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Abstract

We classify imprimitive groups acting highly transitively on blocks and
satisfying conditions common in geometry. They can be realized as suitable
subgroups of twisted wreath products.

In contrast to the theory of primitive permutation groups, the literature for
imprimitive groups appears needy. The best known construction principle for
imprimitive groups is given by wreath products of two groups U and Ḡ.

Suppose that U is a vector space and let V be the direct sum
⊕t

i=1 Ui of t copies
of U . If Ḡ is a subgroup of the symmetric group St acting transitively on the set
{U1, . . . , Ut} of components of V and α : ḠUt → GL(U) is a linear representation
of the stabilizer in Ḡ of the component Ut, then the twisted wreath product
G = U wrα Ḡ may be seen as a group of affine mappings acting transitively on a
suitable system of affine subspaces of V and having t blocks there. The abelian
group T consisting of all translations is the corresponding inertial group, i.e. the
normal subgroup of G leaving each block fixed. Restricting to a Ḡ-invariant
subspace W of V , for which there is an integer m ≤ t such that the projection
W −→ ⊕im

r=i1 Ur is an isomorphism with respect to any m-subset of {1, . . . , t},
we obtain a subgroup of G having the same system of blocks as G and inertial
group given by the translations corresponding to W . In particular, the inertial
group induces a regular action on each block and acts sharply transitively on
m-tuples of independent points, i.e. points no two of which lying in the same
block. If the representation α is transitive, then U is finite and the stabilizer of
a block is 2-transitive on it.
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Conversely, let G be an imprimitive permutation group having a finite number
t of blocks and assume that the stabilizer G∆ in G of a block ∆ acts 2-transitively
on it. Suppose that the inertial group N induces a sharply transitive group on
each block and moves uniquely any m-tuple of independent points onto any other
one of the same type, for some m ≤ t. Then each block ∆ is a vector space of
finite dimension over a prime field and G can be embedded into a twisted wreath
product ∆ wrα G/N , where α is a transitive linear representation of G∆/N on ∆.

In geometry imprimitive actions play an important role. For instance, the
group of automorphisms of a chain geometry ([1]) is an imprimitive group oper-
ating sharply transitively on triples of independent points, such that the stabilizer
of a block is 2-transitive on it. This motivated us to study imprimitive permu-
tation groups which are highly transitive on blocks and satisfy conditions com-
mon in geometry. In particular, we classify all imprimitive permutation groups
G = (G, Ω) fulfilling the following conditions for some integer m > 3:

i) the inertial group N induces a sharply transitive action on each block;

ii) given two ordered m-tuples (X1, . . . , Xm), (Y1, . . . , Ym) ∈ Ωm, Xi and Yi

lying in the same block ∆i, there is just one element in N moving (X1, . . . , Xm)
onto (Y1, . . . , Ym), provided ∆1, . . . , ∆m are distinct blocks;

iii) the stabilizer in G of a block has a 2-transitive action on it;

iv) the group G/N is finite and acts m-transitively on the set Ω̄ of blocks.

We represent these groups as subgroups of twisted wreath products. Using
Kantor’s, Hering’s and Liebeck’s results on transitive linear representations of
finite simple groups ([7], [9] and [11]), we prove that the size of a block is 2, 3,
4, or 16 and the permutation group Ḡ = (G/N, Ω̄) is either the symmetric group
Sm, or the symmetric group Sm+1 or the alternating group Am+2.

If each block contains at most 3 points then Ḡ ' Sm, or Ḡ ' Sm+1; in the
latter case, if G does not split over the inertial group N , then any block contains
exactly 2 points and m is odd.

If each block has 4 points then either m = 4 and Ḡ ' S4, or m = 5 and
Ḡ ' S5; in both cases G is a splitting extension of N by Sm.

If each block has 16 points, then either m = 4, 5, 6, 7 and Ḡ ' Am+2, or
m = 6, 7 and Ḡ ' Sm or m = 5 and Ḡ ' S6. Moreover, the group G splits always
over N , apart from the last case where a further non-splitting extension occurs.

A tool for our classification is Blackburn’s description of the extensions of a
finite elementary abelian p-group by symmetric or alternating groups ([2]).
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1.1 Translation systems of imprimitivity. Let G = (G, Ω) be an imprimi-
tive permutation group and let Ω̄ be the corresponding system of blocks. Points
{Xi}i∈I of Ω are called independent if there is no block in Ω̄ containing any two of
them. We shall say that Ω̄ is a translation system of imprimitivity of dimension
m (≤ | Ω̄ | ) if the inertial group N of Ω̄, i.e. the normal subgroup of G leaving
each block of Ω̄ fixed, fulfills the following conditions 1.1.1 and 1.1.2:

1.1.1 The group N induces on any block ∆ ∈ Ω̄ a sharply transitive group.

1.1.2 Let ∆1, . . . , ∆m ∈ Ω̄ be distinct blocks and let Xi, Yi ∈ ∆i, i = 1, . . . , m.
Then, there is just one element g ∈ N such that g(Xi) = Yi for all i = 1, . . . , m.

As a consequence of these two conditions we have:

1.1.3 Let X1, . . . , Xm be independent points and denote by N i the stabilizer in
N of each of X1, . . . , Xi−1, Xi+1, . . . , Xm. Then, N = N1 × . . . ×Nm.

Proof. Let g ∈ N . There is just one element g1 ∈ N1 such that g1(X1) = g(X1),
which means that g−1

1 g fixes X1. For 1 ≤ j < m, assume there is a unique

element gj ∈ N j such that
(∏j

i=1 gi

)−1
g fixes X1, . . . , Xj. Then there is just one

element gj+1 ∈ N j+1 with gj+1(Xj+1) =
(∏j

i=1 gi

)−1
g(Xj+1), i.e.

(∏j+1
i=1 gi

)−1
g

fixes X1, . . . , Xj+1. As the stabilizer in N of each of X1, . . . , Xm is trivial, the
inductive argument proves that g can uniquely be written as g1 . . . gm. 2

1.1.4 Let the permutation group Ḡ = (G/N, Ω̄) be sharply m−transitive. Then,
G operates sharply transitively on the set of m−tuples of independent points.

