Imprimitive groups highly transitive on blocks *[†]

Claudio G. Bartolone

Silvia Musumeci

Karl Strambach

Abstract

We classify imprimitive groups acting highly transitively on blocks and satisfying conditions common in geometry. They can be realized as suitable subgroups of twisted wreath products.

In contrast to the theory of primitive permutation groups, the literature for imprimitive groups appears needy. The best known construction principle for imprimitive groups is given by wreath products of two groups U and \overline{G} .

Suppose that U is a vector space and let V be the direct sum $\bigoplus_{i=1}^{t} U_i$ of t copies of U. If \overline{G} is a subgroup of the symmetric group \mathbf{S}_t acting transitively on the set $\{U_1, \ldots, U_t\}$ of components of V and $\alpha : \overline{G}_{U_t} \to \mathbf{GL}(U)$ is a linear representation of the stabilizer in \overline{G} of the component U_t , then the twisted wreath product $G = U \operatorname{wr}_{\alpha} \overline{G}$ may be seen as a group of affine mappings acting transitively on a suitable system of affine subspaces of V and having t blocks there. The abelian group T consisting of all translations is the corresponding inertial group, i.e. the normal subgroup of G leaving each block fixed. Restricting to a G-invariant subspace W of V, for which there is an integer $m \leq t$ such that the projection $W \longrightarrow \bigoplus_{r=i}^{i_m} U_r$ is an isomorphism with respect to any *m*-subset of $\{1, \ldots, t\}$, we obtain a subgroup of G having the same system of blocks as G and inertial group given by the translations corresponding to W. In particular, the inertial group induces a regular action on each block and acts sharply transitively on *m*-tuples of independent points, i.e. points no two of which lying in the same block. If the representation α is transitive, then U is finite and the stabilizer of a block is 2-transitive on it.

^{*}Research supported by M.U.R.S.T..

[†]2000 Mathematics Subject Classification Primary 20B22, Secondary 20B20, 20C30, 51B05, 51D99.

Conversely, let G be an imprimitive permutation group having a finite number t of blocks and assume that the stabilizer G_{Δ} in G of a block Δ acts 2-transitively on it. Suppose that the inertial group N induces a sharply transitive group on each block and moves uniquely any m-tuple of independent points onto any other one of the same type, for some $m \leq t$. Then each block Δ is a vector space of finite dimension over a prime field and G can be embedded into a twisted wreath product $\Delta \operatorname{wr}_{\alpha} G/N$, where α is a transitive linear representation of G_{Δ}/N on Δ .

In geometry imprimitive actions play an important role. For instance, the group of automorphisms of a chain geometry ([1]) is an imprimitive group operating sharply transitively on triples of independent points, such that the stabilizer of a block is 2-transitive on it. This motivated us to study imprimitive permutation groups which are highly transitive on blocks and satisfy conditions common in geometry. In particular, we classify all imprimitive permutation groups $G = (G, \Omega)$ fulfilling the following conditions for some integer m > 3:

i) the inertial group N induces a sharply transitive action on each block;

ii) given two ordered *m*-tuples (X_1, \ldots, X_m) , $(Y_1, \ldots, Y_m) \in \Omega^m$, X_i and Y_i lying in the same block Δ_i , there is just one element in N moving (X_1, \ldots, X_m) onto (Y_1, \ldots, Y_m) , provided $\Delta_1, \ldots, \Delta_m$ are distinct blocks;

- iii) the stabilizer in G of a block has a 2-transitive action on it;
- iv) the group G/N is finite and acts *m*-transitively on the set Ω of blocks.

We represent these groups as subgroups of twisted wreath products. Using Kantor's, Hering's and Liebeck's results on transitive linear representations of finite simple groups ([7], [9] and [11]), we prove that the size of a block is 2, 3, 4, or 16 and the permutation group $\bar{\mathbf{G}} = (G/N, \bar{\Omega})$ is either the symmetric group \mathbf{S}_m , or the symmetric group \mathbf{S}_{m+1} or the alternating group \mathbf{A}_{m+2} .

If each block contains at most 3 points then $\overline{\mathbf{G}} \simeq \mathbf{S}_m$, or $\overline{\mathbf{G}} \simeq \mathbf{S}_{m+1}$; in the latter case, if G does not split over the inertial group N, then any block contains exactly 2 points and m is odd.

If each block has 4 points then either m = 4 and $\bar{\mathbf{G}} \simeq \mathbf{S_4}$, or m = 5 and $\bar{\mathbf{G}} \simeq \mathbf{S_5}$; in both cases G is a splitting extension of N by \mathbf{S}_m .

If each block has 16 points, then either m = 4, 5, 6, 7 and $\overline{\mathbf{G}} \simeq \mathbf{A}_{m+2}$, or m = 6, 7 and $\overline{\mathbf{G}} \simeq \mathbf{S}_m$ or m = 5 and $\overline{\mathbf{G}} \simeq \mathbf{S}_6$. Moreover, the group G splits always over N, apart from the last case where a further non-splitting extension occurs.

A tool for our classification is Blackburn's description of the extensions of a finite elementary abelian p-group by symmetric or alternating groups ([2]).

1.1 Translation systems of imprimitivity. Let $G = (G, \Omega)$ be an imprimitive permutation group and let $\overline{\Omega}$ be the corresponding system of blocks. Points $\{X_i\}_{i\in I}$ of Ω are called *independent* if there is no block in $\overline{\Omega}$ containing any two of them. We shall say that $\overline{\Omega}$ is a *translation system of imprimitivity of dimension* $m \ (\leq |\overline{\Omega}|)$ if the *inertial group* N of $\overline{\Omega}$, i.e. the normal subgroup of G leaving each block of $\overline{\Omega}$ fixed, fulfills the following conditions 1.1.1 and 1.1.2:

1.1.1 The group N induces on any block $\Delta \in \overline{\Omega}$ a sharply transitive group.

1.1.2 Let $\Delta_1, \ldots, \Delta_m \in \overline{\Omega}$ be distinct blocks and let $X_i, Y_i \in \Delta_i, i = 1, \ldots, m$. Then, there is just one element $g \in N$ such that $g(X_i) = Y_i$ for all $i = 1, \ldots, m$.

As a consequence of these two conditions we have:

1.1.3 Let X_1, \ldots, X_m be independent points and denote by N^i the stabilizer in N of each of $X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_m$. Then, $N = N^1 \times \ldots \times N^m$.

Proof. Let $g \in N$. There is just one element $g_1 \in N^1$ such that $g_1(X_1) = g(X_1)$, which means that $g_1^{-1}g$ fixes X_1 . For $1 \leq j < m$, assume there is a unique element $g_j \in N^j$ such that $\left(\prod_{i=1}^j g_i\right)^{-1}g$ fixes X_1, \ldots, X_j . Then there is just one element $g_{j+1} \in N^{j+1}$ with $g_{j+1}(X_{j+1}) = \left(\prod_{i=1}^j g_i\right)^{-1}g(X_{j+1})$, i.e. $\left(\prod_{i=1}^{j+1} g_i\right)^{-1}g$ fixes X_1, \ldots, X_{j+1} . As the stabilizer in N of each of X_1, \ldots, X_m is trivial, the inductive argument proves that g can uniquely be written as $g_1 \ldots g_m$. \Box

1.1.4 Let the permutation group $\overline{\mathbf{G}} = (G/N, \overline{\Omega})$ be sharply *m*-transitive. Then, *G* operates sharply transitively on the set of *m*-tuples of independent points.

Proof. Let X_1, \ldots, X_m and Y_1, \ldots, Y_m be m-tuples of independent points. Since $\overline{\mathsf{G}}$ is m-transitive, there exists a coset $gN \in G/N$ such that the block containing $g(X_i)$ contains Y_i , as well $(i = 1, \ldots, m)$. Then there exists $h \in N$ such that $hg(X_i) = Y_i$. Now, the sharply transitivity follows from the fact that the stabilizer of the points X_1, \ldots, X_m is trivial. \Box

1.1.5 Assume that $\overline{\Omega}$ is finite and the stabilizer G_{Δ} in G of a block Δ acts 2-transitively on it. Then G is finite.

Proof. Let $X \in \Delta$. Since N_X leaves every point in Δ fixed, the finite group $G_X/N_X \simeq G_{\Delta}/N$ acts transitively on $\Delta \setminus \{X\}$, hence we have that Δ is finite. Thus Ω and G are finite. \Box **2.1 Imprimitive groups and wreath products.** Let U be a vector space of finite dimension n over a field K, $V = \bigoplus_{i=1}^{t} U_i$ be the direct sum of t copies of U and \overline{G} be a transitive subgroup of the symmetric group \mathbf{S}_t with respect to the natural action on the components U_i of V. Assume we are given a homomorphism $\alpha : h \mapsto \alpha_h$ from the stabilizer \overline{G}_{U_t} of U_t into the general linear group $\mathbf{GL}(U)$ of U. We can define an embedding of \overline{G} into $\mathbf{GL}(V)$ as follows. Starting with a basis e_1, \ldots, e_n of U, we have a basis

$$\mathcal{B} = \{e_{11}, \ldots, e_{1n}, \ldots, e_{t1}, \ldots, e_{tn}\}$$

of V, where e_{ij} has e_j as the *i*-th component and 0 as any other component. Also, fix an element $s_i \in \overline{G}$ with $s_i(U_t) = U_i$ (hence, $\mathcal{S} = \{s_1, \ldots, s_t\}$ is a set of representatives of the coset space $\overline{G}/\overline{G}_{U_t}$); in particular, choose $s_t = 1_{\overline{G}}$. For any $g \in \overline{G}$ and $i = 1, \ldots, t$, the transformation

$$h_{g,i} := s_{g(i)}^{-1} g s_i$$
 (1)

leaves the component U_t stable. Thus putting

 $\tilde{g}(e_{ij}) := \sum_{r=1}^{n} e_{g(i)r} a_r$ if $\alpha_{h_{g,i}}(e_{tj}) = \sum_{r=1}^{n} e_{tr} a_r$, a linear mapping $\tilde{a} \in \mathbf{GL}(V)$. Now the identity h_{max} $i = h_{max}$

we have a linear mapping $\tilde{g} \in \mathbf{GL}(V)$. Now the identity $h_{g_2g_1,i} = h_{g_2,g_1(i)}h_{g_1,i}$ says that $g \mapsto \tilde{g}$ provides an embedding $\bar{G} \hookrightarrow \mathbf{GL}(V)$.

It has to be emphasized that the $(tn \times tn)$ -matrix representing \tilde{g} with respect to the basis \mathcal{B} is obtained as follows: 1) take the permutation $(t \times t)$ -matrix corresponding to g; 2) replace the entry 1 at the place (g(i), i) by the $(n \times n)$ matrix representing $\alpha_{h_{q,i}}$ (with respect to the basis e_1, \ldots, e_n of U).

Consider now the group of affine transformations

$$\tilde{G} := \left\{ x \mapsto v + \tilde{g}(x) : v \in V, \, g \in \bar{G} \right\}.$$

 \tilde{G} acts transitively on the set $\Omega := \bigcup_{i=1}^{t} \{x + V_i : x \in V\}$, where $V_i = \bigoplus_{r \neq i} U_r$. Then the subsets $\Delta_i := \{x + V_i : x \in V\}$ are blocks for a system of imprimitivity $\bar{\Omega}$ having the group of translations of V as the inertial group. The fact that $\bigcap_{i=1}^{t} V_i = \mathbf{0}$ says that $\bar{\Omega}$ is a translation system of imprimitivity of dimension t.

2.1.1 Remark. The permutation group $\tilde{\mathbf{G}} = (\tilde{G}, \Omega)$ is essentially the twisted wreath product $K^n \operatorname{wr}_{\alpha} \bar{G}$ of $U \simeq K^n$ by \bar{G} over S and α . If it is clear what linear representation we are using, we write simply $K^n \operatorname{wr} \bar{G}$. Changing the set of representatives the action on the set of blocks remains the same, but the action induced on a block changes according to (1) ([10, p. 86]).

2.1.2 Let W be a \overline{G} -stable subspace of V. Then $\{x \mapsto w + \widetilde{g}(x) : w \in W, g \in \overline{G}\}$ provides a subgroup $\mathsf{H} = (K^n \operatorname{wr} \overline{G})_{|W}$ of $K^n \operatorname{wr} \overline{G}$. Clearly if W projects onto each

component U_j , the subgroup H is transitive. Furthermore, if there is an integer $m \leq t$ such that W is *m*-transversal with respect to the given decomposition $\bigoplus_{i=1}^{t} U_i$ of V, i.e. if the projection $W \longrightarrow \bigoplus_{r=i_1}^{i_m} U_r$ is an isomorphism for any *m*-subset $\{i_1, \ldots, i_m\}$ of $\{1, \ldots, t\}$ (hence dim W = mn), then $\overline{\Omega}$ is a translation system of imprimitivity of dimension *m* for H. The stabilizer of a block is 2-transitive on it just if α is transitive.

2.2 Now we want discuss the converse. So let $G = (G, \Omega)$ be a transitive permutation group endowed with a finite translation system of imprimitivity $\overline{\Omega} = \{\Delta_1, \ldots, \Delta_t\}$ of dimension m and assume the stabilizer G_{Δ_i} of a block Δ_i to be 2-transitive on it. According to 1.1.5, G must be finite.

Let $|\Delta_i| = k$. Then $|\Omega| = tk$ and we may regard **G** as a subgroup of \mathbf{S}_{tk} ; more precisely, G is contained in the subgroup F preserving $\overline{\Omega}$. Let M and N be the inertial groups in F and G, respectively, corresponding to $\overline{\Omega}$; of course (M, Ω) is isomorphic to the direct product of t copies of \mathbf{S}_k . Let $X_i \in \Delta_i$; then there is in M a subgroup U_i acting on Δ_i as N/N_{X_i} and leaving any other block point-wise fixed. Clearly N is contained in the direct product $V = U_1 \times \ldots \times U_t$.

Since U_i acts sharply transitively on Δ_i , we can identify Δ_i with the factor group $V/V_i (\simeq U_i)$, where V_i denotes the product of all U_r with $r \neq i$. As G_{X_i}/N_{X_i} normalizes N/N_{X_i} , we have that U_i is normalized by G_{X_i} , so the transitive action of G_{X_i} on $\Delta_i \setminus \{X_i\}$ yields a transitive group of automorphisms ($\simeq G_{X_i}/N_{X_i} \simeq G_{\Delta_i}/N)$ of the finite group V/V_i . Consequently $V/V_i \simeq U_i$ has to be a vector space $GF(p)^n$ over the prime field GF(p) for some prime p and integer n. Furthermore, there is a transitive linear representation $\alpha : G_{\Delta_t}/N \longrightarrow \mathbf{GL}(U_t) \simeq \mathbf{GL}(n, p)$ and the twisted wreath product $\tilde{\mathbf{G}} := GF(p)^n \operatorname{wr}_{\alpha} G/N$, with V the associated vector space, can be considered. The group N is then the subgroup of translations of $\tilde{\mathbf{G}}$ corresponding to a subspace W which is m-transversal with respect to the decomposition $V = \bigoplus_{i=1}^t U_i$. Then G/N yields a subgroup of $\mathbf{GL}(V)$ normalizing N and, as an extension of a group of translations of V by G/N, the group G can be viewed as a subgroup of affinities of $\tilde{\mathbf{G}}$. Thus we have

2.2.1 Theorem. Let $G = (G, \Omega)$ be a transitive permutation group endowed with a finite translation system of imprimitivity $\overline{\Omega} = \{\Delta_1, \ldots, \Delta_t\}$ of dimension $m \leq t$ and assume that the stabilizer G_{Δ_i} of a block Δ_i acts 2-transitively on Δ_i .

