power in case char $\mathrm{k}=p>0, e_{3}=1$ otherwise;
- identify $\Omega$ with the affine plane $\mathrm{k}^{2}$ with the parallel lines $y=k$ giving the set $\bar{\Omega}$ of blocks. Then a transformation $\left(u_{1}, u_{2}, u_{3}, a\right) \in G$ moves the point $(x, y) \in \Omega$ to the point

$$
\left.\left(u_{1}+a^{e_{2} h_{2}+e_{3} h_{3}} x+\psi_{1}\left(u_{3}, 0, a^{e_{3}} y\right), u_{3}+a^{e_{3}} y\right)\right)
$$

The canonical representation of G given through the main theorem depends on the polynomial $\beta$ as well as on the integer parameters $e_{2}, e_{3}, h_{2}, h_{3}$, though $h_{2}$ and $h_{3}$ could already be determined by $\beta, e_{2}$ and $e_{3}$. Labelling G as $\mathrm{G}_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)}$, we ask whether an isomorphism

$$
\Phi: \mathrm{G}_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)} \rightarrow \mathrm{G}_{\beta^{\prime}}^{\left(e_{2}^{\prime}, e_{3}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)}
$$

between two (2,2)-imprimitive algebraic groups with different parameters exists. Of course we may assume the same sets of points and blocks for both groups, so $\Phi$ is
a pair $\left(\Phi_{1}, \Phi_{2}\right)$ with $\Phi_{1}$ a group isomorphism $G_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)} \longrightarrow G_{\beta^{\prime}}^{\left(e_{2}^{\prime}, e_{3}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)}$ and $\Phi_{2}: k^{2} \rightarrow k^{2}$ a bijective morphism of the affine plane $k^{2}$ transforming horizontal lines into horizontal lines such that

$$
\Phi_{2}(g(P))=\Phi_{1}(g)\left(\Phi_{2}(P)\right) \quad\left(g \in G_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)}, P \in \mathrm{k}^{2}\right)
$$

As $G_{u}$ is transitive on $\Omega$, up to inner automorphisms we may assume that $\Phi_{2}$ leaves the point $O=(0,0)$ of $\Omega$ fixed, hence the line $y=0$ stable. Then the stabilizer of $O$, as well as the normalizer and centralizers of $\Delta_{O}$ correspond; in particular

$$
\begin{array}{ll}
\Phi_{1}\left(\left(0, u_{2}, 0\right)\right)=\left(0, b_{2} u_{2}, 0\right) & \left(b_{2} \in \mathrm{k}^{*}\right), \\
\Phi_{1}\left(\left(u_{1}, 0,0\right)\right)=\left(b_{1} u_{1}, 0,0\right) & \left(b_{1} \in \mathrm{k}^{*}\right), \tag{13}
\end{array}
$$

and, moreover,

$$
\begin{align*}
& \left.\Phi_{1}\left(\left(0,0, u_{3}\right)\right)=\left(f_{1}\left(u_{3}\right), f_{2}\left(u_{3}\right), b_{3} u_{3}\right)\right) \quad\left(b_{3} \in \mathrm{k}^{*}\right), \\
& \Phi_{2}((x, y))=\left(b_{1} x+f_{1}(y), b_{3} y\right), \tag{14}
\end{align*}
$$

for suitable polynomials $f_{j} \in \mathrm{k}[\mathrm{T}]$ such that

$$
\begin{array}{ll}
\delta^{1}\left(f_{2}\right)\left(x_{3}, y_{3}\right)=b_{2} \psi_{2}\left(x_{3}, y_{3}\right)-\psi_{2}^{\prime}\left(b_{3} x_{3}, b_{3} y_{3}\right) & \left(x_{3}, y_{3} \in \mathrm{k}\right), \\
\delta^{1}\left(f_{1}\right)\left(x_{3}, y_{3}\right)=b_{1} \psi_{1}\left(x_{3}, 0, y_{3}\right)-\psi_{1}^{\prime}\left(b_{3} x_{3}, f_{2}\left(y_{3}\right), b_{3} y_{3}\right) & \left(x_{3}, y_{3} \in \mathrm{k}\right) \tag{15}
\end{array}
$$