Proof. Let X1, . . . , Xm and Y1, . . . , Ym be m−tuples of independent points.
Since Ḡ is m−transitive, there exists a coset gN ∈ G/N such that the block
containing g(Xi) contains Yi, as well (i = 1, . . . , m). Then there exists h ∈ N
such that hg(Xi) = Yi. Now, the sharply transitivity follows from the fact that
the stabilizer of the points X1, . . . , Xm is trivial. 2

1.1.5 Assume that Ω̄ is finite and the stabilizer G∆ in G of a block ∆ acts
2-transitively on it. Then G is finite.

Proof. Let X ∈ ∆. Since NX leaves every point in ∆ fixed, the finite group
GX/NX ' G∆/N acts transitively on ∆ \ {X}, hence we have that ∆ is finite.
Thus Ω and G are finite. 2
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2.1 Imprimitive groups and wreath products. Let U be a vector space of
finite dimension n over a field K, V =

⊕t
i=1 Ui be the direct sum of t copies of

U and Ḡ be a transitive subgroup of the symmetric group St with respect to the
natural action on the components Ui of V . Assume we are given a homomorphism
α : h 7→ αh from the stabilizer ḠUt of Ut into the general linear group GL(U)
of U . We can define an embedding of Ḡ into GL(V ) as follows. Starting with a
basis e1, . . . , en of U , we have a basis

B = {e11, . . . , e1n, . . . . . . , et1, . . . , etn}
of V , where eij has ej as the i-th component and 0 as any other component.
Also, fix an element si ∈ Ḡ with si(Ut) = Ui (hence, S = {s1, . . . , st} is a set of
representatives of the coset space Ḡ/ḠUt); in particular, choose st = 1Ḡ. For any
g ∈ Ḡ and i = 1, . . . , t, the transformation

hg, i := s−1
g(i)gsi (1)

leaves the component Ut stable. Thus putting

g̃(eij) :=
∑n

r=1 eg(i)rar if αhg, i
(etj) =

∑n
r=1 etrar,

we have a linear mapping g̃ ∈ GL(V ). Now the identity hg2g1, i = hg2, g1(i)hg1, i

says that g 7→ g̃ provides an embedding Ḡ ↪→ GL(V ).
It has to be emphasized that the (tn× tn)-matrix representing g̃ with respect

to the basis B is obtained as follows: 1) take the permutation (t × t)-matrix
corresponding to g; 2) replace the entry 1 at the place (g(i), i) by the (n × n)-
matrix representing αhg, i

(with respect to the basis e1, . . . , en of U).
Consider now the group of affine transformations

G̃ :=
{
x 7→ v + g̃(x) : v ∈ V, g ∈ Ḡ

}
.

G̃ acts transitively on the set Ω :=
⋃t

i=1 {x + Vi : x ∈ V }, where Vi =
⊕

r 6=i Ur.
Then the subsets ∆i := {x + Vi : x ∈ V } are blocks for a system of imprimitivity
Ω̄ having the group of translations of V as the inertial group. The fact that⋂t

i=1 Vi = 0 says that Ω̄ is a translation system of imprimitivity of dimension t.

2.1.1 Remark. The permutation group G̃ = (G̃, Ω) is essentially the twisted
wreath product Kn wrα Ḡ of U ' Kn by Ḡ over S and α. If it is clear what
linear representation we are using, we write simply Kn wr Ḡ. Changing the set of
representatives the action on the set of blocks remains the same, but the action
induced on a block changes according to (1) ([10, p. 86]).

2.1.2 Let W be a Ḡ-stable subspace of V . Then
{
x 7→ w + g̃(x) : w ∈ W, g ∈ Ḡ

}

provides a subgroup H = (Kn wr Ḡ)|W of Kn wr Ḡ. Clearly if W projects onto each
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component Uj , the subgroup H is transitive. Furthermore, if there is an integer m ≤ t
such that W is m-transversal with respect to the given decomposition

⊕t
i=1 Ui of V ,

i.e. if the projection W −→ ⊕im
r=i1

Ur is an isomorphism for any m-subset {i1, . . . , im}
of {1, . . . , t} (hence dimW = mn), then Ω̄ is a translation system of imprimitivity of
dimension m for H. The stabilizer of a block is 2-transitive on it just if α is transitive.

2.2 Now we want discuss the converse. So let G = (G, Ω) be a transitive
permutation group endowed with a finite translation system of imprimitivity
Ω̄ = {∆1, . . . , ∆t} of dimension m and assume the stabilizer G∆i

of a block
∆i to be 2-transitive on it. According to 1.1.5, G must be finite.

Let | ∆i | = k. Then | Ω | = tk and we may regard G as a subgroup of Stk;
more precisely, G is contained in the subgroup F preserving Ω̄. Let M and N be
the inertial groups in F and G, respectively, corresponding to Ω̄; of course (M, Ω)
is isomorphic to the direct product of t copies of Sk. Let Xi ∈ ∆i; then there is in
M a subgroup Ui acting on ∆i as N/NXi

and leaving any other block point-wise
fixed. Clearly N is contained in the direct product V = U1 × . . . × Ut.

Since Ui acts sharply transitively on ∆i, we can identify ∆i with the factor
group V/Vi (' Ui), where Vi denotes the product of all Ur with r 6= i. As GXi

/NXi

normalizes N/NXi
, we have that Ui is normalized by GXi

, so the transitive action
of GXi

on ∆i \ {Xi} yields a transitive group of automorphisms (' GXi
/NXi

'
G∆i

/N) of the finite group V/Vi. Consequently V/Vi ' Ui has to be a vector space
GF (p)n over the prime field GF (p) for some prime p and integer n. Furthermore,
there is a transitive linear representation α : G∆t/N −→ GL(Ut) ' GL(n, p) and
the twisted wreath product G̃ := GF (p)n wrα G/N , with V the associated vector
space, can be considered. The group N is then the subgroup of translations of
G̃ corresponding to a subspace W which is m−transversal with respect to the
decomposition V =

⊕t
i=1 Ui. Then G/N yields a subgroup of GL(V ) normalizing

N and, as an extension of a group of translations of V by G/N , the group G can
be viewed as a subgroup of affinities of G̃. Thus we have

2.2.1 Theorem. Let G = (G, Ω) be a transitive permutation group endowed
with a finite translation system of imprimitivity Ω̄ = {∆1, . . . , ∆t} of dimension
m ≤ t and assume that the stabilizer G∆i

of a block ∆i acts 2-transitively on ∆i.
Then G is finite and the inertial group N of Ω̄ is an elementary abelian p-

group for some prime p. Thus there exist an integer n > 0, a transitive linear
representation α : G∆t/N −→ GL(n, p) and an embedding

ι : G ↪→ G̃ = GF (p)n wrα G/N

of permutation groups such that ι(N) is a normal subgroup of translations of G̃
corresponding to a subspace W of dimension mn of the vector space V associated
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with G̃. In particular, there exists a decomposition of V with respect to which W
is m-transversal. Also G splits over N just if ι(G) = (GF (p)n wrα G/N)|W . 2

2.3 If we are given an integer t > 1, a field K and a linear representation
α : St−1 → GL(Kn) of the symmetric group St−1, the twisted wreath product
Kn wrα St is the semidirect product of its translation group V ' Knt by a com-
plement isomorphic to St of linear mappings in GL(Knt). The easiest way to
represent this complement is to take all the powers of the cycle σ = (1, . . . , t)
as a set of representatives of the coset space St/St−1. Then the linear mapping
corresponding to σ is represented by the block matrix I = (Iij), where

Iij =
{

In if i = σ(j),
0n otherwise,

(2)

where In and 0n are the identity and the null matrix of order n, respectively.
Moreover, for k = 1, . . . , t − 1, the transposition (k k+1) corresponds to the
block matrix Jk = (Jk

ij) having the non-zero blocks defined by

Jk
ii =

{
jk−i if i < k,
jt+k−i if i > k + 1,

, Jk
k k+1 = j, Jk

k+1 k = j−1, (3)

where j = α (1 2 . . . t−2 t−1) and jr = α(r r+1) (r = 1, . . . , t− 2).