Then **G** is finite and the inertial group N of Ω is an elementary abelian pgroup for some prime p. Thus there exist an integer n > 0, a transitive linear representation $\alpha : G_{\Delta_t}/N \longrightarrow \mathbf{GL}(n,p)$ and an embedding

$$\iota: \mathsf{G} \hookrightarrow \mathsf{G} = GF(p)^n \operatorname{wr}_{\alpha} G/N$$

of permutation groups such that $\iota(N)$ is a normal subgroup of translations of G corresponding to a subspace W of dimension mn of the vector space V associated

with $\tilde{\mathsf{G}}$. In particular, there exists a decomposition of V with respect to which W is m-transversal. Also G splits over N just if $\iota(\mathsf{G}) = (GF(p)^n \operatorname{wr}_{\alpha} G/N)_{|W}$. \Box

2.3 If we are given an integer t > 1, a field K and a linear representation $\alpha : \mathbf{S}_{t-1} \to \mathbf{GL}(K^n)$ of the symmetric group \mathbf{S}_{t-1} , the twisted wreath product $K^n \operatorname{wr}_{\alpha} \mathbf{S}_t$ is the semidirect product of its translation group $V \simeq K^{nt}$ by a complement isomorphic to \mathbf{S}_t of linear mappings in $\mathbf{GL}(K^{nt})$. The easiest way to represent this complement is to take all the powers of the cycle $\sigma = (1, \ldots, t)$ as a set of representatives of the coset space $\mathbf{S}_t/\mathbf{S}_{t-1}$. Then the linear mapping corresponding to σ is represented by the block matrix $I = (I_{ij})$, where

$$I_{ij} = \begin{cases} \mathbf{I}_n & \text{if } i = \sigma(j), \\ \mathbf{0}_n & \text{otherwise,} \end{cases}$$
(2)

where \mathbf{I}_n and $\mathbf{0}_n$ are the identity and the null matrix of order n, respectively. Moreover, for $k = 1, \ldots, t - 1$, the transposition $(k \ k+1)$ corresponds to the block matrix $J_k = (J_{ij}^k)$ having the non-zero blocks defined by

$$J_{ii}^{k} = \begin{cases} j_{k-i} & \text{if } i < k, \\ j_{t+k-i} & \text{if } i > k+1, \end{cases}, \quad J_{k\ k+1}^{k} = j, \quad J_{k+1\ k}^{k} = j^{-1}, \tag{3}$$

where $j = \alpha (12 \dots t-2 t-1)$ and $j_r = \alpha (r r+1) (r = 1, \dots, t-2)$.

2.3.1 Example. In $\mathbf{GL}(4, 2) \simeq \mathbf{A_8}$ all subgroups isomorphic to $\mathbf{S_6}$ are conjugate ([4, p. 22]) to the symplectic group $\mathbf{Sp}(4, 2)$ ([8, p. 227]). Furthermore in the latter group there is, up to conjugation, just one subgroup isomorphic to $\mathbf{S_5}$ acting transitively on $GF(2)^4$ ([8, p. 176]). More precisely this action is equivalent to the one of $\mathbf{P\GammaL}(2, 4)$ on $GF(2)^4$ ([4, p. 2]). So the twisted wreath product

$$\mathsf{G}_6 := GF(2)^4 \operatorname{wr} \mathbf{S}_6$$

is uniquely determined (up to isomorphisms), if we require double transitive action on a block. We shall give a representation over GF(4) of G_6 .

Write the elements in GF(4) as $0, 1, \mathbf{i}, \mathbf{i}^2$. Then the semilinear mappings

generate $\mathbf{P\Gamma L}(2,4)$ as they satisfy the conditions

 $j_k^2 = (j_{u+1}j_u)^3 = (j_uj_v)^2 = id_{GF(4)^2}$ (k = 1, 2, 3, 4, u = 1, 2, 3, u - v = 2, 3) ([5, p. 287]). Thus, for t = 6, we may take them as the entries j_r in (3). Then

$$j = j_1 j_2 j_3 j_4 : (x, y) \mapsto (\mathbf{i}x + \mathbf{i}y, \mathbf{i}^2 x).$$

$$(5)$$

2.4 If we are given a twisted wreath product $K^n \operatorname{wr}_{\alpha} \mathbf{S}_t$, then a twisted wreath product $K^n \operatorname{wr}_{\alpha} \mathbf{A}_t$ is also defined by restriction of α to \mathbf{A}_{t-1} . As a set of representatives of the coset space $\mathbf{A}_t/\mathbf{A}_{t-1}$ is as well a set of representatives of $\mathbf{S}_t/\mathbf{S}_{t-1}$, the group $K^n \operatorname{wr}_{\alpha} \mathbf{A}_t$ embeds into $K^n \operatorname{wr}_{\alpha} \mathbf{S}_t$. Thus, in view of Remark 2.1.1, replacing the set of representatives by the powers of the cycle $(1, \ldots, t)$, we obtain a subgroup of $K^n \operatorname{wr}_{\alpha} \mathbf{S}_t$ isomorphic to $K^n \operatorname{wr}_{\alpha} \mathbf{A}_t$. This subgroup is the semidirect product of the translation subgroup by the group generated by the linear mappings corresponding to the 3-cycles $(l-1 \ l \ l+1), \ l=2, \ldots, t-1$, which are given by the block matrices $Q_l = (Q_{ij}^l)$ having the non-zero blocks defined by

$$Q_{ii}^{l} = \begin{cases} q_{l-i} & \text{if } i < l-1, \\ q_{t+l-i} & \text{if } i > l+1, \end{cases}, \quad Q_{l-1\,l+1}^{l} = q'q'', \quad Q_{l\,l-1}^{l} = q'^{-1}, \quad Q_{l+1\,l}^{l} = q''^{-1}, \quad (6)$$

where $q' = \alpha (23 \dots t-2 t-1), q'' = \alpha (12 \dots t-3 t-2)$ and $q_s = \alpha (s-1 s s+1) (s = 2, \dots, t-2).$

2.4.1 *Example.* Consider the group

$$\mathsf{H}_6 := GF(2)^4 \operatorname{wr} \mathbf{A_6}$$

as a subgroup of G_6 . In such a case we have

$$q' = j_2 j_3 j_4, \quad q'' = j_1 j_2 j_3, \quad q_s = j_{s-1} j_s \quad (s = 2, 3, 4).$$
 (7)

 H_6 is uniquely determined as a twisted wreath product when we ask 2-transitivity on a block. This follows from $A_5 \simeq SL(2,4)$ ([4, p. 2]), from [8, p. 176] and the fact that in A_8 all subgroups isomorphic to A_6 are conjugate ([7, p. 444]).

2.5 The alternating group \mathbf{A}_{r+2} is generated by elements p_1, \ldots, p_r such that

$$p_1^3 = 1, \qquad p_i^2 = 1 \quad (i > 1), (p_{i+1}p_i)^3 = 1 \quad (i < r), \qquad (p_jp_i)^2 = 1 \quad (|i - j| > 1)$$
(8)

([5, p. 289]). Up to isomorphisms, there is just one twisted wreath product

$$H_9 := GF(2)^4 \operatorname{wr} \mathbf{A}_9$$

with 2-transitive action on a block. This group arises using the transitive linear representation of the stabilizer $\mathbf{A_8}$ as $\mathbf{GL}(4,2)$. Then as the generators (8) for $\mathbf{A_8}$ we can take the semilinear mappings of the plane $GF(4)^2$

$$\begin{array}{ll} p_1:(x,y)\mapsto (\mathbf{i}x+x^2+\mathbf{i}^2y^2,\,\mathbf{i}^2x^2+\mathbf{i}y+\mathbf{i}y^2), & p_2:(x,y)\mapsto (x+\mathbf{i}^2x^2+\mathbf{i}y^2,\,\mathbf{i}x^2+y+y^2), \\ p_3:(x,y)\mapsto (\mathbf{i}^2x+x^2+\mathbf{i}y+y^2,\,\mathbf{i}^2x^2+\mathbf{i}y+\mathbf{i}y^2), & p_4:(x,y)\mapsto (x+\mathbf{i}y+\mathbf{i}y^2,\,\mathbf{i}^2x+\mathbf{i}x^2+y), \\ p_5:(x,y)\mapsto (\mathbf{i}x+\mathbf{i}x^2+\mathbf{i}^2y+\mathbf{i}y^2,\,x+\mathbf{i}y+\mathbf{i}y^2), & p_6:(x,y)\mapsto (x+\mathbf{i}^2x^2+\mathbf{i}y,\,\mathbf{i}^2x+y+y^2). \end{array}$$

In particular we may identify p_1 with $\alpha(123)$ and p_i with $\alpha(12)\alpha(i+1,i+2)$ for i > 1. Since the cycle $(1 \dots 9)$ is in \mathbf{A}_9 , we can use it to represent \mathbf{H}_9 . Thus the matrices (6) with entries

generate a complement of the translation group of H_9 . Up to isomorphisms, the alternating group A_6 (resp. A_7) has just one transitive linear representation on the vector space of dimension 4 over GF(2), arising as the restriction to A_6 (resp. A_7) of the above representation of A_8 as the general linear group GL(4,2) ([7, p. 444]). Thus there are unique twisted wreath products

$$\mathsf{H}_7 := GF(2)^4 \operatorname{wr} \mathbf{A_7}, \qquad \mathsf{H}_8 := GF(2)^4 \operatorname{wr} \mathbf{A_8}$$

acting 2-transitively on a block.

For s < t, a set of representatives of the coset space $\mathbf{A}_s/\mathbf{A}_{s-1}$ can be completed to a set of representatives of $\mathbf{A}_t/\mathbf{A}_{t-1}$. Thus, if we are given a twisted wreath product $K^n \operatorname{wr}_{\alpha} \mathbf{A}_t$, the twisted wreath product $K^n \operatorname{wr}_{\alpha} \mathbf{A}_s$, defined by restricting α , can be regarded as the stabilizer of t - s blocks in $K^n \operatorname{wr}_{\alpha} \mathbf{A}_t$. Hence, there are embeddings $\mathsf{H}_7 \hookrightarrow \mathsf{H}_8 \hookrightarrow \mathsf{H}_9$ which allow one to represent H_8 and H_7 as the stabilizers in H_9 of one and two blocks, respectively.

3.1 Invariant transversal subspaces. Looking at Theorem 2.2.1, we see that transversal subspaces (in the sense of 2.1.2) play an important role in representing a permutation group $\mathbf{G} = (G, \Omega)$ with a finite translation system of imprimitivity $\overline{\Omega} = \{\Delta_1, \ldots, \Delta_t\}$ within the twisted wreath product $\widetilde{\mathbf{G}} = GF(p)^n \operatorname{wr}_{\alpha} G/N$. The inertial group N of $\overline{\Omega}$ appears as a group of translations of the vector space associated to $\widetilde{\mathbf{G}}$, more precisely as the group of translations defined through the vectors in a *m*-transversal subspace W of V. It is straightforward that

 $W = \left\{ \left(x_1, \ldots, x_m, \sum_{j=1}^m f_{m+1,j}(x_j), \ldots, \sum_{j=1}^m f_{t,j}(x_j) \right) : x_j \in GF(p)^n \right\},$ for suitable linear mappings $f_{i,j} \in \mathbf{GL}(n,p)$.

3.2 Let $G = GF(3) \operatorname{wr}_{\alpha} S_{m+1}$ with α the non-trivial representation of S_m on the 1-dimensional GF(3)-vector space. As in 2.3, take the powers of the cycle $\sigma = (1 \dots m + 1)$ to represent a complement isomorphic to S_{m+1} . Then the matrix corresponding to σ is the matrix I given by (2), whereas the transposition $(1 \ m+1)$ is represented by the matrix $J = (J_{ij})$, the non-zero entries of which are

$$J_{ii} = -1$$
 if $2 \le i \le m$, $J_{1\ m+1} = J_{m+1\ 1} = \varepsilon = (-1)^{m+1}$

I and J generate a complement isomorphic to \mathbf{S}_{m+1} of the translation group in $\hat{\mathbf{G}}$. Now we ask whether in V there is a \mathbf{S}_{m+1} -invariant *m*-transversal subspace, i.e. a subspace W as in 3.1, with t = m + 1, p = 3, n = 1, which is invariant under the action of I and J. Set $f_i = f_{m+1,i}$, then the condition I(W) = W yields $\sum_{i=1}^m f_1 f_i(x_i) + \sum_{r=2}^m f_r(x_{r-1}) = x_m$, i.e. $f_1 f_m = id_{GF(3)}$ and $f_r = (-1)^{r+1} f_1^r$. Hence $(-1)^{m+1} f_1^{m+1} = id_{GF(3)}$. Since **GL**(1,3) has order 2, the latter equation says

$$f_1 = \begin{cases} -id_{GF(3)} & \text{if } m \text{ is even,} \\ \pm id_{GF(3)} & \text{if } m \text{ is odd.} \end{cases}$$

Let $f_1 = -id_{GF(3)}$ with m odd. Then from $f_r = (-1)^{r+1}f_1^r$ it follows $f_r = -id_{GF(3)}$ for all r, but in such a case $J(W) \neq W$. So we have

3.2.1 Lemma. Let α be the non-trivial representation of \mathbf{S}_m on the vector line over GF(3). Then, in the vector space associated with the twisted wreath product $GF(3) \operatorname{wr}_{\alpha} \mathbf{S}_{m+1}$, the hyperplane $\sum_{k=1}^{m+1} (-1)^{m(k+1)} x_k = 0$ is the only subspace which is both m-transversal and stable under \mathbf{S}_{m+1} . \Box

3.3 Let $\tilde{\mathbf{G}} = GF(2)^n \operatorname{wr}_{\alpha} \mathbf{S}_{m+1}$ and let W be a *m*-transversal subspace of V as in 3.1 with t = m + 1 and p = 2. Then W is stable under the action of \mathbf{S}_{m+1} just if it is stable under the transformations I and J_k defined by (2) and (3). In particular I(W) = W gives $f_i = f_1^i$ $(i = 1, \ldots, m)$ and

$$f_1^{m+1} = id_{GF(2)^n}, (10)$$

whereas $J_k(W) = W$ gives $j_k = f_1^k j f_1^{m-k}$ (k = 1, ..., m-1). So

$$j_{l-1} = f_1^{-1} j_l f_1 \qquad (l = 2, \dots, m-1).$$
 (11)

- Let m = 4. The symmetric group \mathbf{S}_4 has a non-faithful natural representation as $\mathbf{GL}(2,2)$. As in $\mathbf{GL}(2,2) \simeq \mathbf{S}_3$ there is no element of order 5, in such a case (10) says $f_1 = id_{GF(2)^2}$. Consequently (11) gives $j_{l-1} = j_l$, i.e. $id_{GF(2)^2} = j_{l-1}j_l =$ $\alpha(l-1 \ l \ l+1)$, but there are no elements of order 3 in ker $\alpha \simeq \mathbb{Z}_2 \bigoplus \mathbb{Z}_2$.

- Let m = 5. We have a faithful representation $\alpha : \mathbf{S_5} \longrightarrow \mathbf{P\Gamma L}(2, 4)$ of $\mathbf{S_5}$ as the collineation group of the plane over GF(4). Then (10) and (11) say

$$f_1 = f: (x, y) \longmapsto (\mathbf{i}x + \mathbf{i}y + \mathbf{i}y^2, \mathbf{i}^2 x + \mathbf{i}^2 y^2), \tag{12}$$

if we regard V as a vector space over GF(4). Thus we may identify W with the GF(4)-subspace $\sum_{i=1}^{6} f^{i}(x_{i}, y_{i}) = 0$ of V.