Manifestly tori fixing the point $O$ correspond under $\Phi_{1}$; in particular we have $\Phi_{1}\left(T_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)}\right)=T_{\beta^{\prime}}^{\left(e_{2}^{\prime}, e_{3}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)}$ since tori are conjugated under $G_{u}$. This means

$$
\left(u_{1}, u_{2}, u_{3}\right)^{\Phi_{1}(\tau)}=\left(a_{\tau}^{\varepsilon \varepsilon_{1}^{\prime}} u_{1}, a_{\tau}^{\varepsilon e_{2}^{\prime}} u_{2}, a_{\tau}^{\varepsilon \varepsilon_{3}^{\prime}} u_{3}\right)
$$

with $\varepsilon= \pm 1$. The identity $\Phi_{1}\left(\left(0,0, u_{3}\right)^{\tau}\right)=\left(\Phi_{1}\left(0,0, u_{3}\right)\right)^{\Phi_{1}(\tau)}$ and the first part of (14) yield $\varepsilon=1, e_{3}=e_{3}^{\prime}$ and $f_{j}\left(a_{\tau}^{e_{3}} u_{3}\right)=a_{\tau}^{e_{j}^{\prime}} f_{j}\left(u_{3}\right), j=1,2$, whereas $\Phi_{1}\left(\left(u_{1}, u_{2}, 0\right)^{\tau}\right)=\left(\Phi_{1}\left(u_{1}, u_{2}, 0\right)\right)^{\Phi_{1}(\tau)}$ and (13) give $e_{1}=e_{1}^{\prime}$ and $e_{2}=e_{2}^{\prime}$. So the polynomials $f_{j}$ must be monomials and consequently, in case $f_{j} \neq 0$,

$$
\begin{equation*}
e_{j}=e_{3} \operatorname{deg}\left(f_{j}\right) \quad(j=1,2) \tag{16}
\end{equation*}
$$

Therefore $f_{j}(\mathrm{~T})=d_{j} \mathrm{~T}^{\frac{e_{j}}{e_{3}}}, d_{j} \in \mathrm{k}, j=1,2$. Furthermore imposing the condition $\Phi_{1}\left(0,0, u_{3}\right) \Phi_{1}\left(0, v_{2}, 0\right)=\Phi_{1}\left(\left(0,0, u_{3}\right)\left(0, v_{2}, 0\right)\right)$ we obtain $b_{2}^{h_{2}^{\prime}} b_{3}^{h_{3}^{\prime}} u_{3}^{h_{3}^{\prime}} v_{2}^{h_{2}^{\prime}}=b_{1} u_{3}^{h_{3}} v_{2}^{h_{2}}$, i.e. $\left(h_{2}^{\prime}, h_{3}^{\prime}\right)=\left(h_{2}, h_{3}\right)$ and

$$
\begin{equation*}
b_{1}=b_{2}^{h_{2}} b_{3}^{h_{3}} . \tag{17}
\end{equation*}
$$

So the first step is achieved:
16. Proposition: Let $\mathrm{G}_{\beta^{\prime}}^{\left(e^{\prime}, e_{3}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)}$ and $\mathrm{G}_{\beta}^{\left(e_{2}, e_{3}, h_{2}, h_{3}\right)}$ isomorphic as algebraic permutation groups. Then

$$
\left(e_{2}^{\prime}, e_{3}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}\right)=\left(e_{2}, e_{3}, h_{2}, h_{3}\right)
$$

Theorem 4.6 in [4] says that the first of (15) occurs precisely if

$$
\begin{equation*}
\delta^{1}\left(f_{2}\right)=\psi_{2}-\psi_{2}^{\prime}=0 . \tag{18}
\end{equation*}
$$