2.3.1 Example. In GL(4, 2) ' A8 all subgroups isomorphic to S6 are conjugate
([4, p. 22]) to the symplectic group Sp(4, 2) ([8, p. 227]). Furthermore in the
latter group there is, up to conjugation, just one subgroup isomorphic to S5 acting
transitively on GF (2)4 ([8, p. 176]). More precisely this action is equivalent to
the one of PΓL(2, 4) on GF (2)4 ([4, p. 2]). So the twisted wreath product

G6 := GF (2)4 wrS6

is uniquely determined (up to isomorphisms), if we require double transitive ac-
tion on a block. We shall give a representation over GF (4) of G6.

Write the elements in GF (4) as 0, 1, i, i2. Then the semilinear mappings

j1 : (x, y) 7→ (x2, y2), j2 : (x, y) 7→ (i2x2, iy2),
j3 : (x, y) 7→ (x2 + y2, y2), j4 : (x, y) 7→ (y2, x2)

(4)

generate PΓL(2, 4) as they satisfy the conditions

j2
k = (ju+1ju)

3 = (jujv)
2 = idGF (4)2 (k = 1, 2, 3, 4, u = 1, 2, 3, u− v = 2, 3)

([5, p. 287]). Thus, for t = 6, we may take them as the entries jr in (3). Then

j = j1j2j3j4 : (x, y) 7→ (ix + iy, i2x). (5)
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2.4 If we are given a twisted wreath product K n wrα St, then a twisted wreath
product K n wrα At is also defined by restriction of α to At−1. As a set of repre-
sentatives of the coset space At/At−1 is as well a set of representatives of St/St−1,
the group K n wrα At embeds into K n wrα St. Thus, in view of Remark 2.1.1, re-
placing the set of representatives by the powers of the cycle (1, . . . , t), we obtain
a subgroup of K n wrα St isomorphic to K n wrα At. This subgroup is the semidi-
rect product of the translation subgroup by the group generated by the linear
mappings corresponding to the 3-cycles (l−1 l l+1), l = 2, . . . , t − 1, which are
given by the block matrices Ql = (Ql

ij) having the non-zero blocks defined by

Ql
ii =

{
ql−i if i < l − 1,
qt+l−i if i > l + 1, , Ql

l−1 l+1 = q′q′′, Ql
l l−1 = q′−1, Ql

l+1 l = q′′−1, (6)

where q′ = α (2 3 . . . t−2 t−1), q′′ = α (1 2 . . . t−3 t−2) and qs = α(s−1 s s+1)
(s = 2, . . . , t− 2).

2.4.1 Example. Consider the group

H6 := GF (2)4 wrA6

as a subgroup of G6. In such a case we have

q′ = j2j3j4, q′′ = j1j2j3, qs = js−1js (s = 2, 3, 4). (7)

H6 is uniquely determined as a twisted wreath product when we ask 2-transitivity
on a block. This follows from A5 ' SL(2, 4) ([4, p. 2]), from [8, p. 176] and the
fact that in A8 all subgroups isomorphic to A6 are conjugate ([7, p. 444]).

2.5 The alternating group Ar+2 is generated by elements p1, . . . , pr such that

p3
1 = 1, p2

i = 1 (i > 1),
(pi+1pi)3 = 1 (i < r), (pjpi)2 = 1 (|i− j| > 1)

(8)

([5, p. 289]). Up to isomorphisms, there is just one twisted wreath product

H9 := GF (2)4 wr A9

with 2-transitive action on a block. This group arises using the transitive linear
representation of the stabilizer A8 as GL(4, 2). Then as the generators (8) for
A8 we can take the semilinear mappings of the plane GF (4)2

p1 : (x, y) 7→(ix + x2 + i2y2, i2x2 + iy + iy2), p2 : (x, y) 7→ (x + i2x2 + iy2, ix2 + y + y2),
p3 : (x, y) 7→ (i2x + x2 + iy + y2, i2x2 + iy + iy2), p4 : (x, y) 7→ (x + iy + iy2, i2x + ix2 + y),
p5 : (x, y) 7→ (ix + ix2 + i2y + iy2, x + iy + iy2), p6 : (x, y) 7→ (x + i2x2 + iy, i2x + y + y2).

In particular we may identify p1 with α(1 2 3) and pi with α(1 2)α(i + 1 i + 2) for
i > 1. Since the cycle (1 . . . 9) is in A9, we can use it to represent H9. Thus the
matrices (6) with entries
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q2 = p1, q3 = p 2
1 p2, q4 = p2p3, q5 = p3p4,

q6 = p4p5, q7 = p5p6, q′ = p 2
1 p2p3p4p5p6, q′′ = p1p2p3p4p5

(9)

generate a complement of the translation group of H9. Up to isomorphisms, the
alternating group A6 (resp. A7) has just one transitive linear representation on
the vector space of dimension 4 over GF (2), arising as the restriction to A6 (resp.
A7) of the above representation of A8 as the general linear group GL(4, 2) ([7,
p. 444]). Thus there are unique twisted wreath products

H7 := GF (2)4 wr A7, H8 := GF (2)4 wr A8

acting 2-transitively on a block.
For s < t, a set of representatives of the coset space As/As−1 can be completed

to a set of representatives of At/At−1. Thus, if we are given a twisted wreath
product K n wrαAt, the twisted wreath product K n wrαAs, defined by restricting
α, can be regarded as the stabilizer of t − s blocks in K n wrαAt. Hence, there
are embeddings H7 ↪→ H8 ↪→ H9 which allow one to represent H8 and H7 as the
stabilizers in H9 of one and two blocks, respectively.

3.1 Invariant transversal subspaces. Looking at Theorem 2.2.1, we see that
transversal subspaces (in the sense of 2.1.2) play an important role in representing
a permutation group G = (G, Ω) with a finite translation system of imprimitivity
Ω̄ = {∆1, . . . , ∆t} within the twisted wreath product G̃ = GF (p)n wrα G/N .
The inertial group N of Ω̄ appears as a group of translations of the vector space
associated to G̃, more precisely as the group of translations defined through the
vectors in a m-transversal subspace W of V . It is straightforward that

W =
{(

x1, . . . , xm,
∑m

j=1 fm+1, j(xj), . . . ,
∑m

j=1 ft, j(xj)
)

: xj ∈ GF (p)n
}

,

for suitable linear mappings fi, j ∈ GL(n, p).

3.2 Let G̃ = GF (3)wrα Sm+1 with α the non-trivial representation of Sm on
the 1-dimensional GF (3)-vector space. As in 2.3, take the powers of the cycle
σ = (1 . . . m + 1) to represent a complement isomorphic to Sm+1. Then the
matrix corresponding to σ is the matrix I given by (2), whereas the transposition
(1 m+1) is represented by the matrix J = (Jij), the non-zero entries of which are

Jii = −1 if 2 ≤ i ≤ m, J1 m+1 = Jm+1 1 = ε = (−1)m+1.