- Let m = 6. There is a faithful representation $\alpha : \mathbf{S_6} \longrightarrow \mathbf{Sp}(4, 2)$ of $\mathbf{S_6}$ as the 4-dimensional symplectic group over GF(2). Then we may identify $j_l = \alpha (l \ l+1)$ with $(l \ l+1) (7 \ 8)$ because there is just one embedding $\mathbf{S_6} \hookrightarrow \mathbf{A_8}$ and α is faithful. Thus (11) may be read in $\mathbf{A_8}$ as $(l-1 \ l) (7 \ 8) = f_1^{-1} (l \ l+1) (7 \ 8) f_1$ and we see that the order of f_1 should be 6, a contradiction to (10). Summing up, we have

3.3.1 Lemma. Let W be a \mathbf{S}_{m+1} -invariant m-transversal subspace of the vector space associated with $GF(2)^n \operatorname{wr}_{\alpha} \mathbf{S}_{m+1}$, where either m = 4 and $\alpha(\mathbf{S}_4) = \mathbf{GL}(2,2)$, or m = 5 and $\alpha(\mathbf{S}_5) = \mathbf{P\Gamma L}(2,4)$, or m = 6 and $\alpha(\mathbf{S}_6) = \mathbf{Sp}(4,2)$. Then m = 5 and W is the subspace $\sum_{i=1}^{6} f^i(x_i, y_i) = 0$ with f given by (12). \Box

3.4 Consider one of the groups H_t , t = 6, 7, 8 or 9, introduced in 2.4 and 2.5. We ask an A_t -invariant (t - 2)-transversal subspace W_t of the vector space V_t associated with H_t . If we represent each H_t within H_9 , then W_t has the shape

$$\left\{ \left(\sum_{i=1}^{t-2} f_i(z_i), \sum_{i=1}^{t-2} g_i(z_i), z_1, \dots, z_{t-2}, 0, \dots, 0\right) \in (GF(2)^4)^9 : z_i \in GF(2)^4 \right\},$$
(13)

with $f_i, g_i \in \mathbf{GL}(4, 2)$. Such a subspace W_t exists and can be described by the following quadratic functions (we regard V_9 as a vector space over GF(4)):

$$f_{1}(x,y) = \begin{cases} (\mathbf{i}^{2}x + \mathbf{i}x^{2} + \mathbf{i}^{2}y + y^{2}, \, \mathbf{i}x + \mathbf{i}^{2}x^{2} + \mathbf{i}^{2}y + \mathbf{i}^{2}y^{2}), & \text{if } t > 6, \\ (\mathbf{i}x + \mathbf{i}^{2}y, x + y), & \text{if } t = 6, \end{cases}$$

$$g_{1}(x,y) = \begin{cases} (\mathbf{i}^{2}x + \mathbf{i}x^{2} + \mathbf{i}y, \, \mathbf{i}^{2}x + \mathbf{i}^{2}x^{2} + \mathbf{i}^{2}y + \mathbf{i}y^{2}), & \text{if } t > 6, \\ (\mathbf{i}x^{2} + \mathbf{i}y^{2}, \mathbf{i}^{2}y^{2}), & \text{if } t = 6, \end{cases}$$

$$f_{2} = q_{3}f_{1}q', \qquad g_{2} = q_{2}g_{1}q', \\ f_{j} = q_{j}f_{j-1}q'', \qquad g_{j} = q_{j-1}g_{j-1}q'' \qquad (3 \le j \le t-2), \end{cases}$$

$$(14)$$

where $q_2, \ldots, q_{t-2}, q', q''$ are the functions (7) or (9) according as whether t = 6 or t > 6. In fact, one can check that the transformations Q_l , given by (6), generating a complement of the translation group of H_t , leave that subspace invariant.

Actually there are no further possibilities for an \mathbf{A}_t -invariant (t-2)-transversal subspace of V_t . In order to verify this claim, ask the subspace (13), written over GF(4), to be stable under each transformation (6) for $l = 2, \ldots, t - 1$, or ask

$$Q_l(f_i(z_i), g_i(z_i), 0, \dots, 0, z_i, 0, \dots, 0) \in W_t$$
(15)

for all $z_i = (x_i, y_i) \in GF(4)^2$. In particular we have

a)
$$f_1 q''^{-1} g_1 = q' q''$$
 (*i* = 1, *l* = 2),
b) $f_1 q'^{-1} g_1 + f_2 q''^{-1} = q_2 f_1$, $g_1 q'^{-1} g_1 = g_2 q''^{-1}$ (*i* = 1, *l* = 3),
c) $f_2 = q_3 f_1 q'$, $g_2 = q_2 g_1 q'$ (*i* = 1, *l* = 4), (16)
d) $q_{l-1} f_1 = f_1 q_{l-3}$, $q_{l-2} g_1 = g_1 q_{l-3}$ (*i* = 1, *l* = 5, ..., *t* - 1),
e) $f_1 q'^{-1} g_2 = q_2 f_2$ (*i* = 2, *l* = 3),

with q_s from (7) if t = 6 and from (9) if t > 6. If t = 6, then (16d) give

$$f_1(x,y) = (ax + bx^2 + a'y + b'y^2, \mathbf{i}^2 ax + \mathbf{i} bx^2 + \mathbf{i} a'y + \mathbf{i}^2 b'y^2)$$

$$g_1(x,y) = (cx + dx^2 + c'y + d'y^2, \mathbf{i} cx + \mathbf{i} d'y^2).$$

From (16b) we infer just two possibilities for g_1 : either $c = c' \neq 0 = d$ and $d' = \mathbf{i}$, or c = c' = 0 and $d = d' = \mathbf{i}$. Assume the first one holds. Then (16a) gives $a = \mathbf{i}, b = c^2, a' = 0, b' = \mathbf{i}^2 c^2$, but such a solution does not satisfy (16b). Thus $c = c' = 0, d = d' = \mathbf{i}$ and (16a) says that the functions (14) are the unique possible instances giving an invariant subspace such as (13).

Let t > 6. Then Equations (16d) force f_1 and g_1 to take the shape

$$\begin{split} f_1(x,y) &= \left(ax + bx^2 + (\mathbf{i}a + b)y + \mathbf{i}^2 by^2, \, \mathbf{i}^2 b^2 x + \mathbf{i}a^2 x^2 + b^2 y + (a^2 + \mathbf{i}b^2)y^2\right), \\ g_1(x,y) &= \left(cx + dx^2 + (\mathbf{i}c + \mathbf{i}^2 c^2 + d)y + (c + \mathbf{i}^2 d + \mathbf{i}^2 d^2)y^2, \\ (\mathbf{i}c + \mathbf{i}^2 d^2)x + (\mathbf{i}^2 c^2 + d)x^2 + (\mathbf{i}^2 c + \mathbf{i}c^2 + \mathbf{i}^2 d + d^2)y + (\mathbf{i}c^2 + \mathbf{i}^2 d)y^2\right). \end{split}$$

By (16a) we have $c = \mathbf{i}(a + b + b^2)$ and $d = \mathbf{i}a^2 + \mathbf{i}b + \mathbf{i}^2b^2$, whereas (16c) and (16e) give $f_1q'^{-1}q_2g_1 = q_2q_3f_1$. This means either $b = 1 + \mathbf{i}a + \mathbf{i}a^2$, or $a = \mathbf{i}^2$ and $b = \mathbf{i}$. But using (16b) we see that just the latter can occur. Hence we have

3.4.1 Lemma. The subspace W_t , defined through (13) and the functions (14), is the unique \mathbf{A}_t -invariant (t-2)-transversal subspace of the vector space V_t associated with H_t (t = 6, 7, 8 or 9). \Box

Now, we look for an \mathbf{A}_t -invariant (t-3)-transversal subspace W of V_t , t > 6. Within V_9 we can represent W as

$$\left\{ \left(\sum_{i=1}^{t-3} f_i(z_i), \sum_{i=1}^{t-3} g_i(z_i), \sum_{i=1}^{t-3} h_i(z_i), z_1, \dots, z_{t-3}, 0, \dots, 0 \right) \in (GF(2)^4)^9 : z_i \in GF(2)^4 \right\},$$
(17)

with $f_i, g_i, h_i \in \mathbf{GL}(4, 2)$. As above, we have to ask the subspace (17), written over GF(4), to be stable under each transformation (6) for $l = 2, \ldots, t-1$, i.e.

$$Q_l(f_i(z_i), g_i(z_i), h_i(z_i), 0, \dots, 0, z_i, 0, \dots, 0) \in W \quad \forall z_i = (x_i, y_i) \in GF(4)^2.$$
(18)

It turns out $f_2 = q_4 f_1 q'$ and, for j > 2, $f_j = q_{j+1} f_{j-1} q''$. Furthermore, using (18) for i = 1 and l = 6, we have $q_5 f_1 = f_1 q_2$; this equation forces f_1 to take the shape $f_1(x, y) = (a_{11}x + a_{12}x^2 + a_{21}y + a_{22}y^2)$,

$$(\mathbf{i}^{2}a_{11}^{2} + \mathbf{i}a_{12}^{2} + a_{21}^{2})x + (a_{11}^{2} + \mathbf{i}^{2}a_{12}^{2} + \mathbf{i}a_{22}^{2})x^{2} + (a_{11}^{2} + \mathbf{i}a_{21}^{2} + \mathbf{i}a_{22}^{2})y + (\mathbf{i}a_{12}^{2} + a_{21}^{2} + a_{22}^{2})y^{2}).$$

Also, for i = 4 and l = 5, we have $q_4f_4 = f_4q_{t-2}$, hence $q_4f_4(1,0) = f_4q_{t-2}(1,0)$, giving in turn $a_{21} = \mathbf{i}a_{11}$ and $a_{22} = \mathbf{i}^2a_{12}$ for t = 7, $a_{12} = a_{11}$ and $a_{22} = \mathbf{i}^2a_{11} + \mathbf{i}a_{21}$ for t = 8. Let t = 7, then from $q_4f_4(0,1) = f_4q_5(0,1)$ we infer $a_{12} = \mathbf{i}^2a_{11}$ and $a_{11} = 0$. Let t = 8, then from $q_4f_4(\mathbf{i}^2,0) = f_4q_6(\mathbf{i}^2,0)$ it follows $a_{21} = \mathbf{i}a_{11}$ and $a_{11} = 0$. In both cases we get a contradiction to the fact that $f_1 \in \mathbf{GL}(4,2)$.

Let now t = 9. Using (18) for i = 1 and l = 7 we obtain $q_6 f_1 = f_1 q_3$, which gives $a_{21} = \mathbf{i}a_{11} + a_{11}^2 + \mathbf{i}a_{12}$, $a_{22} = \mathbf{i}^2 a_{11} + \mathbf{i}^2 a_{12} + \mathbf{i}a_{12}^2$, whereas (18) for i = 1

and l = 2 yields $q'q''h_1 = f_1q_7$ and $q'^{-1}f_1 = g_1q_7$, hence $q'q''h_1(1,0) = f_1q_7(1,0)$. As the functions g_1 and h_1 fulfill the same conditions (14) as the functions f_1 and g_1 defining the subspace W_8 introduced above, we obtain $a_{11} = a_{12} = 1$. But $f_1(1,0) = (0, \mathbf{i}^2)$ and $q'g_1q_7(1,0) = (1,1)$, so we get again a contradiction.

Summing up, we have the following

3.4.2 Lemma. For t = 7, 8 or 9 there is no \mathbf{A}_t -invariant (t - 3)-transversal subspace in the vector space associated with the group \mathbf{H}_t introduced in 2.5. \Box

4.1 Imprimitive groups *m*-transitive on blocks. In the remaining part of this paper, $\mathbf{G} = (G, \Omega)$ will be a permutation group endowed with a finite translation system of imprimitivity $\overline{\Omega} = \{\Delta_1, \ldots, \Delta_t\}$ of dimension m > 3, with inertial group N, such that the stabilizer in G of a block is 2-transitive on it and the factor group G/N acts *m*-transitively on $\overline{\Omega}$. This condition confines $\overline{\mathbf{G}} = (G/N, \overline{\Omega})$ to be either the symmetric group on m or m + 1 elements, or the alternating group on m + 2 or m + 3 elements, or a Mathieu group ([9, p. 68] or [3]). As the Mathieu groups have no faithful transitive linear representation ([9, p. 68]), by 2.2.1 we have that only the following cases occur:

a) $\bar{\mathsf{G}} \simeq \mathbf{S}_m$; b) $\bar{\mathsf{G}} \simeq \mathbf{S}_{m+1}$; c) $\bar{\mathsf{G}} \simeq \mathbf{A}_{m+2}$; d) $\bar{\mathsf{G}} \simeq \mathbf{A}_{m+3}$.

4.1.1 Remark. A such result can be obtained by assuming that the stabilizer in G/N of m distinct blocks has odd order.

We shall show that not all the above possibilities occur.

4.1.2 Proposition. If $|\Delta| \leq 3$ then either $\overline{\mathsf{G}} \simeq \mathbf{S}_m$ or $\overline{\mathsf{G}} \simeq \mathbf{S}_{m+1}$.

Proof. Let $|\Delta| = 2$. If $\overline{\Omega} = {\Delta_1, \ldots, \Delta_t}$, then **G** can be embedded into the symmetric group \mathbf{S}_{2t} . Consider distinct non-trivial elements g_1 and g_2 in N fixing the points of each of $\Delta_1, \ldots, \Delta_{m-2}$. Since g_1 , as well as g_2 , fixes point-wise at most m-1 blocks, the fact that each block contains two points implies that the product g_1g_2 leaves at least t-2 blocks point-wise fixed. It follows either t=m or t=m+1, which means either $\overline{\mathsf{G}}\simeq \mathbf{S}_m$ or $\overline{\mathsf{G}}\simeq \mathbf{S}_{m+1}$.

Let $|\Delta| = 3$. By theorem 2.2.1, the group G_{Δ}/N maps homomorphically onto $\mathbb{Z}_2 \simeq \mathbf{GL}(1,3)$ and this excludes that $\overline{\mathsf{G}}$ is an alternating group. \Box

4.1.3 Theorem. G is sharply *m*-transitive.

Proof. We have to rule the possibility d) out. If $\overline{\mathbf{G}} \simeq \mathbf{A}_{m+3}$ then, in view of Theorem 2.2.1, the stabilizer \mathbf{A}_{m+2} has a transitive linear representation on Δ . By [7, Theorem 6.5], if m + 2 > 8 then $|\Delta| = m + 2$ and $|\mathbf{GL}(\Delta)| < |\mathbf{A}_{m+2}|$. Hence, since m > 3, we have m = 4, 5 or 6 and, for each of these values of m, just one instance occurs (2.5, [7, Theorems 5.13, 6.5] or [11]). Hence, according to Theorem 2.2.1, we have that G embeds into one of the groups H_{m+3} introduced in 2.5 and the vector space V_{m+3} associated with H_{m+3} has an A_{m+3} -invariant subspace of the shape (17) taking t = m+3, but this contradicts Lemma 3.4.2. \Box

4.1.4 Lemma. Let $\bar{\mathsf{G}} \simeq \mathbf{S}_m$. Then $\mathsf{G} = GF(p)^n \operatorname{wr}_{\alpha} \mathbf{S}_m$, where α is one of the following n-dimensional transitive linear representations of \mathbf{S}_{m-1} :

- **1**. The trivial representation of \mathbf{S}_{m-1} on a vector line over GF(2);
- **2**. The non-trivial representation of \mathbf{S}_{m-1} on a vector line over GF(3);
- **3**. The faithful representation of S_3 as GL(2,2);
- **4**. The non-faithful representation of S_4 as GL(2,2);
- **5**. The representation of S_5 over GF(2) corresponding to $\mathbf{P\Gamma L}(2,4)$;
- **6**. The representation of S_6 as Sp(4, 2).

In any case G splits over the inertial group N.

Proof. The first part of the assertion and the fact that α is a transitive linear representation follow from Theorem 2.2.1. If the kernel of the representation α contains \mathbf{A}_{m-1} then n = 1 and p = 2 or 3.

Now we assume that $|\Delta| > 3$. Theorem 6.5 in [7] yields $m - 1 \leq 6$. Namely, if m - 1 > 8 then $|\mathbf{GL}(\Delta)| < |\mathbf{S}_{m-1}|$, whereas if $m - 1 \in \{7, 8\}$ we have that $|\Delta| = 16$, but $\mathbf{GL}(4, 2) \simeq \mathbf{A}_8$ and \mathbf{S}_7 is not contained in \mathbf{A}_8 . The transitive linear representations **3** till **6** exist (3.3). These are, according to [7, Corollary 5.6 and Theorems 5.12, 5.13] or [11], all transitive linear representations for the groups \mathbf{S}_{m-1} , with $4 \leq m \leq 7$. \Box

When G is isomorphic to \mathbf{S}_{m+1} or to \mathbf{A}_{m+2} the situation is more complicated. First we shall deal with the case $|\Delta| = 2, 3$.

4.2 The case $|\Delta| = 2$. By Proposition 4.1.2 and Lemma 4.1.4, we may assume that $\bar{\mathsf{G}} \simeq \mathbf{S}_{m+1}$. Hence G can be embedded into the symmetric group $\mathbf{S}_{2(m+1)}$. More precisely, G is a subgroup of order $2^m(m+1)!$ of the subgroup F of order $2^{(m+1)}(m+1)!$ preserving $\bar{\Omega}$. Then G has index 2 in F and the inertial group N index 2 in the subgroup M of F leaving each block in $\bar{\Omega}$ stable.

From 1.1.4 it follows that the group G contains exactly two involutions leaving the blocks $\Delta_2, \ldots, \Delta_{m-1}$ point-wise fixed and switching Δ_m with Δ_{m+1} and, also, such involutions are conjugate in G, hence their product is the non-trivial element of the subgroup N^m defined in 1.1.3. By permuting the blocks, we infer that N is contained in the subgroup H of G generated by all involutions fixing pointwise m-2 blocks and switching other two blocks. Since these involutions induce all transpositions in $G/N \simeq \mathbf{S}_{m+1}$, we obtain H = G. As F contains just two distinct classes of conjugate involutions satisfying the above conditions, it follows that there exist at most two distinct permutation groups (G, Ω) . We can actually realize two non-isomorphic permutation groups as follows.