Also the fact that $e_{1}=e_{3} \operatorname{deg}(\beta)$ if $\beta$ is not the zero polynomial confines matters to examine the case where chark $=p>0, \beta=0$ and either $\beta^{\prime}\left(x_{3}, y_{3}\right)=$ $\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x_{3}^{i p^{r}} y_{3}^{(p-i) p^{r}}$, or $\beta^{\prime}\left(x_{3}, y_{3}\right)=x_{3}^{p^{r}} y_{3}^{p^{s}}$ : by (16) we have $\operatorname{deg} \beta^{\prime}=\frac{e_{1}}{e_{3}}=\operatorname{deg} f_{1}$ in case $d_{1} \neq 0$. Then the second identity of (15) turns into

$$
\begin{equation*}
\delta^{1}\left(f_{1}\right)\left(x_{3}, y_{3}\right)=-\beta^{\prime}\left(b_{3} x_{3}, b_{3} y_{3}\right)-b_{3}^{h_{3}} x_{3}^{h_{3}} f_{2}\left(y_{3}\right)^{h_{2}} \tag{19}
\end{equation*}
$$

and again Theorem 4.6 in [4] excludes the possibility that $f_{2}$ is the zero polynomial. Then $f_{2}$ is an additive monomial by (18) and (16) forces $e_{2}$ to be a $p$-power. Thus, in view of the main theorem, both $e_{1}$ and $\operatorname{deg} \beta^{\prime}$, are the sum of two $p$-powers. So just the following two possibilities can occur: either $\beta^{\prime}\left(x_{3}, y_{3}\right)=x_{3}^{p^{r}} y_{3}^{p^{s}}$, or chark $=2$ and $\beta^{\prime}\left(x_{3}, y_{3}\right)=x_{3}^{2^{r}} y_{3}^{2^{r}}$. Thus the main theorem gives either $e_{2} h_{2}+e_{3} h_{3}=e_{3}\left(p^{r}+p^{s}\right)$, or $e_{2} h_{2}+e_{3} h_{3}=e_{3} 2^{r+1}$, which means that the pair of $p$-powers $\left(h_{2}, h_{3}\right)$ is one of the following

1. $\left(h_{2}, h_{3}\right)=\left(\frac{e_{3}}{e_{2}} p^{r}, p^{s}\right)$;
2. $\left(h_{2}, h_{3}\right)=\left(\frac{e_{3}}{e_{2}} p^{s}, p^{r}\right)$;
3. $\left(h_{2}, h_{3}\right)=\left(\frac{e_{3}}{e_{2}} 2^{r}, 2^{r}\right)$.

As the right side of (19) must be a co-boundary, (20.1) gives, (20.2) and (20.3), lead respectively to

1. $d_{1}=b_{3}^{p^{r}+p^{s}}=b_{3}^{p^{s}} d_{2}^{\frac{e_{3}}{e_{2}} p^{r}}, \quad$ hence $d_{2}=b_{3}^{\frac{e_{2}}{e_{3}}}$;
2. $d_{1}=0$ and $b_{3}^{p^{r}+p^{s}}=-b_{3}^{p^{r}} d_{2}^{\frac{e_{3}}{e_{2}} p^{s}}$, hence $d_{2}=-b_{3}^{\frac{e_{2}}{e_{3}}}$;
3. $b_{3}^{2^{r+1}}=b_{3}^{2^{r}} d_{2}^{\frac{e_{3}}{e_{2}} 2^{r}}$, hence $d_{2}=b_{3}^{\frac{e_{2}}{e_{3}}}$.

Now it is straightforward calculation to verify that, for any $b_{1}, b_{2}, d_{3} \in \mathrm{k}$, the maps