I and J generate a complement isomorphic to Sm+1 of the translation group in G̃.
Now we ask whether in V there is a Sm+1-invariant m-transversal subspace, i.e.
a subspace W as in 3.1, with t = m + 1, p = 3, n = 1, which is invariant under
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the action of I and J . Set fi = fm+1, i, then the condition I(W ) = W yields∑m
i=1 f1fi(xi)+

∑m
r=2 fr(xr−1) = xm, i.e. f1fm = idGF (3) and fr = (−1)r+1f r

1 . Hence
(−1)m+1fm+1

1 = idGF (3). Since GL(1, 3) has order 2, the latter equation says

f1 =
{−idGF (3) if m is even,
±idGF (3) if m is odd.

Let f1 = −idGF (3) with m odd. Then from fr = (−1)r+1f r
1 it follows fr = −idGF (3)

for all r, but in such a case J(W ) 6= W . So we have

3.2.1 Lemma. Let α be the non-trivial representation of Sm on the vector line
over GF (3). Then, in the vector space associated with the twisted wreath product
GF (3)wrα Sm+1, the hyperplane

∑m+1
k=1 (−1)m(k+1)xk = 0 is the only subspace which

is both m-transversal and stable under Sm+1. 2

3.3 Let G̃ = GF (2)n wrα Sm+1 and let W be a m-transversal subspace of V as
in 3.1 with t = m + 1 and p = 2. Then W is stable under the action of Sm+1

just if it is stable under the transformations I and Jk defined by (2) and (3). In
particular I(W ) = W gives fi = f i

1 (i = 1, . . . , m) and

fm+1
1 = idGF (2)n , (10)

whereas Jk(W ) = W gives jk = fk
1 jfm−k

1 (k = 1, . . . , m− 1). So

jl−1 = f−1
1 jlf1 (l = 2, . . . , m− 1). (11)

− Let m = 4. The symmetric group S4 has a non-faithful natural representation
as GL(2, 2). As in GL(2, 2) ' S3 there is no element of order 5, in such a case
(10) says f1 = idGF (2)2 . Consequently (11) gives jl−1 = jl, i.e. idGF (2)2 = jl−1jl =
α(l−1 l l+1), but there are no elements of order 3 in kerα ' ZZ2

⊕
ZZ2.

− Let m = 5. We have a faithful representation α : S5 −→ PΓL(2, 4) of S5 as the
collineation group of the plane over GF (4). Then (10) and (11) say

f1 = f : (x, y) 7−→ (ix + iy + iy2, i2x + i2y2), (12)

if we regard V as a vector space over GF (4). Thus we may identify W with the
GF (4)-subspace

∑6
i=1 f i(xi, yi) = 0 of V .

− Let m = 6. There is a faithful representation α : S6 −→ Sp(4, 2) of S6 as the
4-dimensional symplectic group over GF (2). Then we may identify jl = α (l l+1)
with (l l+1) (7 8) because there is just one embedding S6 ↪→ A8 and α is faithful.
Thus (11) may be read in A8 as (l−1 l) (7 8) = f−1

1 (l l+1) (7 8)f1 and we see
that the order of f1 should be 6, a contradiction to (10). Summing up, we have
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3.3.1 Lemma. Let W be a Sm+1-invariant m-transversal subspace of the vec-
tor space associated with GF (2)n wrα Sm+1, where either m = 4 and α(S4) =
GL(2, 2), or m = 5 and α(S5) = PΓL(2, 4), or m = 6 and α(S6) = Sp(4, 2).
Then m = 5 and W is the subspace

∑6
i=1 f i(xi, yi) = 0 with f given by (12). 2

3.4 Consider one of the groups Ht, t = 6, 7, 8 or 9, introduced in 2.4 and 2.5.
We ask an At-invariant (t − 2)−transversal subspace Wt of the vector space Vt

associated with Ht. If we represent each Ht within H9, then Wt has the shape
{(

t−2∑

i=1

fi(zi),
t−2∑

i=1

gi(zi), z1, . . . , zt−2, 0, . . . , 0

)
∈ (GF (2)4)9 : zi ∈ GF (2)4

}
, (13)

with fi, gi ∈ GL(4, 2). Such a subspace Wt exists and can be described by the
following quadratic functions (we regard V9 as a vector space over GF (4)):

f1(x, y) =
{

(i2x + ix 2 + i2y + y 2, ix + i2x 2 + i2y + i2y 2), if t > 6,
(ix + i2y, x + y), if t = 6,

g1(x, y) =
{

(i2x + ix 2 + iy, i2x + i2x 2 + i2y + iy 2), if t > 6,
(ix 2 + iy 2, i2y 2), if t = 6,

f2 = q3f1q
′, g2 = q2g1q

′,
fj = qjfj−1q

′′, gj = qj−1gj−1q
′′ (3 ≤ j ≤ t− 2),

(14)

where q2, . . . , qt−2, q
′, q′′ are the functions (7) or (9) according as whether t = 6 or

t > 6. In fact, one can check that the transformations Ql, given by (6), generating
a complement of the translation group of Ht, leave that subspace invariant.

Actually there are no further possibilities for an At-invariant (t−2)−transversal
subspace of Vt. In order to verify this claim, ask the subspace (13), written over
GF (4), to be stable under each transformation (6) for l = 2, . . . , t− 1, or ask

Ql (fi(zi), gi(zi), 0, . . . , 0, zi, 0, . . . , 0) ∈ Wt (15)

for all zi = (xi, yi) ∈ GF (4)2. In particular we have

a) f1q
′′−1g1 = q′q′′ (i = 1, l = 2),

b) f1q
′−1g1 + f2q

′′−1 = q2f1, g1q
′−1g1 = g2q

′′−1 (i = 1, l = 3),
c) f2 = q3f1q

′, g2 = q2g1q
′ (i = 1, l = 4),

d) ql−1f1 = f1ql−3, ql−2g1 = g1ql−3 (i = 1, l = 5, . . . , t− 1),
e) f1q

′−1g2 = q2f2 (i = 2, l = 3),

(16)

with qs from (7) if t = 6 and from (9) if t > 6. If t = 6, then (16d) give

f1(x, y) = (ax + bx 2 + a′y + b′y 2, i2ax + ibx 2 + ia′y + i2b′y 2),
g1(x, y) = (cx + dx 2 + c′y + d′y 2, icx + id′y 2).

10



From (16b) we infer just two possibilities for g1: either c = c′ 6= 0 = d and d′ = i,
or c = c′ = 0 and d = d′ = i. Assume the first one holds. Then (16a) gives
a = i, b = c 2, a′ = 0, b′ = i2c 2, but such a solution does not satisfy (16b). Thus
c = c′ = 0, d = d′ = i and (16a) says that the functions (14) are the unique
possible instances giving an invariant subspace such as (13).