Fix points X_1, \ldots, X_{m+1} in Ω , with $X_i \in \Delta_i$, and identify them with the vectors of a basis \mathcal{B} of a vector space of dimension m+1 over GF(3). Also, identify the other point in the block containing X_i with $-X_i$. This means that we may regard F as the group of permutation matrices in $\mathbf{GL}(m+1,3)$ having the non-zero entries equal to 1 or -1. Then N is a subgroup of index 2 in the group M of diagonal matrices in $\mathbf{GL}(m+1,3)$. Since there is no element $\neq 1$ in N leaving m blocks point-wise fixed, from 1.1.3 it follows that N consists of all diagonal matrices with determinant 1.

Let S be the stabilizer in F of the basis \mathcal{B} ; clearly $S \simeq \mathbf{S}_{m+1}$. Now, look at the following subgroups of index 2 of F:

> $G_1 := N > \triangleleft S$, $G_2 := \{A \in F : \det A = 1\}.$

The permutation groups (G_1, Ω) and (G_2, Ω) are not isomorphic. In fact, the involution of G_1 fixing X_2, \ldots, X_{m-1} and switching X_m with X_{m+1} , leaves the block Δ_1 pointwise fixed, whereas the involution of G_2 fulfilling the same conditions acts non-trivially on Δ_1 . In view of Lemma 4.1.4, the discussion yields

4.2.1 Theorem. Let $\mathcal{B} = \{e_1, \ldots, e_{m+1}\}$ be a basis of a vector space V of dimension m+1 over the prime field GF(3) and denote by N the group of linear transformations represented, with respect to \mathcal{B} , by diagonal matrices with determinant 1. If $|\Delta| = 2$ then (G, Ω) is isomorphic to one of the following:

- $\begin{array}{ll} \mathbf{1.} & \Omega = \{e_1, -e_1, \ldots, e_{m+1}, -e_{m+1}\}, & G = G_1 = N > \triangleleft GL(V)_{\mathcal{B}}; \\ \mathbf{2.} & \Omega = \{e_1, -e_1, \ldots, e_{m+1}, -e_{m+1}\}, & G = G_2 = \{g \in GL(V)_{\Omega} : \det g = 1\}; \end{array}$ $G = G_3 = GL(V)_{\Omega} \simeq GF(2) \operatorname{wr} \mathbf{S}_m.$
- **3**. $\Omega = \{e_1, -e_1, \ldots, e_m, -e_m\},\$

Moreover, no two of G_1, G_2, G_3 are isomorphic as permutation groups.

Remark. In spite of Theorem 4.2.1, if m is even, the map $g \mapsto (\det g)g$ defines an isomorphism $G_1 \to G_2$ of abstract groups. But if m is odd, there is no complement of N in G_2 . In order to prove this fact, consider $\varepsilon = \text{diag}(1, \ldots, 1, -1) \in M \setminus N$. The set $\{s\varepsilon^{\frac{1}{2}(1-\det s)}: s\in S\}$ is a set of representatives of G_2/N . Furthermore we have $s'\varepsilon^{\frac{1}{2}(1-\det s')}s''\varepsilon^{\frac{1}{2}(1-\det s'')} = s's''\varepsilon^{\frac{1}{2}(2-\det s'-\det s'')}\kappa(s',s'') = s's''\varepsilon^{\frac{1}{2}(1-\det(s's''))}\kappa(s',s'')$

for all $s', s'' \in S$, where $\kappa : S \times S \to N$ is the mapping

$$(s', s'') \longmapsto \begin{cases} s''^{-1} \varepsilon s'' \varepsilon & \text{if } \det s' = -1; \\ 1_N & \text{if } \det s' = 1. \end{cases}$$

This means (see for instance [8, Theorem 17.2]) that N possesses a complement in G_2 just if there exists a function $\varphi: S \to N$ such that

$$\kappa(s',s'') = s'\varphi(s'')s'^{-1}\varphi(s')\varphi(s's'')$$

for all $s', s'' \in S$. As every element in N has order 2, the required condition $\kappa(1_S, 1_S) = 1_N$ yields $\varphi(1_S) = 1_N$. For all $s \in S$, set $\varphi(s) = \text{diag}(\varphi_1(s), \ldots, \varphi_{m+1}(s))$ and, for $i = 1, \ldots, m+1$, put $e_{s(i)} := s(e_i) \in \mathcal{B}$. Thus we have

$$\kappa(s',s'') = \operatorname{diag}(\dots \varphi_{s'^{-1}(i)}(s'')\varphi_i(s')\varphi_i(s's'')\dots)$$

Consequently, the product $\varphi_{s'^{-1}(i)}(s'')\varphi_i(s')\varphi_i(s's'')$ must be 1 if det s' = 1, or if s'' leaves the vector e_{m+1} fixed. Otherwise

$$\varphi_{s'^{-1}(i)}(s'')\varphi_i(s')\varphi_i(s's'') = \begin{cases} -1 & \text{if } i = m+1, \text{ or } s''(i) = m+1, \\ +1 & \text{if } i \neq m+1 \neq s''(i). \end{cases}$$
(19)

In particular, if s is an element in S of order 2, we have

$$\varphi_{s(i)}(s)\varphi_i(s) = \begin{cases} -1 & \text{if det } s = -1, \ s(m+1) \neq m+1 \\ & \text{and } i = m+1, \ \text{or } i = s(m+1), \\ +1 & \text{otherwise.} \end{cases}$$
(20)

Denote by $\sigma_{i,j}$ the element in S switching the vectors e_i and e_j and leaving the remaining vectors in \mathcal{B} fixed. Then (20) gives $\varphi_m(\sigma_{m,m+1})\varphi_{m+1}(\sigma_{m,m+1}) = -1$. As a consequence, $\varphi(\sigma_{m,m+1}) \in N$ forces

$$\varphi_1(\sigma_{m,m+1})\dots\varphi_{m-1}(\sigma_{m,m+1}) = -1.$$
(21)

Since *m* is odd, the product $\sigma := \sigma_{1,2} \dots \sigma_{m-2,m-1}$ is well-defined. The relations $\sigma(e_{m+1}) = e_{m+1}$ and $\sigma^2 = 1_S$ give

$$\varphi_1(\sigma)\varphi_2(\sigma) = \ldots = \varphi_{m-2}(\sigma)\varphi_{m-1}(\sigma) = 1$$

If 4 would not divide m + 1, then $det(\sigma_{m,m+1}\sigma) = -1$ which means

$$1 = \varphi_i(\sigma_{m,m+1}\sigma)\varphi_{i+1}(\sigma_{m,m+1}\sigma) \qquad (i = 1, \dots, m-2), -1 = \varphi_m(\sigma_{m,m+1}\sigma)\varphi_{m+1}(\sigma_{m,m+1}\sigma),$$

i.e. $\varphi(\sigma_{m,m+1}\sigma) \notin N$. Therefore 4 divides m+1 and we have

$$\varphi_1(\sigma_{m,m+1}\sigma)\varphi_2(\sigma_{m,m+1}\sigma) = \dots = \varphi_m(\sigma_{m,m+1}\sigma)\varphi_{m+1}(\sigma_{m,m+1}\sigma) = 1.$$

Use now Equations (19) for
$$s' = \sigma$$
 and $s'' = \sigma_{m,m+1}$. It follows

$$\varphi_2(\sigma_{m,m+1})\varphi_1(\sigma)\varphi_1(\sigma_{m,m+1}\sigma) = \varphi_1(\sigma_{m,m+1})\varphi_2(\sigma)\varphi_2(\sigma_{m,m+1}\sigma) = 1.$$

Therefore $\varphi_1(\sigma_{m,m+1})\varphi_2(\sigma_{m,m+1}) = 1$ because we know that $\varphi_1(\sigma)\varphi_2(\sigma) = 1$ and $\varphi_1(\sigma_{m,m+1}\sigma)\varphi_2(\sigma_{m,m+1}\sigma) = 1$. Likewise, we get

 $\varphi_3(\sigma_{m,m+1})\varphi_4(\sigma_{m,m+1}) = \ldots = \varphi_{m-2}(\sigma_{m,m+1})\varphi_{m-1}(\sigma_{m,m+1}) = 1,$ a contradiction to (21). **4.3 The case** $|\Delta| = 3$. By Proposition 4.1.2 and Lemma 4.1.4 we may assume that $\bar{\mathbf{G}} \simeq \mathbf{S}_{m+1}$. According to Theorem 2.2.1, we may identify \mathbf{G} with a subgroup of the twisted wreath product $\tilde{\mathbf{G}} = GF(3) \operatorname{wr}_{\alpha} \mathbf{S}_{m+1}$, where α is the non-trivial linear representation of \mathbf{S}_m on the 1-dimensional vector space over GF(3); then, the inertial group N is defined by a \mathbf{S}_{m+1} -invariant m-transversal subspace W of the vector space V associated with $\tilde{\mathbf{G}}$, which is a hyperplane (Lemma 3.2.1).

Let $S \simeq \mathbf{S}_{m+1}$ be a translation complement in $\tilde{\mathsf{G}}$ and let A be the subgroup of S isomorphic to \mathbf{A}_{m+1} . Consider in the group $\tilde{G}/N \simeq (V/N) > \triangleleft (SN/N)$ the subgroup $(V/N) > \triangleleft (AN/N)$. As V/N is 1-dimensional, the last semi-direct product must be direct. Then we can use the subsequent lemma to conclude that $AN = \varphi^{-1}(AN/N)$, where $\varphi: G \to G/N$ denotes the canonical homomorphism.

4.3.1 Lemma. Let $G = V > \triangleleft A$ be a semidirect product of an solvable group V by a group A isomorphic to the alternating group \mathbf{A}_t , t > 4. Besides let N be a normal subgroup of G contained in V and let H be a subgroup of G containing N such that $H/N \simeq A$. If AN/N centralizes V/N, then H = NA.

Proof. We may regard H/N as a subgroup of the direct product $(V/N) \times (AN/N)$, so H/N projects into both V/N and AN/N. As V/N is solvable, the first projection is trivial; hence H/N = AN/N, i.e. H = AN. \Box

Now, since AN has index 2 in G, we see that G splits over N by a theorem of Gaschütz ([8, p. 121]). Thus, in view of 2.2.1, 3.2 and 4.1.4, we can state the following

4.3.2 Theorem. Let $|\Delta| = 3$; then we have $\overline{\mathsf{G}} \simeq \mathbf{S}_t$, where t = m or t = m + 1, G splits over the inertial group N and G can be realized as follows:

Let V be the vector space of dimension t over the prime field GF(3) and let $\Delta_i = \{x + V_i : x \in V\}$, where V_i denotes the hyperplane of vectors (x_1, \ldots, x_t) with $x_i = 0$. Then, $\Omega = \Delta_1 \cup \ldots \cup \Delta_t$ and $G = \{x \mapsto w + g(x) : w \in W, g \in S\}$, where W = V if t = m, $W = \{(x_1, \ldots, x_t) \in V : \sum_{k=1}^{m+1} (-1)^{m(k+1)} x_k = 0\}$ if t = m+1, and S denotes the subgroup of $\mathbf{GL}(V)$ generated by the linear mappings

$$\begin{array}{rcccc} (x_1, \dots, x_t) & \mapsto & (x_t, x_1, \dots, x_{t-1}), \\ (x_1, \dots, x_t) & \mapsto & ((-1)^t x_t, -x_2, \dots, -x_{t-1}, (-1)^t x_1), \end{array}$$

corresponding to the permutations $(1, \ldots, t)$ and (1 t), respectively. \Box

In view of Theorems 4.2.1 and 4.3.2 from now on we may assume $|\Delta| > 3$. Before proceeding, we need to state the following general lemma.

4.3.3 Lemma. Let V be a GF(2)-vector space, $S = \langle h_i : i \in I \rangle$ be a group of automorphisms of V generated by elements h_i of prime order p_i leaving a proper subspace W of V invariant and $0_V \longrightarrow W \longrightarrow G \xrightarrow{\lambda} S \longrightarrow 1_S$ be an extension of W by S. Assume $\ker(id_W + h_{i|W}) \subseteq \operatorname{im}(id_W + h_{i|W})$ if $p_i = 2$. Then the following hold: $0_V \longrightarrow W \longrightarrow G \longrightarrow \lambda S \longrightarrow 1_S$

- a) For all $k \in I$ there exists $g_k \in G$ such that $\lambda(g_k) = h_k$ and $g_k^{p_k} = 1_G$.
- b) Let h_i and h_j be of order 2 with $(h_i h_j)^3 = 1_S$. Then, for k = i, j, there exists $g_k \in G$ such that $\lambda(g_k) = h_k$ and $g_k^2 = (g_i g_j)^3 = 1_G$.
- c) Let h_i and h_j be of order 2 with $(h_i h_j)^2 = 1_S$. Then, for k = i, j, there exists $g_k \in G$ such that $\lambda(g_k) = h_k, g_k^2 = 1_G$ and $(g_i g_j)^2 \in \text{Fix}(h_k)$.
- d) Let h_i and h_j be of order 2 and 3, respectively, with $(h_i h_j)^2 = 1_S$. Then, for k = i, j, there exists $g_k \in G$ such that $\lambda(g_k) = h_k$, $g_i^2 = g_j^3 = 1_G$ and $(g_i g_j)^2 \in \operatorname{Fix}(h_i h_j) \cap \operatorname{Fix}(h_j + h_j^2)$.

Proof. a) Let $g_k \in \lambda^{-1}(h_k)$, then g_k centralizes $g_k^{p_k} = w_k \in W$. If p_k is odd, $(w_k g_k)^{p_k} = (w_k)^{p_k} (g_k)^{p_k} = w_k + w_k = 0_W$. If $p_k = 2$ then $h_k(w_k) = g_k w_k g_k^{-1} = w_k$, hence $w_k = h_k(u_k) + u_k$ for some $u_k \in W$ and we have $(u_k g_k)^2 = u_k g_k u_k g_k^{-1} g_k^2 = u_k + h_k(u_k) + w_k = 0_W$.

b) Take g_k as in a), thus $g_k(x) + h_k(x)$ is a well-defined vector u_k for all $x \in V$. Put $w_{ij} = (g_i g_j)^3 \ (\in W)$, then $g_k^2 = 1_G$ gives $h_k(u_k) = u_k$, whereas $(h_i h_j)^3 = 1_S$ yields

$$w_{ij} = h_i h_j(u_i) + h_j h_i(u_j) + h_i(u_j) + h_j(u_i) + u_i + u_j.$$

Thus $h_k(w_{ij}) = w_{ij}$ and we see that $(w_{ij}g_ig_j)^3 = (w_{ij}g_i)^2 = 1_G$.

c) Take g_k as in a) and put $v_{ij} = (g_i g_j)^2 \ (\in W)$. Then $g_i g_j g_i g_j = g_j g_i g_j g_i$ and we see that h_k leaves v_{ij} fixed.

d) Taking g_k as in a), u_k as in the proof of b) and v_{ij} as in the proof of c), we have $h_i h_j(v_{ij}) = v_{ij}$. Furthermore $g_i^2 = g_j^3 = 1_G$ give $h_i(u_i) = u_i$ and $(h_j + h_j^2)(u_j) = u_j$, whereas $(g_i g_j)^2 = 1_G$ implies $v_{ij} = h_j^2(u_i + u_j) + h_i(u_j) + u_i$. So $(h_j + h_j^2)(v_{ij}) = v_{ij}$. \Box

4.4 The case $\tilde{\mathbf{G}} \simeq \mathbf{S}_{m+1}$. As $|\Delta| > 3$, the permutation group \mathbf{G} embeds into $\tilde{\mathbf{G}} = GF(p)^n \operatorname{wr}_{\alpha} \mathbf{S}_{m+1}$ with α one of the representations **4**, **5** or **6** given in Lemma 4.1.4. Also, thanks to Lemma 3.3.1, we have m = 5 and the translations in the inertial group N are defined through vectors in the subspace

$$W = \left\{ (z_1, \dots, z_6) \in V = (GF(4)^2)^6 : \sum_{i=1}^6 f^i(z_i) = 0 \right\},\$$

where $f: GF(4)^2 \longrightarrow GF(4)^2$ is the bijective mapping defined by

$$(x,y) \longmapsto (\mathbf{i}x + \mathbf{i}y + \mathbf{i}y^2, \mathbf{i}^2x + \mathbf{i}^2y^2).$$

So G embeds into the group G_6 introduced in 2.3 and we have to determine the nonequivalent extensions within G_6 of N by the group S generated by the matrices (3), with k = 1, ..., 5 and entries (4) and (5). It turns out that $\ker(J_{k|W} + id_W) =$ $\operatorname{im}(J_{k|W} + id_W)$ so Lemma 4.3.3, a applies and we find in G elements