$$
\begin{align*}
& \text { 1. }\left\{\begin{array}{l}
G_{0}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} p^{r}, p^{s}\right)} \rightarrow G_{x^{p^{r}} y^{p^{s}}}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} p^{r}, p^{s}\right)} \\
\left(u_{1}, u_{2}, u_{3}, a\right) \mapsto\left(b_{2}^{\frac{e_{3}}{e_{2}} p^{r}} b_{3}^{p^{s}} u_{1}+\left(b_{3} u_{3}\right)^{p^{r}+p^{s}}, b_{2} u_{2}+\left(b_{3} u_{3}\right)^{\frac{e_{2}}{e_{3}}}, b_{3} u_{3}, a\right) ;
\end{array}\right. \\
& \text { 2. }\left\{\begin{array}{l}
G_{0}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} p^{s}, p^{r}\right)} \rightarrow G_{x^{p^{r}} y^{p^{s}}}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} p^{s}, p^{r}\right)} \\
\left(u_{1}, u_{2}, u_{3}, a\right) \mapsto\left(b_{2}^{\frac{e_{3}}{e_{2}} p^{s}} b_{3}^{p^{r}} u_{1}, b_{2} u_{2}-\left(b_{3} u_{3}\right)^{\frac{e_{2}}{e_{3}}}, b_{3} u_{3}, a\right) ;
\end{array}\right.  \tag{21}\\
& \text { 3. }\left\{\begin{array}{l}
G_{0}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} 2^{r}, 2^{r}\right)} \rightarrow G_{x^{2 r}}^{\left(e_{2}, e_{3}, \frac{e_{3}}{e_{2}} 2^{r}, 2^{r}\right)} \\
\left(u_{1}, u_{2}, u_{3}, a\right) \mapsto\left(b_{2}^{\frac{e_{3}}{e_{2}} 2^{r}} b_{3}^{2^{r}} u_{1}+d_{1} u_{3}^{2^{r+1}}, b_{2} u_{2}+\left(b_{3} u_{3}\right)^{\left.\frac{e_{2}}{e_{3}}, b_{3} u_{3}, a\right)}\right.
\end{array}\right.
\end{align*}
$$

are group isomorphisms in correspondence to the values (20.i) of the pair of $p$-powers $\left(h_{2}, h_{3}\right)$. Manifestly such isomorphisms supply isomorphisms for the associated permutation groups. Summing up we have
17. Theorem: The integer parameters $e_{2}, e_{3}, h_{2}, h_{3}$ and the polynomial $\beta$ determine uniquely the isomorphy class of the $(2,2)$-imprimitive algebraic group G , except the cases where the pair $\left(h_{2}, h_{3}\right)$ takes one of the (integer) values (20.i) which produces the corresponding isomorphisms (21.i).

## References

[1] C. Bartolone, S. Musumeci and K. Strambach. Imprimitive groups highly transitive on blocks. J. Group Theory 7 (2004), 463-494.
[2] W. Benz. Vorlesungen über Geometrie der Algebren. Geometrien von Möbius, Laguerre-Lie, Minkowski in einheitlicher und grundlagengeometrischer Behandlung. Die Grundlehren der mathematischen Wissenschaften, Band 197. (Springer, 1973).
[3] A. Bialynicki-Birula. Remarks on the action of an algebraic torus on $\mathrm{k}^{n}$. II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 123-125.
[4] M. Demazure and P. Gabriel. Groupes Algébriques (Masson \& Cie, 1991).
[5] J. D. Dixon and A. E. Zalesski. Finite imprimitive linear groups of prime degree. J. Algebra 276 (2004), no. 1, 340-370 .
[6] M. R. Enea. Right distributive quasigroups on algebraic varieties. Geom. Dedicata 51 (1994), no. 3, 257-286 .
[7] G. Falcone. Algebraic Frobenius groups. Forum Math. 12 (2000), no. 5, 513544.
[8] D. Hertzig. The structure of Frobenius algebraic groups. Amer. J. Math. 83 (1961), 421-431.
[9] J. E. Humphreys. Linear Algebraic Groups, 2nd ed. (Springer, 1981).
[10] E. N. Martin. On the imprimitive substitution groups of degree fifteen and the primitive substitution groups of degree eighteen. Amer. J. Math. 23 (1901), 259-286.
[11] C. Ronse. Groupes imprimitifs de degré impair. Acad. Roy. Belg. Bull. Cl. Sci. (5) 70 (1984), no. 10, 575-595.
[12] M. Rosenlicht. Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. (4) 61 (1963), 97-120.
[13] M. Rosenlicht. Some basic theorems on algebraic groups. Amer. J. Math. 78 (1956), 401-443.
[14] J. P. Serre. Groupes algébriques et corps de classes (Hermann, 1959).
C. Bartolone, A. Di Bartolo, Dipartimento di Matematica e Applicazioni, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy
E-mail: cg@math.unipa.it; alfonso@math.unipa.it
K. Strambach, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstr. $1 \frac{1}{2}$, D-91054 Erlangen, Germany
E-mail: strambach@mi.uni-erlangen.de