Let t > 6. Then Equations (16d) force f1 and g1 to take the shape

f1(x, y) =
(
ax + bx 2 + (ia + b)y + i2by 2, i2b 2x + ia 2x 2 + b 2y + (a 2 + ib 2)y 2

)
,

g1(x, y) = (cx + dx 2 + (ic + i2c 2 + d)y + (c + i2d + i2d 2)y 2,

(ic + i2d 2)x + (i2c 2 + d)x 2 + (i2c + ic 2 + i2d + d 2)y + (ic 2 + i2d)y 2).

By (16a) we have c = i(a + b + b 2) and d = ia 2 + ib + i2b 2, whereas (16c) and
(16e) give f1q

′−1q2g1 = q2q3f1. This means either b = 1 + ia + ia 2, or a = i2 and
b = i. But using (16b) we see that just the latter can occur. Hence we have

3.4.1 Lemma. The subspace Wt, defined through (13) and the functions (14),
is the unique At-invariant (t − 2)−transversal subspace of the vector space Vt

associated with Ht (t = 6, 7, 8 or 9). 2

Now, we look for an At-invariant (t − 3)−transversal subspace W of Vt, t > 6.
Within V9 we can represent W as
{(

t−3∑

i=1

fi(zi),
t−3∑

i=1

gi(zi),
t−3∑

i=1

hi(zi), z1, . . . , zt−3, 0, . . . , 0

)
∈ (GF (2)4)9 : zi ∈ GF (2)4

}
, (17)

with fi, gi, hi ∈ GL(4, 2). As above, we have to ask the subspace (17), written
over GF (4), to be stable under each transformation (6) for l = 2, . . . , t− 1, i.e.

Ql (fi(zi), gi(zi), hi(zi), 0, . . . , 0, zi, 0, . . . , 0) ∈ W ∀zi = (xi, yi) ∈ GF (4)2. (18)

It turns out f2 = q4f1q
′ and, for j > 2, fj = qj+1fj−1q

′′. Furthermore, using (18)
for i = 1 and l = 6, we have q5f1 = f1q2; this equation forces f1 to take the shape

f1(x, y) = (a11x + a12x
2 + a21y + a22y

2,

(i2a2
11+ia2

12+a2
21)x+(a2

11+i2a2
12+ia2

22)x
2+(a2

11+ia2
21+ia2

22)y+(ia2
12+a2

21+a2
22)y

2).

Also, for i = 4 and l = 5, we have q4f4 = f4qt−2, hence q4f4(1, 0) = f4qt−2(1, 0),
giving in turn a21 = ia11 and a22 = i2a12 for t = 7, a12 = a11 and a22 = i2a11 + ia21

for t = 8. Let t = 7, then from q4f4(0, 1) = f4q5(0, 1) we infer a12 = i2a11 and
a11 = 0. Let t = 8, then from q4f4(i

2, 0) = f4q6(i
2, 0) it follows a21 = ia11 and

a11 = 0. In both cases we get a contradiction to the fact that f1 ∈ GL(4, 2).
Let now t = 9. Using (18) for i = 1 and l = 7 we obtain q6f1 = f1q3, which

gives a21 = ia11 + a2
11 + ia12, a22 = i2a11 + i2a12 + ia2

12, whereas (18) for i = 1
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and l = 2 yields q′q′′h1 = f1q7 and q′−1f1 = g1q7, hence q′q′′h1(1, 0) = f1q7(1, 0).
As the functions g1 and h1 fulfill the same conditions (14) as the functions f1

and g1 defining the subspace W8 introduced above, we obtain a11 = a12 = 1. But
f1(1, 0) = (0, i2) and q′g1q7(1, 0) = (1, 1), so we get again a contradiction.

Summing up, we have the following

3.4.2 Lemma. For t = 7, 8 or 9 there is no At-invariant (t − 3)−transversal
subspace in the vector space associated with the group Ht introduced in 2.5. 2

4.1 Imprimitive groups m-transitive on blocks. In the remaining part
of this paper, G = (G, Ω) will be a permutation group endowed with a finite
translation system of imprimitivity Ω̄ = {∆1, . . . , ∆t} of dimension m > 3, with
inertial group N , such that the stabilizer in G of a block is 2-transitive on it
and the factor group G/N acts m-transitively on Ω̄. This condition confines
Ḡ = (G/N, Ω̄) to be either the symmetric group on m or m + 1 elements, or the
alternating group on m + 2 or m + 3 elements, or a Mathieu group ([9, p. 68] or
[3]). As the Mathieu groups have no faithful transitive linear representation ([9,
p. 68]), by 2.2.1 we have that only the following cases occur:

a) Ḡ ' Sm; b) Ḡ ' Sm+1; c) Ḡ ' Am+2; d) Ḡ ' Am+3.

4.1.1 Remark. A such result can be obtained by assuming that the stabilizer
in G/N of m distinct blocks has odd order.

We shall show that not all the above possibilities occur.

4.1.2 Proposition. If |∆| ≤ 3 then either Ḡ ' Sm or Ḡ ' Sm+1.

Proof. Let |∆| = 2. If Ω̄ = {∆1, . . . , ∆t}, then G can be embedded into the
symmetric group S2t. Consider distinct non-trivial elements g1 and g2 in N fixing
the points of each of ∆1, . . . , ∆m−2. Since g1, as well as g2, fixes point-wise at
most m− 1 blocks, the fact that each block contains two points implies that the
product g1g2 leaves at least t− 2 blocks point-wise fixed. It follows either t = m
or t = m + 1, which means either Ḡ ' Sm or Ḡ ' Sm+1.

Let |∆| = 3. By theorem 2.2.1, the group G∆/N maps homomorphically onto
ZZ2 ' GL(1, 3) and this excludes that Ḡ is an alternating group. 2

4.1.3 Theorem. Ḡ is sharply m-transitive.

Proof. We have to rule the possibility d) out. If Ḡ ' Am+3 then, in view of
Theorem 2.2.1, the stabilizer Am+2 has a transitive linear representation on ∆.
By [7, Theorem 6.5], if m + 2 > 8 then |∆| = m + 2 and |GL(∆)| < |Am+2|.
Hence, since m > 3, we have m = 4, 5 or 6 and, for each of these values of m, just
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one instance occurs (2.5, [7, Theorems 5.13, 6.5] or [11]). Hence, according to
Theorem 2.2.1, we have that G embeds into one of the groups Hm+3 introduced
in 2.5 and the vector space Vm+3 associated with Hm+3 has an Am+3-invariant
subspace of the shape (17) taking t = m+3, but this contradicts Lemma 3.4.2. 2

4.1.4 Lemma. Let Ḡ ' Sm. Then G = GF (p)n wrα Sm, where α is one of the
following n-dimensional transitive linear representations of Sm−1:

1. The trivial representation of Sm−1 on a vector line over GF (2);

2. The non-trivial representation of Sm−1 on a vector line over GF (3);

3. The faithful representation of S3 as GL(2, 2);

4. The non-faithful representation of S4 as GL(2, 2);

5. The representation of S5 over GF (2) corresponding to PΓL(2, 4);

6. The representation of S6 as Sp(4, 2).

In any case G splits over the inertial group N.