 $g_k: v \mapsto J_k(v) + u_k \qquad (k = 1, \dots, 5)$

of order 2. Then $u_k \in Fix(J_k)$ and we have

$$u_{1} = (\mathbf{i}x_{1} + \mathbf{i}y_{1}, \mathbf{i}^{2}x_{1}, x_{1}, y_{1}, z_{1}, z_{1}^{2}, t_{1}, t_{12}, \mathbf{i}r_{11}, \mathbf{i}^{2}r_{12}, s_{11}, s_{12}),$$

$$u_{2} = (s_{21}, s_{22}, \mathbf{i}x_{2} + \mathbf{i}y_{2}, \mathbf{i}^{2}x_{2}, x_{2}, y_{2}, z_{2}, z_{2}^{2}, t_{2}, t_{22}, \mathbf{i}r_{21}, \mathbf{i}^{2}r_{22}),$$

$$u_{3} = (\mathbf{i}r_{31}, \mathbf{i}^{2}r_{32}, s_{31}, s_{32}, \mathbf{i}x_{3} + \mathbf{i}y_{3}, \mathbf{i}^{2}x_{3}, x_{3}, y_{3}, z_{3}, z_{3}^{2}, t_{3}, t_{32}),$$

$$u_{4} = (t_{4}, t_{42}, \mathbf{i}r_{41}, \mathbf{i}^{2}r_{42}, s_{41}, s_{42}, \mathbf{i}x_{4} + \mathbf{i}y_{4}, \mathbf{i}^{2}x_{4}, x_{4}, y_{4}, z_{4}, z_{4}^{2}),$$

$$u_{5} = (z_{5}, z_{5}^{2}, t_{5}, t_{52}, \mathbf{i}r_{51}, \mathbf{i}^{2}r_{52}, s_{51}, s_{52}, \mathbf{i}x_{5} + \mathbf{i}y_{5}, \mathbf{i}^{2}x_{5}, x_{5}, y_{5}),$$
(22)

where the entries r_{kh} , s_{kh} , t_{kh} , x_{kh} , y_{kh} , z_{kh} take the value 1 or 0 and $t_k = t_{k1} + \mathbf{i}t_{k2}$, $x_k = x_{k1} + \mathbf{i}x_{k2}$, $y_k = y_{k1} + \mathbf{i}y_{k2}$, $z_k = z_{k1} + \mathbf{i}z_{k2}$. Notice that $u_k \in W$ just if

a)
$$y_{k1} + z_{k1} + z_{k2} + t_{k1} + r_{k1} + s_{k1} = 0,$$

b) $y_{k2} + z_{k1} + t_{k2} + r_{k1} + r_{k2} + s_{k2} = 0.$
(23)

As
$$(J_l J_{l-1})^3 = 1_S$$
, we may assume $(g_l g_{l-1})^3 = 1_G$ (Lemma 4.3.3,b) which means $J_l(u_{l-1}) + u_l \in \text{Fix}(Q_l^2 + Q_l)$ $(l = 2, ..., 5),$

where $Q_l = J_{l-1}J_l$ are the matrices (3) and (6). The last conditions give

a)
$$x_{l-11} + x_{l-12} + y_{l-11} + y_{l-12} + z_{l-11} + z_{l-12} = x_{l1} + x_{l2} + y_{l1} + s_{l1},$$

b) $x_{l-11} + z_{l-12} = x_{l2} + y_{l2} + s_{l2}.$
(24)

For all i, j = 1, ..., 5 with |i - j| > 1 we have $J_i J_j = J_j J_i$, hence $v_{ij} := (g_i g_j)^2(v) + v \in \operatorname{Fix}(J_i) \cap \operatorname{Fix}(J_j)$

by Lemma 4.3.3, c. Thus the coordinates of v_{ij} have the following shape:

$$\begin{aligned} v_{13} &= v_{31} = (\mathbf{i}a_{13} + \mathbf{i}b_{13}, \mathbf{i}^2a_{13}, a_{13}, b_{13}, c_{13} + \mathbf{i}d_{13}, c_{13} + \mathbf{i}^2d_{13}, \\ d_{13} + \mathbf{i}c_{13}, c_{13}, \mathbf{i}e_{13}, \mathbf{i}^2e_{13}, b_{13} + c_{13} + e_{13}, 0), \\ v_{15} &= v_{51} = (c_{15} + \mathbf{i}d_{15}, c_{15} + \mathbf{i}^2d_{15}, d_{15} + \mathbf{i}c_{15}, c_{15}, \mathbf{i}e_{15}, \mathbf{i}^2e_{15}, \\ b_{15} + c_{15} + e_{15}, 0, \mathbf{i}a_{15} + \mathbf{i}b_{15}, \mathbf{i}^2a_{15}, a_{15}, b_{15}), \\ v_{35} &= v_{53} = (\mathbf{i}e_{35}, \mathbf{i}^2e_{35}, b_{35} + c_{35} + e_{35}, 0, \mathbf{i}a_{35} + \mathbf{i}b_{35}, \mathbf{i}^2a_{35}, \\ a_{35}, b_{35}, c_{35} + \mathbf{i}d_{35}, c_{35} + \mathbf{i}^2d_{35}, d_{35} + \mathbf{i}c_{35}, c_{35}), \\ v_{24} &= v_{42} = (b_{24} + c_{24} + e_{24}, 0, \mathbf{i}a_{24} + \mathbf{i}b_{24}, \mathbf{i}^2a_{24}, a_{24}, b_{24}, \\ c_{24} + \mathbf{i}d_{24}, c_{24} + \mathbf{i}^2d_{24}, d_{24} + \mathbf{i}c_{24}, c_{24}, \mathbf{i}^2e_{24}), \\ v_{14} &= v_{41} = (\mathbf{i}^2a_{14} + b_{14}, a_{14}, \mathbf{i}a_{14}, \mathbf{i}^2b_{14}, c_{14}, \\ \mathbf{i}^2e_{14} + b_{14} + c_{14} + d_{14}, e_{14}, \mathbf{i}e_{14}, \mathbf{i}^2b_{14} + \mathbf{i}^2c_{14} + \mathbf{i}^2d_{14}, d_{14}, d_{14}), \\ v_{25} &= v_{52} = (c_{25}, c_{25}, \mathbf{i}^2e_{25} + b_{25} + c_{25} + d_{25}, e_{25}, \mathbf{i}e_{25}, \mathbf{i}^2b_{25} + \mathbf{i}^2c_{25} + \mathbf{i}^2b_{25}), \\ \end{array}$$

where the entries $a_{ij}, b_{ij}, c_{ij}, d_{ij}, e_{ij}$ take the value 0 or 1. Notice that $v_{ij} = 0$ precisely if the coordinates of u_i and u_j satisfy the conditions

a)
$$x_{i1} = t_{j2} + r_{j1}$$
, b) $x_{i1} + y_{i1} + y_{i2} = t_{j1} + r_{j1} + r_{j2}$,
c) $z_{i2} = s_{j1} + s_{j2}$, d) $t_{i1} + t_{i2} + r_{i2} = y_{j1} + y_{j2}$, if $j = i + 3$,
e) $t_{i2} + r_{i1} = x_{j1}$, f) $s_{i1} + s_{i2} = z_{j2}$,
g) $x_{i2} = r_{j2} + s_{j1}$, h) $y_{i2} = r_{j1} + r_{j2} + s_{j2}$,
i) $z_{i1} + t_{i2} = y_{j2}$, j) $z_{i2} + t_{i1} = x_{j2} + y_{j1} + y_{j2}$, otherwise.
k) $r_{i1} + r_{i2} = z_{j1}$, l) $s_{i2} = t_{j2}$,
(25)

In order that the extension exists, the vectors v_{ij} are subject to conditions determined by N. Blackburn in [2, pp. 205-206]. These conditions, which are also sufficient for the existence of the extension, can be written as follows:

a)
$$(J_1 + id_V)(v_{35}) + (J_3 + id_V)(v_{15}) + (J_5 + id_V)(v_{13}) = 0_V,$$

b) $(Q_l^2 + Q_l + id_V)(v_{l-1j} + v_{lj}) = 0_V,$
c) $(Q_l^2 + Q_l + id_V)(Q_{l+1}^2 + id_V)(v_{l-1\,l+1}) = 0_V,$
(26)

where *l* takes the values 2, 3, 4, 5 in *b*) $(j \neq l - 2, l - 1, l, l + 1)$ and 2, 3, 4 in *c*).

Now the aim is to show that we may take zero all the vectors $v_{ij} \neq v_{15}$. We can do this by adding to u_k a vector $w_k \in W \cap \operatorname{Fix}(J_k)$ with $J_l(w_{l-1}) + w_l \in \operatorname{Fix}(Q_l^2 + Q_l)$ $(l = 2, \ldots, 5)$. Then we may assume that $v_{ij} = 0_V$ if w_i and w_j satisfy the condition $(J_i + id_V)(w_j) = (J_j + id_V)(w_i)$. We shall proceed by annihilating the vectors v_{ij} successively and, then, considering new vectors w_k which retain the achieved conditions $v_{ij} = 0_V$. As a matter of fact, adding to u_1 the vector

$$(a_{13} + b_{13} + \mathbf{i}c_{13} + \mathbf{i}d_{13}, a_{13} + \mathbf{i}^2d_{13}, d_{13} + \mathbf{i}a_{13}, a_{13} + c_{13} + \mathbf{i}^2b_{13}, c_{13} + \mathbf{i}d_{13}, c_{13} + \mathbf{i}^2d_{13}, 0, 0, \mathbf{i}a_{13} + \mathbf{i}b_{13} + \mathbf{i}d_{13}, \mathbf{i}^2a_{13} + \mathbf{i}^2b_{13} + \mathbf{i}^2d_{13} + \mathbf{i}^2e_{13}, 0, b_{13} + c_{13} + e_{13})$$

we make $v_{13} = 0$, whereas adding to u_2 the vector

$$\begin{aligned} &(a_{24} + b_{24}, a_{24} + \mathbf{i}^2 b_{24}, \mathbf{i} a_{24} + \mathbf{i}^2 (b_{24} + e_{24}), b_{24} + e_{24} + \mathbf{i}^2 a_{24}, e_{24} + \mathbf{i}^2 b_{24}, \\ &\mathbf{i} b_{24} + \mathbf{i}^2 (a_{24} + e_{24}), \mathbf{i} (a_{24} + e_{24}) + \mathbf{i}^2 b_{24}, a_{24} + b_{24} + d_{24} + e_{24}, 0, \\ &\mathbf{i} (a_{24} + b_{24} + d_{24}), \mathbf{i}^2 (a_{24} + b_{24} + d_{24} + e_{24})) \end{aligned}$$

and to u_4 the vector

$$\begin{aligned} &(\mathbf{i}^2(a_{24}+c_{24}+e_{24}), a_{24}+c_{24}+e_{24}, 0, 0, 0, 0, \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \\ &\mathbf{i}^2(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}^2(a_{24}+c_{24}+e_{24}), \\ &\mathbf{i}^2(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \\ &\mathbf{i}^2(a_{24}+c_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \\ &\mathbf{i}^2(a_{24}+c_{24}+c_{24}+e_{24}), \mathbf{i}(a_{24}+c_{24}+e_{24}), \mathbf$$

we make $v_{24} = 0$. Also the vector $w_3 = \mathbf{i}(a_{35}, 0, 0, a_{35}, a_{35}, a_{35}, a_{35}, a_{35}, 0, 0, 0, 0)$ is in Fix (J_1) , so replacing u_3 by $u_3 + w_3$ and u_5 by $u_5 + w_5$, where w_5 is the vector

$$(\mathbf{i}(b_{35}+d_{35})+\mathbf{i}^2(a_{35}+e_{35}),\mathbf{i}(a_{35}+e_{35})+\mathbf{i}^2(b_{35}+d_{35}),\mathbf{i}(a_{35}+b_{35}+c_{35}+e_{35}), \\ a_{35}+b_{35}+c_{35}+e_{35},\mathbf{i}b_{35},0,0,0,\mathbf{i}c_{35},\mathbf{i}c_{35}+\mathbf{i}^2d_{35},d_{35}+\mathbf{i}^2c_{35},d_{35}+\mathbf{i}c_{35}),$$

we make $v_{35} = 0$ without destroying $v_{13} = 0$. Notice that $v_{13} = 0$, $v_{24} = 0$ and (26b)

imply that $v_{14} \in \operatorname{Fix}(Q_2^2 + Q_2) \cap \operatorname{Fix}(Q_4^2 + Q_4)$, which means $c_{14} = a_{14}$ and $e_{14} = b_{14} + d_{14}$. Also, $v_{24} = 0_V$, $v_{35} = 0_V$ and (26b) give $v_{25} \in \operatorname{Fix}(Q_3^2 + Q_3) \cap \operatorname{Fix}(Q_5^2 + Q_5)$, or $e_{25} = d_{25} = a_{25} + b_{25}$. Thus we can annihilate v_{14} and v_{25} by adding

$$\begin{split} w_1 &= (\mathbf{i}b_{14}, 0, 0, b_{14}, b_{14}, b_{14}, \mathbf{i}b_{14}, 0, 0, 0, 0), \\ w_4 &= (d_{14}, 0, \mathbf{i}a_{14}, \mathbf{i}^2d_{14}, d_{14}, a_{14} + d_{14}, a_{14} + \mathbf{i}^2d_{14}, a_{14} + \mathbf{i}d_{14}, \mathbf{i}a_{14} + \mathbf{i}^2d_{14}, a_{14} + d_{14}, \mathbf{i}d_{14}, \mathbf{i}^2d_{14}), \\ w_5 &= \mathbf{i}c_{25}, \mathbf{i}^2c_{25}, c_{25}, 0, \mathbf{i}(a_{25} + b_{25}), \mathbf{i}^2a_{25}, a_{25}, b_{25} + \mathbf{i}a_{25}, b_{25} + \mathbf{i}^2a_{25}, a_{25} + \mathbf{i}b_{25}, b_{25}) \end{split}$$

to u_1 , u_4 and u_5 , respectively (notice that $w_1 \in Fix(J_3)$, $w_4 \in Fix(J_2)$, $w_5 \in Fix(J_3)$).

Now the question is whether we can annihilate v_{15} or not. Since we are assuming $v_{14} = v_{25} = v_{13} = v_{35} = 0_V$, from (26*a*) and (26*b*) it follows that v_{15} is contained in the intersection $\operatorname{Fix}(J_3) \cap \operatorname{Fix}(Q_2^2 + Q_2) \cap \operatorname{Fix}(Q_5^2 + Q_5)$. Therefore,

$$v_{15} = (\mathbf{i}a, \, \mathbf{i}^2 a, \, a, \, 0, \, \mathbf{i}a, \, \mathbf{i}^2 a, \, a, \, 0, \, \mathbf{i}a, \, \mathbf{i}^2 a, \, a, \, 0) \tag{27}$$

with a = 0, or a = 1. We claim that if a = 1 no further replacement of the vectors u_k by vectors $u_k + w_k$ gives $v_{15} = 0$ (without destroying the achieved conditions). In fact, if such vectors w_k exist, they should have coordinates x_{kh} , y_{kh} , z_{kh} , t_{kh} , r_{kh} , s_{kh} , written as in (22) for u_k and satisfying (23), (24) and (25) (the latter for $(i, j) \neq (1, 5)$). Also they should fulfill the condition $(J_1 + id_V)(w_5) + (J_5 + id_V)(w_1) = v_{15}$, i.e., by comparing the last coordinate but one,

$$r_{12} + s_{11} + x_{52} = 1. (28)$$

But (28) is incompatible with the following system of equations

$r_{11} + y_{11} + z_{11} + z_{12} + t_{11} + s_{11} = 0,$	(23a), k = 1,
$r_{21} + y_{21} + z_{21} + z_{22} + t_{21} + s_{21} = 0,$	$(23a), \ k = 2,$
$r_{31} + y_{31} + z_{31} + z_{32} + t_{31} + s_{31} = 0,$	$(23a), \ k = 3,$
$r_{22} + y_{22} + z_{21} + t_{22} + r_{21} + s_{22} = 0,$	$(23b), \ k = 2,$
$x_{11} + x_{12} + y_{11} + y_{12} + z_{11} + z_{12} + x_{21} + x_{22} + y_{21} + s_{21} = 0,$	$(24a), \ l=2,$
$x_{11} + z_{12} + x_{22} + y_{22} + s_{22} = 0,$	$(24b), \ l = 2,$
$x_{21} + z_{22} + x_{32} + y_{32} + s_{32} = 0,$	$(24b), \ l = 3,$
$t_{21} + t_{22} + r_{22} + y_{51} + y_{52} = 0,$	(25d), i = 2, j = 5,
$x_{12} + r_{32} + s_{31} = 0,$	(25g), i = 1, j = 3,
$y_{12} + r_{31} + r_{32} + s_{32} = 0,$	(25h), i = 1, j = 3,
$z_{12} + t_{11} + x_{32} + y_{31} + y_{32} = 0,$	(25j), i = 1, j = 3,
$z_{32} + t_{31} + x_{52} + y_{51} + y_{52} = 0,$	(25j), i = 3, j = 5,
$r_{11} + r_{12} + z_{31} = 0,$	(25k), i = 1, j = 3,

since the left side of (28) is the sum of all the left sides of the above system. This shows that there is just one non-splitting extension: it is achieved by the vectors

$$u_{1} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), \quad u_{2} = u_{3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), u_{4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, \mathbf{i}, \mathbf{i}^{2}), \quad u_{5} = (0, 0, 1, 0, 0, \mathbf{i}^{2}, 1, 1, 0, 0, 0, 0).$$
(29)

In fact, such vectors solve (22), (24) and (25) for $(i, j) \neq (1, 5)$; furthermore, the vector

 $(J_1 + id_V)(u_5) + (J_5 + id_V)(u_1)$ is precisely (27). Summing up we have

4.4.1 Theorem. Let $\bar{\mathbf{G}} \simeq \mathbf{S}_{m+1}$ and assume that the blocks contain more than 3 points. Then m = 5, the blocks contain precisely 16 points and there is an embedding $\mathbf{G} \hookrightarrow \mathbf{G}_6 = GF(2)^4 \text{ wr } \mathbf{S}_6$ mapping the inertial group of \mathbf{G} onto the group of translations of \mathbf{G}_6 corresponding to the GF(2)-vector subspace

$$W = \left\{ (z_1, \dots, z_6) \in V = (GF(4)^2)^6 : \sum_{i=1}^6 f^i(z_i) = 0 \right\}$$

where f is the bijective mapping $GF(4)^2 \to GF(4)^2$ by (12). There are just two nonisomorphic embeddings of G within G₆ which are generated as follows:

1. $\langle v \mapsto J_k(v) + w : w \in W, k = 1, \dots, 5 \rangle$ (splits over N),

2.
$$\langle v \mapsto J_k(v) + u_k + w : w \in W, k = 1, \dots, 5 \rangle$$
 (does not split over N),

where J_k are given by (3), (4) and (5) and u_k are the vectors (29).

4.5 The case $\bar{\mathbf{G}} \simeq \mathbf{A}_{m+2}$. It remains to examine the case where $\bar{\mathbf{G}}$ is the alternating group \mathbf{A}_{m+2} . In such a case \mathbf{G} embeds into $\tilde{\mathbf{G}} = GF(2)^4 \operatorname{wr}_{\alpha} \mathbf{A}_{m+2}$, where m = 4, 5, 6 or 7 and α is the unique representation of \mathbf{A}_{m+1} as a subgroup of $\mathbf{GL}(4, 2) \simeq \mathbf{A_8}$. This means that $\tilde{\mathbf{G}}$ is one of the four groups \mathbf{H}_{m+2} introduced in 2.4 and 2.5. According to Lemma 3.4.1, for each of the groups \mathbf{H}_{m+2} , there is precisely one \mathbf{A}_{m+2} -invariant *m*-transversal subspace *W* such as (13) with functions f_i and g_i given by (14). Now, we state

4.5.1 Theorem. Let $\bar{\mathsf{G}} \simeq \mathbf{A}_{m+2}$. Then $4 \leq m \leq 7$, the blocks contain precisely 16 points and there is an embedding $\mathsf{G} \hookrightarrow \mathsf{H}_{m+2} = GF(2)^4 \operatorname{wr} \mathbf{A}_{m+2}$ mapping the inertial group of $\bar{\Omega}$ onto the group N_{m+2} of translations of H_{m+2} corresponding to the subspace W_{m+2} defined by (13) and (14). The group G is the splitting extension $(GF(2)^4 \operatorname{wr} \mathbf{A}_{m+2})_{|W_{m+2}}$ of N_{m+2} by \mathbf{A}_{m+2} .

Proof. It is enough to prove that G splits over N_{m+2} . We may regard G as a subgroup of H₉ (resp. H₆ for m = 4) given as an extension

$$0_{N_{m+2}} \longrightarrow N_{m+2} \longrightarrow G \xrightarrow{\lambda} A_{m+2} \longrightarrow 1_{A_{m+2}}$$
(30)

of N_{m+2} by a subgroup A_{m+2} of H₉ (resp. H₆) isomorphic to \mathbf{A}_{m+2} . We shall first discuss the case m = 5.

The alternating group \mathbf{A}_7 is generated by the permutations (1375)(26) and (34567). Thus, the matrix $A = Q_3 Q_2 Q_6 Q_5 Q_4 Q_3$, having the non-zero entries given by the quadratic functions over GF(4):

and the matrix $B = Q_4 Q_6$, the non-zero entries of which are

$$b_{11} = q_3 q_5, \qquad b_{22} = q_2 q_4, \qquad b_{43} = q'^{-1} q_3, \\ b_{54} = q''^{-1} q_2, \qquad b_{65} = q_7 q'^{-1}, \qquad b_{76} = q_6 q''^{-1}, \\ b_{37} = (q'q'')^2 \qquad b_{88} = q_5 q_7, \qquad b_{99} = q_4 q_6,$$

generate a subgroup ($\simeq A_7$) of H₉ that we may take as A_7 in (30). Let

$$a: x \mapsto A(x) + u_a, \qquad b: x \mapsto B(x) + u_b$$

be elements in G such that $\lambda(a) = A$ and $\lambda(b) = B$. In view of Lemma 4.3.3, a, we may assume the order of b to be 5. Moreover $A^4 = 1_{A_7}$ yields

$$w_a := a^4(x) + x = u_a + A(u_a) + A^2(u_a) + A^3(u_a) \in W \cap Fix(A).$$

The endomorphism $A^3 + A^2 + A + id_V$ maps W into $W \cap \text{Fix}(A) \ni w_a$. Also W decomposes into the direct sum of cyclic K[A]-submodules W_1, \ldots, W_5 having dimension 4 over K = GF(2) (for instance, the ones generated by

$$(f_4(e_1), g_4(e_1), 0, 0, 0, e_1, 0, 0, 0), \quad (f_4(e_2), g_4(e_2), 0, 0, 0, e_2, 0, 0, 0), (f_4(e_3), g_4(e_3), 0, 0, 0, e_3, 0, 0, 0), \quad (f_4(e_4), g_4(e_4), 0, 0, 0, e_4, 0, 0, 0), (f_2(e_1), g_2(e_1), 0, e_1, 0, 0, 0, 0, 0),$$
(31)

for a fixed basis e_1, e_2, e_3, e_4 of $GF(2)^4$). Thus, if $w \in W \cap \text{Fix}(A)$ and w_s is the component of w with respect to W_s (s = 1, ..., 5), then $A(w_s) = w_s$. As in W_s there is just one non-zero vector fixed by A (the one generating the line $(id_V + A + A^2 + A^3)(W_s)$), we infer that $W \cap \text{Fix}(A) = (id_V + A + A^2 + A^3)(W)$. Now, let $\bar{w}_a \in W$ solve $(id_V + A + A^2 + A^3)(\bar{w}_a) = w_a$, then, up to a replacement of u_a by $u_a + \bar{w}_a$, we may assume the order of a to be 4. Now $a^4 = b^5 = 1_G$ imply

$$u_a \in \operatorname{Fix}(A + A^2 + A^3), \quad u_b \in \operatorname{Fix}(B + B^2 + B^3 + B^4),$$
 (32)

or, equivalently, the coordinates of u_a and u_b satisfy the equations

$$x_{1} + x_{3} + \mathbf{i}x_{3}^{2} + \mathbf{i}y_{3} + \mathbf{i}y_{3}^{2} + x_{5}^{2} + \mathbf{i}^{2}y_{5} + \mathbf{i}^{2}x_{7}^{2} + \mathbf{i}y_{7} = 0,$$

$$y_{1} + x_{3} + x_{3}^{2} + \mathbf{i}^{2}y_{3} + y_{3}^{2} + \mathbf{i}x_{5} + \mathbf{i}^{2}y_{5}^{2} + \mathbf{i}x_{7} + \mathbf{i}^{2}x_{7}^{2} + \mathbf{i}y_{7} + \mathbf{i}y_{7}^{2} = 0,$$

$$x_{2} + \mathbf{i}^{2}y_{2} + \mathbf{i}^{2}y_{2}^{2} + \mathbf{i}^{2}x_{6} + \mathbf{i}x_{6}^{2} + \mathbf{i}y_{6} = 0,$$

$$\mathbf{i}x_{4} + \mathbf{i}^{2}x_{4}^{2} + \mathbf{i}y_{4} + \mathbf{i}^{2}y_{4}^{2} = 0,$$

(33)

and

$$\begin{aligned} x_3 + \mathbf{i}^2 x_4 + \mathbf{i} y_4 + \mathbf{i} y_4^2 + x_5 + \mathbf{i} x_5^2 + \mathbf{i}^2 y_5 + \mathbf{i} y_5^2 + \mathbf{i} x_6 + \mathbf{i} x_6^2 + \mathbf{i} y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i}^2 x_7^2 &= 0, \\ y_3 + x_4^2 + \mathbf{i} y_4^2 + \mathbf{i}^2 x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 y_5 + y_5^2 + x_6^2 + \mathbf{i}^2 y_6 + \mathbf{i}^2 x_7 + \mathbf{i} x_7^2 + y_7 &= 0, \end{aligned}$$

respectively (we are writing vectors as $(z_1, \ldots, z_7, 0, 0)$ with $z_i = (x_i, y_i) \in GF(4)^2$). Vectors in Fix(B) and Fix(AB) satisfy $(id_V + B + B^2 + B^3 + B^4)(x) = x$ and $(id_V + AB + (AB)^2)(x) = x$, respectively. Thus, since $B^5 = (AB)^3 = id_V$, we have

$$AB + (AB)^2(x) = x$$
, respectively. Thus, since $B^3 = (AB)^3 = id_V$, we have
 $W \in \mathbb{R}^2$, $(B) = (id_V + B + B^2 + B^3 + B^4)(W)$

$$W \cap Fix(B) = (id_V + B + B^2 + B^3 + B^4)(W), W \cap Fix(AB) = (id_V + AB + (AB)^2)(W).$$
(34)

Furthermore W decomposes into the direct sum of four cyclic K[B]-submodules W'_1 , W'_2 , W'_3 , W'_4 of dimension 5 over K = GF(2) (for example, the ones generated by the first four vectors in (31)). As the line $(id_V + B + B^2 + B^3 + B^4)(W'_j)$ is the subspace of vectors in W'_j fixed by B, we have $\dim(W \cap \operatorname{Fix}(B)) = 4$. Let

 $W_a := W \cap \operatorname{Fix}(A + A^2 + A^3), \qquad W_b := W \cap \operatorname{Fix}(B + B^2 + B^3 + B^4).$ Then the first equation of (34) gives dim $W_b = 16$. Also the vectors

$$(0, 0, \mathbf{i}^2, \mathbf{i}, 0, 0, \mathbf{i}, 1, 0, 0, 1, \mathbf{i}^2, 0, 0, 0, 0, 0, 0), (\mathbf{i}^2, 1, 0, 0, \mathbf{i}, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0), (\mathbf{i}, 1, \mathbf{i}^2, \mathbf{i}^2, \mathbf{i}^2, \mathbf{i}^2, \mathbf{i}^2, 0, 0, \mathbf{i}^2, 0, \mathbf{i}, 0, \mathbf{i}, 0, 0, 0, 0), (\mathbf{i}^2, \mathbf{i}, \mathbf{i}^2, \mathbf{i}^2, 1, 1, \mathbf{i}, 1, 1, \mathbf{i}^2, \mathbf{i}, 0, 0, \mathbf{i}, 0, 0, 0, 0),$$

generate a 4-dimensional subspace of $W \cap \text{Fix}(A)$ intersecting W_b trivially. Since $\dim_{GF(2)} W = 20$ and $W \cap \text{Fix}(A) \subseteq W_a$, we have

$$W = W_b + (W \cap \operatorname{Fix}(A)) = W_b + A^3(W \cap \operatorname{Fix}(A)) = W_b + A^3(W_a) = A(W_b) + W_a.$$
 (35)

Clearly $ab : x \mapsto AB(x) + A(u_b) + u_a$ and $(ab)^3$ is a translation in N_{m+2} defined by $(id_V + AB + (AB)^2)(A(u_b) + u_a)$, the order of AB being 3. By (34) and (35) the latter vector $(\in W \cap \text{Fix}(AB))$ can be written as $(id_V + AB + (AB)^2)(A(w'_b) + w'_a)$ for suitable $w'_a \in W_a$ and $w'_b \in W_b$. Thus, up to a replacement of u_a by $u_a + w'_a$ and u_b by $u_b + w'_b$, we may assume that the order of ab is 3, which means

$$A(u_b) + u_a \in \operatorname{Fix}(AB + (AB)^2), \tag{36}$$

or the coordinates of $A(u_b) + u_a$ satisfy the equations

$$\begin{aligned} x_1 + \mathbf{i}^2 x_3 + \mathbf{i} x_3^2 + \mathbf{i}^2 y_3 + \mathbf{i}^2 y_3^2 + x_4 + \mathbf{i}^2 x_4^2 + \mathbf{i}^2 y_4 + \mathbf{i} y_4^2 &= 0, \\ y_1 + \mathbf{i}^2 x_3^2 + \mathbf{i}^2 y_3 + \mathbf{i} x_4^2 + y_4 &= 0, \\ y_2 + x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 y_5 + \mathbf{i}^2 y_5^2 + \mathbf{i} x_6 + x_6^2 + \mathbf{i}^2 y_6^2 &= 0, \\ \end{aligned}$$
(37)

If the order of the transformation $a^3ba^2b^2$ is 2, then a and b generate a complement of N_{m+2} isomorphic to $\mathbf{A_7}$ (see for instance [4, p. 10]) and our claim is proved. Actually we can always arrange u_a in such a way the order of $a^3ba^2b^2$ is 2 by adding to u_a a suitable vector $w''_a \in W$ obtained as follows.

The element $a^3ba^2b^2$ corresponds to the mapping $x \mapsto A^3BA^2B^2(x) + v$, where

$$v := (A^3BA + A^3B + A^2 + A + id_V)(u_a) + (A^3BA^2B + A^3BA^2 + A^3)(u_b)$$

The order of A^3BA^2B being 2, $(a^3ba^2b^2)^2 \in N_{m+2}$ is the translation of the vector $w := (A^3BA^2B^2 + id_V)(v).$

The fact that $w \in W$ is a further restriction for u_a and u_b (in addition to (32) and (36)). Thus it turns out that w has coordinates of the shape

 $(a, \mathbf{i}a + \mathbf{i}^2 b, \mathbf{i}(a+b), c+\mathbf{i}d, d+\mathbf{i}(a+b) + \mathbf{i}^2 c, b+c+d+\mathbf{i}a,$

 $ic + i^2 a$, $id + i^2 (a + b + c)$, ic, d + ic, a + b, $a + b + ic + i^2 d$, $i^2 d$, a + b + d, 0, 0, 0, 0). Now the vector

 $(a + \mathbf{i}b, b + \mathbf{i}^2d, d + \mathbf{i}(a + b + c), c + d + \mathbf{i}^2(a + b), b + \mathbf{i}d + \mathbf{i}^2(a + c), \mathbf{i}(c + d) + \mathbf{i}^2(a + b), \\ a + c + \mathbf{i}^2d, a + \mathbf{i}c + \mathbf{i}^2d, c + \mathbf{i}^2d, a + b + c + d, a + b + d, c, 0, 0, 0, 0, 0, 0),$

is in $W \cap \operatorname{Fix}(A + A^2 + A^3) \cap \operatorname{Fix}(AB + (AB)^2)$ as its coordinates fulfill (14), (33), (37). Also $(A^3BA^2B^2 + id_V)(A^3BA + A^3B + A^2 + A + id_V)$ maps this vector to w, so we take it as w''_a and make w zero, i.e. any extension in H₇ of N₇ by A₇ splits.