Proof. The first part of the assertion and the fact that α is a transitive linear
representation follow from Theorem 2.2.1. If the kernel of the representation α
contains Am−1 then n = 1 and p = 2 or 3.

Now we assume that |∆| > 3. Theorem 6.5 in [7] yields m− 1 ≤ 6. Namely,
if m − 1 > 8 then |GL(∆)| < |Sm−1|, whereas if m − 1 ∈ {7, 8} we have that
|∆| = 16, but GL(4, 2) ' A8 and S7 is not contained in A8. The transitive linear
representations 3 till 6 exist (3.3). These are, according to [7, Corollary 5.6 and
Theorems 5.12, 5.13] or [11], all transitive linear representations for the groups
Sm−1, with 4 ≤ m ≤ 7. 2

When Ḡ is isomorphic to Sm+1 or to Am+2 the situation is more complicated.
First we shall deal with the case |∆| = 2, 3.

4.2 The case |∆| = 2. By Proposition 4.1.2 and Lemma 4.1.4, we may assume
that Ḡ ' Sm+1. Hence G can be embedded into the symmetric group S2(m+1).
More precisely, G is a subgroup of order 2m(m + 1)! of the subgroup F of order
2(m+1)(m + 1)! preserving Ω̄. Then G has index 2 in F and the inertial group N
index 2 in the subgroup M of F leaving each block in Ω̄ stable.

From 1.1.4 it follows that the group G contains exactly two involutions leaving
the blocks ∆2, . . . , ∆m−1 point-wise fixed and switching ∆m with ∆m+1 and, also,
such involutions are conjugate in G, hence their product is the non-trivial element
of the subgroup Nm defined in 1.1.3. By permuting the blocks, we infer that N
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is contained in the subgroup H of G generated by all involutions fixing point-
wise m− 2 blocks and switching other two blocks. Since these involutions induce
all transpositions in G/N ' Sm+1, we obtain H = G. As F contains just two
distinct classes of conjugate involutions satisfying the above conditions, it follows
that there exist at most two distinct permutation groups (G, Ω). We can actually
realize two non-isomorphic permutation groups as follows.

Fix points X1, . . . , Xm+1 in Ω, with Xi ∈ ∆i, and identify them with the
vectors of a basis B of a vector space of dimension m + 1 over GF (3). Also,
identify the other point in the block containing Xi with −Xi. This means that
we may regard F as the group of permutation matrices in GL(m + 1, 3) having
the non-zero entries equal to 1 or −1. Then N is a subgroup of index 2 in the
group M of diagonal matrices in GL(m + 1, 3). Since there is no element 6= 1 in
N leaving m blocks point-wise fixed, from 1.1.3 it follows that N consists of all
diagonal matrices with determinant 1.

Let S be the stabilizer in F of the basis B; clearly S ' Sm+1. Now, look at
the following subgroups of index 2 of F :

G1 := N >¢S, G2 := {A ∈ F : detA = 1} .

The permutation groups (G1, Ω) and (G2, Ω) are not isomorphic. In fact, the involution
of G1 fixing X2, . . . , Xm−1 and switching Xm with Xm+1, leaves the block ∆1 point-
wise fixed, whereas the involution of G2 fulfilling the same conditions acts non-trivially
on ∆1. In view of Lemma 4.1.4, the discussion yields

4.2.1 Theorem. Let B = {e1, . . . , em+1} be a basis of a vector space V of dimension
m + 1 over the prime field GF (3) and denote by N the group of linear transformations
represented, with respect to B, by diagonal matrices with determinant 1. If | ∆ | = 2
then (G,Ω) is isomorphic to one of the following:

1. Ω = {e1,−e1, . . . , em+1,−em+1}, G = G1 = N >¢GL(V )B;
2. Ω = {e1,−e1, . . . , em+1,−em+1}, G = G2 = {g ∈ GL(V )Ω : det g = 1} ;
3. Ω = {e1,−e1, . . . , em,−em}, G = G3 = GL(V )Ω ' GF (2)wrSm.

Moreover, no two of G1, G2, G3 are isomorphic as permutation groups. 2

Remark. In spite of Theorem 4.2.1, if m is even, the map g 7→ (det g)g defines an
isomorphism G1 → G2 of abstract groups. But if m is odd, there is no complement of
N in G2. In order to prove this fact, consider ε = diag(1, . . . , 1,−1) ∈ M \N. The set
{sε 1

2
(1−det s) : s ∈ S} is a set of representatives of G2/N . Furthermore we have

s′ε
1
2
(1−det s′)s′′ε

1
2
(1−det s′′) = s′s′′ε

1
2
(2−det s′−det s′′)κ(s′, s′′) = s′s′′ε

1
2
(1−det(s′s′′))κ(s′, s′′)

for all s′, s′′ ∈ S, where κ : S × S → N is the mapping

(s′, s′′) 7−→
{

s′′−1εs′′ε if det s′ = −1;
1N if det s′ = 1.
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This means (see for instance [8, Theorem 17.2]) that N possesses a complement in G2

just if there exists a function ϕ : S → N such that
κ(s′, s′′) = s′ϕ(s′′)s′−1ϕ(s′)ϕ(s′s′′)

for all s′, s′′ ∈ S. As every element in N has order 2, the required condition κ(1S , 1S) =
1N yields ϕ(1S) = 1N . For all s ∈ S, set ϕ(s) = diag (ϕ1(s), . . . , ϕm+1(s)) and, for
i = 1, . . . , m + 1, put es(i) := s(ei) ∈ B. Thus we have

κ(s′, s′′) = diag( . . . ϕs′−1(i)(s
′′)ϕi(s′)ϕi(s′s′′) . . . ).

Consequently, the product ϕs′−1(i)(s
′′)ϕi(s′)ϕi(s′s′′) must be 1 if det s′ = 1, or if s′′

leaves the vector em+1 fixed. Otherwise

ϕs′−1(i)(s
′′)ϕi(s′)ϕi(s′s′′) =

{−1 if i = m + 1, or s′′(i) = m + 1,
+1 if i 6= m + 1 6= s′′(i).

(19)

In particular, if s is an element in S of order 2, we have

ϕs(i)(s)ϕi(s) =




−1 if det s = −1, s(m + 1) 6= m + 1

and i = m + 1, or i = s(m + 1),
+1 otherwise.

(20)

Denote by σi,j the element in S switching the vectors ei and ej and leaving the re-
maining vectors in B fixed. Then (20) gives ϕm(σm, m+1)ϕm+1(σm, m+1) = −1. As a
consequence, ϕ(σm, m+1) ∈ N forces

ϕ1(σm, m+1) . . . ϕm−1(σm, m+1) = −1. (21)
Since m is odd, the product σ := σ1,2 . . . σm−2, m−1 is well-defined. The relations
σ(em+1) = em+1 and σ2 = 1S give

ϕ1(σ)ϕ2(σ) = . . . = ϕm−2(σ)ϕm−1(σ) = 1.

If 4 would not divide m + 1, then det(σm, m+1σ) = −1 which means

1 = ϕi(σm, m+1σ)ϕi+1(σm, m+1σ) (i = 1, . . . , m− 2),
−1 = ϕm(σm, m+1σ)ϕm+1(σm, m+1σ),

i.e. ϕ(σm, m+1σ) 6∈ N . Therefore 4 divides m + 1 and we have
ϕ1(σm, m+1σ)ϕ2(σm, m+1σ) = . . . = ϕm(σm, m+1σ)ϕm+1(σm, m+1σ) = 1.

Use now Equations (19) for s′ = σ and s′′ = σm, m+1. It follows
ϕ2(σm, m+1)ϕ1(σ)ϕ1(σm, m+1σ) = ϕ1(σm, m+1)ϕ2(σ)ϕ2(σm, m+1σ) = 1.

Therefore ϕ1(σm, m+1)ϕ2(σm, m+1) = 1 because we know that ϕ1(σ)ϕ2(σ) = 1 and
ϕ1(σm, m+1σ)ϕ2(σm, m+1σ) = 1. Likewise, we get

ϕ3(σm, m+1)ϕ4(σm, m+1) = . . . = ϕm−2(σm, m+1)ϕm−1(σm, m+1) = 1,
a contradiction to (21).
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4.3 The case |∆| = 3. By Proposition 4.1.2 and Lemma 4.1.4 we may assume
that Ḡ ' Sm+1. According to Theorem 2.2.1, we may identify G with a subgroup of
the twisted wreath product G̃ = GF (3)wrα Sm+1, where α is the non-trivial linear
representation of Sm on the 1-dimensional vector space over GF (3); then, the inertial
group N is defined by a Sm+1-invariant m-transversal subspace W of the vector space
V associated with G̃, which is a hyperplane (Lemma 3.2.1).

Let S ' Sm+1 be a translation complement in G̃ and let A be the subgroup of S
isomorphic to Am+1. Consider in the group G̃/N ' (V/N) >¢ (SN/N) the subgroup
(V/N) >¢ (AN/N). As V/N is 1-dimensional, the last semi-direct product must be
direct. Then we can use the subsequent lemma to conclude that AN = ϕ−1(AN/N),
where ϕ : G → G/N denotes the canonical homomorphism.

4.3.1 Lemma. Let G = V >¢A be a semidirect product of an solvable group V by
a group A isomorphic to the alternating group At, t > 4. Besides let N be a normal
subgroup of G contained in V and let H be a subgroup of G containing N such that
H/N ' A. If AN/N centralizes V/N , then H = NA.

Proof. We may regard H/N as a subgroup of the direct product (V/N) × (AN/N),
so H/N projects into both V/N and AN/N . As V/N is solvable, the first projection
is trivial; hence H/N = AN/N , i.e. H = AN . 2

Now, since AN has index 2 in G, we see that G splits over N by a theorem of
Gaschütz ([8, p. 121]). Thus, in view of 2.2.1, 3.2 and 4.1.4, we can state the following

4.3.2 Theorem. Let |∆| = 3; then we have Ḡ ' St, where t = m or t = m + 1, G
splits over the inertial group N and G can be realized as follows:

Let V be the vector space of dimension t over the prime field GF (3) and let ∆i =
{x + Vi : x ∈ V }, where Vi denotes the hyperplane of vectors (x1, . . . , xt) with xi = 0.
Then, Ω = ∆1 ∪ . . . ∪∆t and G = {x 7→ w + g(x) : w ∈ W, g ∈ S}, where W = V if
t = m, W =

{
(x1, . . . , xt) ∈ V :

∑m+1
k=1 (−1)m(k+1)xk = 0

}
if t = m+1, and S denotes

the subgroup of GL(V ) generated by the linear mappings

(x1, . . . , xt) 7→ (xt, x1, . . . , xt−1),
(x1, . . . , xt) 7→ ((−1)txt,−x2, . . . ,−xt−1, (−1)tx1),

corresponding to the permutations (1, . . . , t) and (1 t), respectively. 2

In view of Theorems 4.2.1 and 4.3.2 from now on we may assume | ∆ | > 3. Before
proceeding, we need to state the following general lemma.

4.3.3 Lemma. Let V be a GF (2)-vector space, S = 〈hi : i ∈ I〉 be a group of auto-
morphisms of V generated by elements hi of prime order pi leaving a proper subspace
W of V invariant and 0V −→ W −→G

λ−→ S −→ 1S be an extension of W by S.
Assume ker(idW + hi|W ) ⊆ im(idW + hi|W ) if pi = 2. Then the following hold:

0V −→ W −→ G −→λ S −→ 1S
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a) For all k ∈ I there exists gk ∈ G such that λ(gk) = hk and gpk
k = 1G.

b) Let hi and hj be of order 2 with (hihj)3 = 1S. Then, for k = i, j, there exists
gk ∈ G such that λ(gk) = hk and g2

k = (gigj)3 = 1G.

c) Let hi and hj be of order 2 with (hihj)2 = 1S. Then, for k = i, j, there exists
gk ∈ G such that λ(gk) = hk, g2

k = 1G and (gigj)2 ∈ Fix(hk).

d) Let hi and hj be of order 2 and 3, respectively, with (hihj)2 = 1S. Then, for
k = i, j, there exists gk ∈ G such that λ(gk) = hk, g2

i = g3
j = 1G and (gigj)2 ∈

Fix(hihj) ∩ Fix(hj + h2
j ).

Proof. a) Let gk ∈ λ−1(hk), then gk centralizes gpk
k = wk ∈ W . If pk is odd,

(wkgk)pk = (wk)pk(gk)pk = wk + wk = 0W . If pk = 2 then hk(wk) = gkwkg
−1
k = wk,

hence wk = hk(uk) + uk for some uk ∈ W and we have (ukgk)2 = ukgkukg
−1
k g2

k =
uk + hk(uk) + wk = 0W .

b) Take gk as in a), thus gk(x)+hk(x) is a well-defined vector uk for all x ∈ V . Put
wij = (gigj)3 (∈ W ), then g2

k = 1G gives hk(uk) = uk, whereas (hihj)3 = 1S yields
wij = hihj(ui) + hjhi(uj) + hi(uj) + hj(ui) + ui + uj .

Thus hk(wij) = wij and we see that (wijgigj)3 = (wijgi)2 = 1G.
c) Take gk as in a) and put vij = (gigj)2 (∈ W ). Then gigjgigj = gjgigjgi and we

see that hk leaves vij fixed.
d) Taking gk as in a), uk as in the proof of b) and vij as in the proof of c), we have

hihj(vij) = vij . Furthermore g2
i = g3

j = 1G give hi(ui) = ui and (hj + h2
j )(uj) = uj ,

whereas (gigj)2 = 1G implies vij = h2
j (ui +uj)+hi(uj)+ui. So (hj +h2

j )(vij) = vij . 2

4.4 The case Ḡ ' Sm+1. As |∆| > 3, the permutation group G embeds into
G̃ = GF (p)n wrα Sm+1 with α one of the representations 4, 5 or 6 given in Lemma
4.1.4. Also, thanks to Lemma 3.3.1, we have m = 5 and the translations in the inertial
group N are defined through vectors in the subspace

W =
{
(z1, . . . , z6) ∈ V = (GF (4) 2)6 :

∑6
i=1 f i(zi) = 0

}
,

where f : GF (4) 2 −→ GF (4) 2 is the bijective mapping defined by
(x, y) 7−→ (ix + iy + iy2, i2x + i2y2).