Now let $m \neq 5$. The linear mappings

 $P_k = Q_2 \dots Q_{k+1}$ $(k = 1, \dots, m),$ with Q_l given by (6), with entries (7) (m = 4) or (9) (m > 5), fulfill (8) for r = m; so they generate a translation complement in H_{m+2} , that we can take as A_{m+2} in (30). Then $P_1 = Q_2$ and, for k > 1, the non-zero entries $p_{rs}^{(k)}$ of the matrix P_k are

$$p_{21}^{(k)} = q'^{-1}q_2 \dots q_k, \qquad p_{12}^{(k)} = q'q''q'^{-1}q_2 \dots q_{k-1}, p_{k+2,k+1}^{(k)} = q_{t-k} \dots q_7 q''^{-1}, \qquad p_{k+1,k+2}^{(k)} = q_{t-k+1} \dots q_7 q''^{-1}q'q'', p_{rr}^{(k)} = q_{t-r+2} \dots q_t q_{t+k-r+1} \qquad (k+2 < r), p_{ss}^{(k)} = q_{t-s+2} \dots q_7 q''^{-1}q'q''q'^{-1}q_2 \dots q_{k-s+1} \qquad (3 \le s \le k),$$

$$(38)$$

where, of course, the indicated products of q_l occur just if indices allow. Let

$$p_k: x \mapsto P_k(x) + u_k$$

an element in G with $\lambda(p_k) = P_k$. We proceed assuming m > 5.

Up to adding an element in W_{m+2} , we may take u_k with the eighth and ninth coordinate zero. Thus p_1, \ldots, p_5 generate a subgroup of H₇ and we may assume

$$p_1^3 = 1_G, \qquad p_i^2 = 1_G \qquad (i = 2, \dots, 5),$$

$$(p_{i+1}p_i)^3 = 1_G \qquad (i = 1, \dots, 4), \qquad (p_jp_i)^2 = 1_G \quad (2 \le i+1 < j \le 5),$$

$$(p_{i+1}p_i)^2 = 1_G \quad (1 \le i+1 < j \le 5),$$

$$(p_{i+1}p_i)^2 = 1_G \quad (1 \le i+1 < j \le 5),$$

every extension in H_7 of N_7 by A_7 being splitting. This means

a)
$$u_1 \in \operatorname{Fix}(P_1 + P_1^2),$$
 $b_i) u_i \in \operatorname{Fix}(P_i),$ $(i = 2, \dots, 5),$
 $c_i) P_{i+1}(u_i) + u_{i+1} \in \operatorname{Fix}(P_{i+1}P_i + (P_{i+1}P_i)^2),$ $(i = 1, \dots, 4),$ (39)
 $d_{ij}) P_j(u_i) + u_j \in \operatorname{Fix}(P_jP_i),$ $(2 \le i+1 < j \le 5).$

As ker $(P_{m|W} + id_W) = im(P_{m|W} + id_W)$ and $(P_m P_{m-1})^3 = 1_{A_{m+2}}$, we may take p_m of order 2 with $(p_m p_{m-1})^3 = 1_G$ (use Lemma 4.3.3, a, b). Hence

$$P_m(u_m) = u_m, \qquad P_m(u_{m-1}) + u_m \in \operatorname{Fix}(P_m P_{m-1} + (P_m P_{m-1})^2).$$

Now, in order to prove that the extension (30) is splitting we have to provide further replacements of the vectors u_k making the transformations $p_m p_k$ of order 2 for k =1, ..., m-2. This means to make zero the vectors $v_{km} = (p_m p_k)^2 \in W_{m+2}$. The vectors v_{km} are subject to the conditions given by Lemma 4.3.3, c, d, as well as to conditions determined by N. Blackburn in [2, section 1] that may be written as follows:

$$\begin{array}{ll} a_{ij}) & (id_V + P_j)(v_{im}) + (id_V + P_i)(v_{jm}) = 0_V & (2 < i + 1 < j < m - 1), \\ b_i) & (id_V + P_1)(v_{im}) + (P_i + P_m)(v_{1m}) = 0_V & (2 < i < m - 1), \\ c_i) & (id_V + P_m P_{m-1} + (P_m P_{m-1})^2)(v_{im}) = 0_V & (i < m - 2), \\ d) & (id_V + P_3 P_2 + (P_3 P_2)^2)(v_{2m} + v_{3m}) = 0_V, \\ e) & (id_V + P_1 P_2 + (P_1 P_2)^2)(P_1(v_{1m}) + v_{2m}) = 0_V. \end{array}$$

$$(40)$$

Now we have to discuss separately the cases m = 6 and m = 7. Let m = 6. By Lemma 4.3.3, d, P_6P_1 and $P_1 + P_1^2$ leave $v_{16} \in W_8$ fixed. This forces v_{16} to have coordinates $(x_1 + x^2 + \mathbf{i}u_1 + \mathbf{i}^2u_1^2 + \mathbf{i}u_2 + \mathbf{i}^2u_2^2 + \mathbf{i}u_2 + \mathbf{i}^2x_2^2 + \mathbf{i}u_2 + \mathbf{i}^2u_2^2)$

$$\begin{aligned} x_4 + x_4^2 + \mathbf{i}y_4 + \mathbf{i}^2 y_4^2 + \mathbf{i}y_5 + \mathbf{i}^2 y_5^2 + \mathbf{i}x_6 + \mathbf{i}^2 x_6^2 + \mathbf{i}y_8 + \mathbf{i}^2 y_8^2, \\ x_4 + x_4^2 + \mathbf{i}^2 y_4 + \mathbf{i}^2 y_5 + \mathbf{i}x_6 + \mathbf{i}^2 x_6^2 + y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i}^2 x_8 + x_8^2 + \mathbf{i}y_8 + \mathbf{i}^2 y_8^2, \\ \mathbf{i}x_4 + \mathbf{i}^2 x_4^2 + \mathbf{i}y_4^2 + y_5 + \mathbf{i}^2 y_5^2 + \mathbf{i}y_6 + y_6^2 + \mathbf{i}x_8 + y_8 + y_8^2, \\ \mathbf{i}x_4^2 + \mathbf{i}y_4 + \mathbf{i}^2 y_5 + \mathbf{i}^2 y_5^2 + \mathbf{i}x_6 + \mathbf{i}^2 x_6^2 + \mathbf{i}^2 y_6 + \mathbf{i}y_6^2 + \mathbf{i}^2 x_8 + \mathbf{i}y_8 + \mathbf{i}^2 y_8^2, \\ \mathbf{i}x_4^2 + y_4 + \mathbf{i}y_5 + \mathbf{i}y_6 + y_6^2 + x_8^2 + y_8 + y_8^2, \\ \mathbf{i}x_4^2 + y_4 + \mathbf{i}y_5 + \mathbf{i}y_6 + y_6^2 + x_8^2 + y_8 + y_8^2, \\ x_4 + \mathbf{i}x_4^2 + y_4 + \mathbf{i}^2 y_4^2 + \mathbf{i}^2 y_5 + \mathbf{i}y_5^2 + x_6 + \mathbf{i}x_6^2 + y_6 + \mathbf{i}^2 y_6^2 + x_8 + y_8 + \mathbf{i}y_8^2, \\ x_4, y_4, \mathbf{i}^2 y_5 + y_5^2, y_5, x_6, y_6, \mathbf{i}^2 x_8 + \mathbf{i}x_8^2 + \mathbf{i}y_8^2, x_8 + \mathbf{i}x_8^2 + \mathbf{i}y_8^2, x_8, y_8, 0, 0 \end{aligned}$$

with $x_{41} = y_{42} = x_{61} = y_{62} = 0$. Also, by $(40, c_1)$, $(P_6P_5 + (P_6P_5)^2)(v_{16}) = v_{16}$, i.e. $x_{81} = y_{61}$ and $y_{82} = x_{62}$. Consider now, the vector $w_6 \in W_8$ having coordinates

$$\begin{aligned} (\mathbf{i}x_4^2 + y_4 + \mathbf{i}y_4^2 + \mathbf{i}y_5^2 + \mathbf{i}x_6^2 + \mathbf{i}^2x_8 + \mathbf{i}^2x_8^2, \\ x_4 + \mathbf{i}y_4^2 + \mathbf{i}^2y_5 + \mathbf{i}y_5^2 + \mathbf{i}x_6^2 + y_6 + \mathbf{i}^2y_6^2 + \mathbf{i}^2x_8 + \mathbf{i}^2x_8^2 + \mathbf{i}y_8 + y_8^2, \\ \mathbf{i}x_4^2 + \mathbf{i}y_4^2 + \mathbf{i}^2y_5 + \mathbf{i}^2y_5^2 + \mathbf{i}x_6^2 + y_6 + \mathbf{i}^2x_8 + \mathbf{i}^2x_8^2, \\ \mathbf{i}x_4^2 + \mathbf{i}y_4^2 + \mathbf{i}^2y_5 + \mathbf{i}^2y_5^2 + \mathbf{i}y_6^2 + x_8 + x_8^2 + \mathbf{i}^2y_8 + \mathbf{i}y_8^2, 0, 0, \\ x_4 + \mathbf{i}x_4^2 + \mathbf{i}y_4^2, y_4 + \mathbf{i}y_4^2, \mathbf{i}y_5 + y_5^2, \mathbf{i}^2y_5 + y_5^2, \mathbf{i}y_6 + y_6^2, x_6 + \mathbf{i}^2y_6 + \mathbf{i}y_6^2, \\ \mathbf{i}^2y_6 + \mathbf{i}y_6^2 + \mathbf{i}^2x_8 + \mathbf{i}^2x_8^2 + \mathbf{i}^2y_8 + \mathbf{i}y_8^2, x_6 + \mathbf{i}^2y_6 + \mathbf{i}y_6^2 + x_8 + x_8^2 + y_8 + \mathbf{i}^2y_8^2, \\ \mathbf{i}x_6^2 + \mathbf{i}^2y_6 + \mathbf{i}y_6^2 + x_8 + x_8^2 + y_8 + \mathbf{i}^2y_8^2, y_6 + \mathbf{i}^2y_6^2 + x_8 + x_8^2 + \mathbf{i}y_8 + \mathbf{i}^2y_8^2, 0, 0. \end{aligned}$$

Looking at (38), we see that $(id_V + P_6P_1)(w_6) = v_{16}$; thus we can make p_6p_1 of order 2 by replacing u_6 by $u_6 + w_6$. Notice that P_6 and $P_6P_5 + (P_6P_5)^2$ leave w_6 fixed and this guarantees that the conditions $p_6^2 = 1_G$ and $(p_6p_5)^3 = 1_G$ still hold.

As v_{26} is contained in $W_8 \cap \text{Fix}(P_2) \cap \text{Fix}(P_6)$ by Lemma 4.3.3,*c*, v_{26} has cordinates $(\mathbf{i}^2 x_4 + x_4^2 + x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 y_8 + y_8^2, \mathbf{i} x_4^2 + \mathbf{i}^2 x_5^2 + y_6^2 + y_8, \mathbf{i}^2 x_4 + x_4^2 + x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 y_8 + y_8^2, \mathbf{i}^2 x_4 + \mathbf{i} x_4^2 + \mathbf{i} x_4^2 + \mathbf{i} y_6^2 + y_8 + y_8^2, \mathbf{i} x_4, x_4 + \mathbf{i} x_4^2, x_4, x_4 + \mathbf{i} x_4^2, x_5, \mathbf{i}^2 x_5, 0, y_6, \mathbf{i}^2 y_8^2, \mathbf{i}^2 y_8, \mathbf{i} y_8 + \mathbf{i} y_8^2, y_8, 0, 0),$

where $x_{51} = x_{52}$ and $y_{61} = 0$. Also $(40, c_2, e)$ give $y_{81} = 0$ and $x_{51} = y_{62} = y_{82}$, so

 $v_{26} = ((\mathbf{i}(a_{26} + b_{26}), b_{26} + \mathbf{i}a_{26}, \mathbf{i}(a_{26} + b_{26}), a_{26}, \mathbf{i}a_{26} + \mathbf{i}^2b_{26}),$

 $\mathbf{i}^2(a_{26}+b_{26}), a_{26}+\mathbf{i}b_{26}, \mathbf{i}^2(a_{26}+b_{26}), \mathbf{i}^2c_{26}, \mathbf{i}c_{26}, \mathbf{0}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, \mathbf{0}, \mathbf{0}).$ Now the vectors

 $w_2 = (0, 0, 0, 0, 0, 0, 0, 0, \mathbf{i}c_{26}, c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, c_{26}, 0, 0, 0, 0),$

$$w_6 = (b_{26}, \mathbf{i}a_{26} + \mathbf{i}^2 b_{26}, a_{26}, \mathbf{i}(a_{26} + b_{26}), \mathbf{i}a_{26} + \mathbf{i}^2 b_{26}, \mathbf{i}^2(a_{26} + b_{26}), 0, \dots, 0),$$

fulfill $(id_V + P_6)(w_2) + (id_V + P_2)(w_6) = v_{26}$ and a replacement of u_2 by $u_2 + w_2$ and u_6 by $u_6 + w_6$ yields $(p_6p_2)^2 = 1_G$. Also $w_2 \in \text{Fix}(P_2) \cap \text{Fix}(P_2P_1 + (P_2P_1)^2)$, whereas $w_6 \in \text{Fix}(P_6) \cap \text{Fix}(P_6P_5 + (P_6P_5)^2) \cap \text{Fix}(P_6P_1)$, or the conditions $p_2^2 = (p_2p_1)^3 = p_6^2 = (p_6p_5)^3 = (p_6p_1)^2 = 1_G$ are preserved. Unfortunately $P_3(w_2) \notin \text{Fix}(P_3P_2 + (P_3P_2)^2)$, thus we have to restore (39, c_2). This can be done by replacing u_3 by $u_3 + w_3$ with

 $w_3 = (\mathbf{i}c_{26}, c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, \mathbf{i}c_{26}, c_{26}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).$

As we made v_{16} zero, $(40, b_3)$ forces v_{36} to be stable under P_1 . Also, since $v_{26} = 0_V$, condition (40, d) yields $v_{36} \in \text{Fix}(P_3P_2 + (P_3P_2)^2)$, and this occurs just if $v_{36} = 0$. Likewise $v_{46} \in \text{Fix}(P_1)$ by $(40, b_4)$, hence

$$v_{26} = (\mathbf{i}^2 x_3 + \mathbf{i} x_3^2 + \mathbf{i}^2 y_3 + y_3^2, \mathbf{i} x_3 + \mathbf{i}^2 x_3^2 + \mathbf{i}^2 y_3 + \mathbf{i}^2 y_3^2, \mathbf{i}^2 x_3 + \mathbf{i} x_3^2 + \mathbf{i} y_3, \mathbf{i}^2 x_3 + \mathbf{i} x_3^2 + \mathbf{i} y_3, \mathbf{i}^2 x_3 + \mathbf{i} x_3^2 + \mathbf{i} y_3, \mathbf{i}^2 x_3, y_3, 0, \dots, 0).$$

Also $v_{46} \in \text{Fix}(P_6)$ by Lemma 4.3.3,*c*, so $y_3 = \mathbf{i}^2 x_3 + \mathbf{i}^2 x_3^2$. Besides by (40, a_{24}) it follows $P_2(v_{46}) = v_{46}$, which means $x_3 = 0$ and then $v_{46} = 0$. Thus p_1, \ldots, p_6 generate a translation complement in H_8 isomorphic to $\mathbf{A_8}$, i.e. the extension (30) splits.

Let m = 7. Thanks to Lemma 4.3.3, d, the vector v_{17} has coordinates

$$(x_{4} + \mathbf{i}x_{5}^{2} + \mathbf{i}^{2}x_{6} + \mathbf{i}^{2}x_{6}^{2} + y_{6} + y_{6}^{2} + y_{7} + \mathbf{i}x_{9} + x_{9}^{2} + y_{9} + \mathbf{i}^{2}y_{9}^{2},$$

$$\mathbf{i}x_{4}^{2} + x_{5} + \mathbf{i}^{2}x_{6} + \mathbf{i}^{2}x_{6}^{2} + \mathbf{i}y_{6}^{2} + \mathbf{i}y_{7}^{2} + \mathbf{i}x_{9} + x_{9}^{2} + \mathbf{i}^{2}y_{9} + \mathbf{i}y_{9}^{2},$$

$$x_{4} + \mathbf{i}^{2}x_{5} + \mathbf{i}^{2}x_{5}^{2} + \mathbf{i}x_{6} + \mathbf{i}y_{6}^{2} + \mathbf{i}^{2}y_{7}^{2} + \mathbf{i}x_{9} + x_{9}^{2} + \mathbf{i}y_{9} + \mathbf{i}y_{9}^{2},$$

$$\mathbf{i}x_{5} + \mathbf{i}^{2}x_{6} + \mathbf{i}y_{6}^{2} + \mathbf{i}y_{7}^{2} + \mathbf{i}x_{9} + \mathbf{i}^{2}x_{9}^{2} + y_{9} + \mathbf{i}y_{9}^{2},$$

$$\mathbf{i}^{2}x_{4} + \mathbf{i}^{2}x_{4}^{2} + x_{5}^{2} + \mathbf{i}^{2}x_{6}^{2} + \mathbf{i}y_{6}^{2} + \mathbf{i}^{2}y_{7} + y_{7}^{2} + \mathbf{i}x_{9}^{2} + \mathbf{i}^{2}y_{9}^{2} + \mathbf{i}^{2}y_{9}^{2},$$

$$x_{4} + \mathbf{i}x_{4}^{2} + \mathbf{i}x_{5}^{2} + \mathbf{i}x_{6} + \mathbf{i}^{2}y_{6} + \mathbf{i}y_{6}^{2} + y_{7} + \mathbf{i}^{2}y_{7}^{2} + x_{9} + \mathbf{i}x_{9}^{2} + y_{9}, x_{4}, \mathbf{i}^{2}x_{4} + \mathbf{i}^{2}x_{4}^{2}, x_{5},$$

$$x_{5} + \mathbf{i}x_{5}^{2}, x_{6}, y_{6}, \mathbf{i}y_{7} + y_{7}^{2}, y_{7}, \mathbf{i}^{2}x_{9} + \mathbf{i}^{2}y_{9}, \mathbf{i}^{2}x_{9} + x_{9}^{2} + y_{9} + \mathbf{i}y_{9}^{2}, x_{9}, y_{9}).$$

with $x_{61} = x_{62}$ and $y_{61} = 0$. Besides, by (40, c_1), $(P_7P_6 + (P_7P_6)^2)(v_{17}) = v_{17}$, which means $y_{91} = y_{71} + y_{72} + x_{91} + x_{92}$ and $y_{92} = y_{71} + x_{92}$. Let

$$\begin{split} w_7 &:= (x_4 + x_4^2 + x_5 + \mathbf{i} x_5^2 + \mathbf{i} x_6 + x_6^2 + y_6 + y_6^2 + \mathbf{i}^2 y_7^2 + x_9 + \mathbf{i}^2 x_9^2, \\ x_4 + \mathbf{i} x_4^2 + x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 x_6 + \mathbf{i} x_6^2 + y_6 + y_6^2 + \mathbf{i} y_7 + \mathbf{i}^2 y_7^2 + \mathbf{i} x_9^2, \\ x_4 + \mathbf{i}^2 x_5 + \mathbf{i}^2 x_5^2 + \mathbf{i}^2 x_6 + \mathbf{i} x_6^2 + y_6 + y_6^2 + y_7 + \mathbf{i}^2 x_9^2, \\ \mathbf{i} x_5 + x_6 + \mathbf{i}^2 x_6^2 + y_6 + y_6^2 + \mathbf{i}^2 y_7 + y_7^2 + \mathbf{i} x_9^2, 0, 0, \mathbf{i}^2 x_4 + x_4^2, \\ \mathbf{i} x_4 + \mathbf{i} x_4^2, \mathbf{i} x_5^2, x_5, \mathbf{i} y_6 + \mathbf{i} y_6^2, \mathbf{i}^2 x_6 + \mathbf{i} x_6^2 + \mathbf{i} y_6 + \mathbf{i} y_6^2, \mathbf{i}^2 y_7, \mathbf{i} y_7, \\ y_7^2 + x_9 + \mathbf{i}^2 x_9^2, \mathbf{i}^2 y_7 + \mathbf{i} y_7^2 + \mathbf{i} x_9 + \mathbf{i} x_9^2, y_7^2 + x_9^2, \mathbf{i} y_7 + \mathbf{i}^2 y_7^2 + \mathbf{i} x_9). \end{split}$$

We have $w_7 \in W_9$ and $(id_V + P_7P_1)(w_7) = v_{17}$. Thus we can make p_7p_1 of order 2 by replacing u_7 by $u_7 + w_7$. Notice that w_7 is fixed by both P_7 and $P_7P_6 + (P_7P_6)^2$, so that the conditions $p_7^2 = 1_G$ and $(p_7p_6)^3 = 1_G$ are both preserved.

Consider now the vector $v_{27} \in W_9 \cap \operatorname{Fix}(P_2) \cap \operatorname{Fix}(P_7)$ having coordinates

$$\begin{aligned} (\mathbf{i}^2 x_4 + \mathbf{i}^2 y_4 + y_4^2 + \mathbf{i} x_5 + \mathbf{i} y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i} y_7 + \mathbf{i} y_9^2, \, \mathbf{i} x_4^2 + y_4 + \mathbf{i} y_4^2 + \mathbf{i}^2 x_5^2 + \mathbf{i} y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i}^2 y_7^2 + \mathbf{i}^2 y_9, \\ x_4 + x_4^2 + \mathbf{i} y_4 + \mathbf{i}^2 y_4^2 + \mathbf{i} y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i}^2 y_7 + \mathbf{i} y_7^2 + \mathbf{i} y_9 + \mathbf{i}^2 y_9^2, \\ \mathbf{i} x_4^2 + y_4 + \mathbf{i} y_4^2 + \mathbf{i}^2 x_5^2 + \mathbf{i} y_6 + \mathbf{i}^2 y_6^2 + \mathbf{i}^2 y_7^2 + \mathbf{i}^2 y_9, \, x_4 + x_4^2 + y_4^2, \\ x_4 + \mathbf{i} x_4^2 + \mathbf{i}^2 y_4 + y_4^2, \, x_4, \, y_4, \, x_5, \, \mathbf{i}^2 x_5, \, \mathbf{i} y_6 + \mathbf{i} y_6^2, \, y_6, \, \mathbf{i} y_7, \, y_7, \, y_9 + \mathbf{i}^2 y_9^2, \, \mathbf{i} y_9, \, y_9), \end{aligned}$$

with $x_{41} = y_{41} = x_{51} = y_{61} = y_{72} = 0$. By (40, c_2 , e) v_{27} is also fixed by P_7P_6 and $P_1P_2 + (P_1P_2)^2$, so it has coordinates

 $v_{27} = (a_{27} + \mathbf{i}b_{27}, a_{27} + \mathbf{i}^2b_{27}, a_{27} + b_{27}, a_{27} + \mathbf{i}^2b_{27}, a_{27} + \mathbf{i}^2b_{27}, \mathbf{i}b_{27} + \mathbf{i}^2a_{27}, \mathbf{i}a_{27}, \mathbf{i}b_{27}, \mathbf{i}b_{27}, \mathbf{i}c_{27}, \mathbf{i}c_{27}, \mathbf{i}d_{27}, \mathbf{i}$

Now, in view of Lemma 4.3.3, c and (40, b_i), we can write the vectors v_{i7} , i > 2, as:

$$v_{37} = (\mathbf{i}a_{37}, \mathbf{a}_{37}, \mathbf{i}a_{37}, \mathbf{i}a_{37}, \mathbf{i}a_{37}, \mathbf{a}_{37}, 0, \dots, 0), v_{47} = (\mathbf{i}^2 a_{47}, \mathbf{i}^2 a_{47}, \mathbf{i}a_{47}, \mathbf{i}^2 a_{47}, \mathbf{i}a_{47}, 0, \dots, 0), v_{57} = (\mathbf{i}a_{57}, a_{57}, \mathbf{i}a_{57}, \mathbf{i}a_{57}, \mathbf{i}a_{57}, 0, \dots, 0).$$

These vectors are related to v_{27} via $(40, a_{2i})$ and (40, d); in particular we have

 $c_{27} = d_{27} = 0, \quad a_{37} = a_{27} + b_{27}, \quad a_{47} = a_{27}, \quad a_{57} = a_{27} + b_{27}.$ (41)

Now $w_7 = (a_{27} + \mathbf{i}^2 b_{27}, \mathbf{i} a_{27} + \mathbf{i}^2 b_{27}, \mathbf{i} b_{27}, a_{27} + \mathbf{i}^2 b_{27}, a_{27} + \mathbf{i}^2 b_{27}, \mathbf{i} b_{27} + \mathbf{i}^2 a_{27}, 0, \dots, 0)$ fulfills $(id_V + P_2)(w_7) = v_{27}$, so the replacement of u_7 by $u_7 + w_7$ makes $p_7 p_2$ of order 2. Notice that $P_7(w_7) = P_7 P_1(w_7) = (P_7 P_6 + (P_7 P_6)^2)(w_7) = w_7$ and this ensures that the already achieved conditions on p_i are not destroyed. By (41) $v_{27} = 0$ yields now $v_{i7} = 0$ for all i > 2 and we conclude that the extension (30) splits.

Finally, let m = 4. By Lemma 4.3.3, a, b, we may take p_1 of order 3 and, for l > 1, p_l of order 2 with $(p_l p_{l-1})^3 = 1_G$, $u_l \in \text{Fix}(P_l)$ and $P_l(u_{l-1}) + u_l \in \text{Fix}(P_l P_{l-1} + (P_l P_{l-1})^2)$. Thus we have only to transform to zero the vectors $v_{ij} = (p_j p_i)^2 \in W_6$ with |j-i| > 1, being careful to retain the achieved conditions. We have to proceed analogously to the case m > 5. By Lemma 4.3.3, c, d, it turns out that v_{24} is fixed by P_2 and P_4 , whereas $(P_i P_1)(v_{1i}) = (P_1 + P_1^2)(v_{1i}) = v_{1i}$ (i = 3, 4). Thus we can represent the vectors v_{ij} as

$$\begin{split} v_{13} &= (\mathbf{i}^2 a_{13}^2 + \mathbf{i} b_{13}^2 + \mathbf{i} c_{13}^2, 0, \, \mathbf{i}^2 a_{13} + b_{13} + c_{13}, \, \mathbf{i} a_{13} + b_{13} + \mathbf{i} c_{13}, \, \mathbf{i} a_{13}^2 + \mathbf{i}^2 b_{13}^2 + \mathbf{i} c_{13}^2, \\ a_{13}^2 + b_{13}^2, \, a_{13}, \, b_{13}, \, \mathbf{i} a_{13}^2, \, \mathbf{i} a_{13}^2 + \mathbf{i}^2 b_{13}^2, \, c_{13}, \, \mathbf{i} c_{13}), \\ v_{14} &= (\mathbf{i} a_{14}^2 + \mathbf{i} b_{14}^2 + c_{14}, \, \mathbf{i} a_{14}^2 + \mathbf{i} b_{14}^2 + c_{14}, \, a_{14}, \, a_{14} + \mathbf{i} b_{14} + \mathbf{i}^2 c_{14}^2, \, \mathbf{i} a_{14}^2 + b_{14}^2 + \mathbf{i}^2 c_{14}, \\ \mathbf{i} a_{14}^2 + \mathbf{i}^2 b_{14}^2 + \mathbf{i} c_{14}, \, b_{14}, \, b_{14}, \, c_{14}, \, \mathbf{i} a_{14}^2 + \mathbf{i}^2 b_{14}^2 + \mathbf{c}_{14}, \, a_{14} + \mathbf{i}^2 b_{14}^2 + \mathbf{i}^2 b_{14} + \mathbf{i} c_{14}^2, \\ \mathbf{i}^2 a_{14} + \mathbf{i} b_{14} + \mathbf{i} c_{14}^2), \\ v_{24} &= (a_{24} + b_{24}, \, \mathbf{i} (a_{24} + b_{24}), \, \mathbf{i} (a_{24} + b_{24})^2, \, 0, \, a_{24}, \, \mathbf{i} a_{24}, \, \mathbf{i} a_{24}^2, \, 0, \, b_{24}, \, \mathbf{i} b_{24}, \, \mathbf{i} b_{24}^2, \, 0). \end{split}$$

Furthermore, it follows from [2, section 1] that the vectors v_{ij} fulfill the conditions

a)
$$(id_V + P_4P_3 + (P_4P_3)^2)(v_{13} + v_{14}) = 0_V,$$

b) $(id_V + P_1P_2 + (P_1P_2)^2)(P_1(v_{14}) + v_{24}) = 0_V.$
(42)

We can annihilate each of v_{ij} successively. Adding $w_4 = (\mathbf{i}^2 a_{24} + \mathbf{i} b_{24}, \mathbf{i}^2 a_{24} + b_{24}, \mathbf{i}^2 a_{24}^2 + b_{24}^2, \mathbf{i} a_{24}^2 + \mathbf{i} b_{24}^2, a_{24} + b_{24}, \mathbf{i} a_{24} + \mathbf{i} b_{24}, \mathbf{i} b_{24}^2, 0, b_{24}, 0, 0, \mathbf{i} b_{24}^2)$ to u_4 we make $v_{24} = 0$ (in fact, $(id_V + P_2)(w_4) = v_{24}$) and this implies, with the aid of $(42, b), c_{14} = \mathbf{i}^2 a_{14}^2 + b_{14}^2$. Adding the vector w_1 with coordinates $(\mathbf{i} a_{14}^2 + b_{14}^2, \mathbf{i}^2 b_{14}^2, b_{14}, \mathbf{i}^2 a_{14} + \mathbf{i} b_{14}, \mathbf{i}^2 a_{14}^2 + \mathbf{i}^2 b_{14}^2, \mathbf{i}^2 a_{14}^2 + \mathbf{i} b_{14}^2, b_{14}, 0, a_{14}^2 + \mathbf{i} b_{14}^2, \mathbf{i} a_{14}^2 + \mathbf{i}^2 b_{14}^2, 0, 0)$ to u_1 we make $v_{14} = 0$, (in fact, $(id_V + P_4P_1)(P_4(w_1)) = v_{14}$), which implies, together (42, a), $c_{13} = \mathbf{i}a_{13} + \mathbf{i}b_{13}$. Now we can add the vector

$$w_{1} = (\mathbf{i}^{2}b_{13}^{2}, \mathbf{i}a_{13}^{2}, a_{13} + \mathbf{i}^{2}b_{13}, \mathbf{i}^{2}a_{13} + \mathbf{i}b_{13}, \mathbf{i}a_{13}^{2} + \mathbf{i}b_{13}^{2}, \mathbf{i}a_{13}^{2} + b_{13}^{2}, 0, \mathbf{i}a_{13} + \mathbf{i}^{2}b_{13}, a_{13}^{2} + b_{13}^{2}, \mathbf{i}a_{13}^{2} + \mathbf{i}b_{13}^{2}, \mathbf{i}^{2}a_{13} + \mathbf{i}^{2}b_{13}, 0)$$

to u_1 in order to get $v_{13} = 0$ (in fact, $(id_V + P_3P_1)(P_3(w_1)) = v_{13}$). Notice that all of the added vectors w_k do not violate the previous achieved conditions. Thus we can conclude that the extension (30) is in any case splitting. \Box

References

- W. Benz, Vorlesungen über Geometrie der Algebren, Springer-Verlag, Berlin Heidelberg New York 1973.
- [2] N. Blackburn, The extension theory of the symmetric and alternating groups, Math. Z. 117 (1970), 191 - 206.
- [3] P.J. Cameron, *Permutation groups*, in Handbook of Combinatorics, Vol. 1, Eds. R.L. Graham, M. Grötschel and L. Lovász, Elsevier Science B.V., Amsterdam, MIT Press, Cambridge, MA, 1995.
- [4] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press Oxford 1985;
- [5] L.E. Dickson, *Linear groups*, Teubner, Leipzig 1901;
- [6] M. Hall, On a theorem of Jordan, Pacific J. Math. 4 (1954), 219 226.
- [7] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Ded. 2 (1974), 425 - 460.
- [8] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg New York 1967.
- [9] W.M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 no. 1 (1985), 66 - 74.
- [10] H. Kurzweil, B. Stellmacher, Theorie der endlichen Gruppen, Springer-Verlag, Berlin, Heidelberg, New York 1998.
- [11] M.W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 no. 3 (1987), 477 516.

Authors' address:

Dip. Matematica e applicaz.		Mathematische Institut
Universitá di Palermo,		Universität Erlangen-Nürnberg
Via Archirafi 34,		Bismarchstr. 1 $\frac{1}{2}$
I-90123 Palermo, Italy		D-91054 Erlangen, Germany
cg@math.unipa.it	musumeci@math.unipa.it	$strambach@mi.uni\-erlangen.de$