So G embeds into the group G6 introduced in 2.3 and we have to determine the non-
equivalent extensions within G6 of N by the group S generated by the matrices (3),
with k = 1, . . . , 5 and entries (4) and (5). It turns out that ker(Jk |W + idW ) =
im(Jk |W + idW ) so Lemma 4.3.3,a applies and we find in G elements

gk : v 7→ Jk(v) + uk (k = 1, . . . , 5)
of order 2. Then uk ∈ Fix(Jk) and we have
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u1 = (ix1 + iy1, i2x1, x1, y1, z1, z2
1 , t1, t12, ir11, i2r12, s11, s12),

u2 = (s21, s22, ix2 + iy2, i2x2, x2, y2, z2, z2
2 , t2, t22, ir21, i2r22),

u3 = (ir31, i2r32, s31, s32, ix3 + iy3, i2x3, x3, y3, z3, z2
3 , t3, t32),

u4 = (t4, t42, ir41, i2r42, s41, s42, ix4 + iy4, i2x4, x4, y4, z4, z2
4),

u5 = (z5, z2
5 , t5, t52, ir51, i2r52, s51, s52, ix5 + iy5, i2x5, x5, y5),

(22)

where the entries rkh, skh, tkh, xkh, ykh, zkh take the value 1 or 0 and tk = tk1+itk2, xk =
xk1 + ixk2, yk = yk1 + iyk2, zk = zk1 + izk2. Notice that uk ∈ W just if

a) yk1 + zk1 + zk2 + tk1 + rk1 + sk1 = 0,
b) yk2 + zk1 + tk2 + rk1 + rk2 + sk2 = 0.

(23)

As (JlJl−1)3 = 1S , we may assume (glgl−1)3 = 1G (Lemma 4.3.3,b) which means
Jl(ul−1) + ul ∈ Fix(Q2

l + Ql) (l = 2, . . . , 5),
where Ql = Jl−1Jl are the matrices (3) and (6). The last conditions give

a) xl−1 1 + xl−1 2 + yl−1 1 + yl−1 2 + zl−1 1 + zl−1 2 = xl1 + xl2 + yl1 + sl1,
b) xl−1 1 + zl−1 2 = xl2 + yl2 + sl2.

(24)

For all i, j = 1, . . . , 5 with |i− j| > 1 we have JiJj = JjJi, hence
vij := (gigj)2(v) + v ∈ Fix(Ji)

⋂
Fix(Jj)

by Lemma 4.3.3,c. Thus the coordinates of vij have the following shape:

v13 = v31 = (ia13 + ib13, i2a13, a13, b13, c13 + id13, c13 + i2d13,
d13 + ic13, c13, ie13, i2e13, b13 + c13 + e13, 0),

v15 = v51 = (c15 + id15, c15 + i2d15, d15 + ic15, c15, ie15, i2e15,
b15 + c15 + e15, 0, ia15 + ib15, i2a15, a15, b15),

v35 = v53 = (ie35, i2e35, b35 + c35 + e35, 0, ia35 + ib35, i2a35,
a35, b35, c35 + id35, c35 + i2d35, d35 + ic35, c35),

v24 = v42 = (b24 + c24 + e24, 0, ia24 + ib24, i2a24, a24, b24,
c24 + id24, c24 + i2d24, d24 + ic24, c24, ie24, i2e24),

v14 = v41 = (i2a14 + b14, a14, ia14, i2b14, c14, c14,
i2e14 + b14 + c14 + d14, e14, ie14, i2b14 + i2c14 + i2d14, d14, d14),

v25 = v52 = (c25, c25, i2e25 + b25 + c25 + d25, e25, ie25, i2b25 + i2c25 + i2d25,
d25, d25, i2a25 + b25, a25, ia25, i2b25),

where the entries aij , bij , cij , dij , eij take the value 0 or 1. Notice that vij = 0 precisely
if the coordinates of ui and uj satisfy the conditions
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a) xi1 = tj2 + rj1, b) xi1 + yi1 + yi2 = tj1 + rj1 + rj2,
c) zi2 = sj1 + sj2, d) ti1 + ti2 + ri2 = yj1 + yj2, if j = i + 3,
e) ti2 + ri1 = xj1, f) si1 + si2 = zj2,

g) xi2 = rj2 + sj1, h) yi2 = rj1 + rj2 + sj2,
i) zi1 + ti2 = yj2, j) zi2 + ti1 = xj2 + yj1 + yj2, otherwise.
k) ri1 + ri2 = zj1, l) si2 = tj2,

(25)

In order that the extension exists, the vectors vij are subject to conditions determined
by N. Blackburn in [2, pp. 205-206]. These conditions, which are also sufficient for the
existence of the extension, can be written as follows:

a) (J1 + idV )(v35) + (J3 + idV )(v15) + (J5 + idV )(v13) = 0V ,
b) (Q2

l + Ql + idV )(vl−1 j + vlj) = 0V ,
c) (Q2

l + Ql + idV )(Q2
l+1 + idV )(vl−1 l+1) = 0V ,

(26)

where l takes the values 2, 3, 4, 5 in b) (j 6= l − 2, l − 1, l, l + 1) and 2, 3, 4 in c).
Now the aim is to show that we may take zero all the vectors vij 6= v15. We can

do this by adding to uk a vector wk ∈ W ∩ Fix(Jk) with Jl(wl−1) + wl ∈ Fix(Q2
l + Ql)

(l = 2, . . . , 5). Then we may assume that vij = 0V if wi and wj satisfy the condition
(Ji + idV )(wj) = (Jj + idV )(wi). We shall proceed by annihilating the vectors vij

successively and, then, considering new vectors wk which retain the achieved conditions
vij = 0V . As a matter of fact, adding to u1 the vector

(a13 + b13 + ic13 + id13, a13 + i2d13, d13 + ia13, a13 + c13 + i2b13, c13 + id13,

c13 + i2d13, 0, 0, ia13 + ib13 + id13, i2a13 + i2b13 + i2d13 + i2e13, 0, b13 + c13 + e13)

we make v13 = 0, whereas adding to u2 the vector

(a24 + b24, a24 + i2b24, ia24 + i2(b24 + e24), b24 + e24 + i2a24, e24 + i2b24,

ib24 + i2(a24 + e24), i(a24 + e24) + i2b24, a24 + b24 + d24 + e24, 0,

i(a24 + b24 + d24), i2(a24 + b24 + d24 + e24))

and to u4 the vector

(i2(a24 + c24 + e24), a24 + c24 + e24, 0, 0, 0, 0, i(a24 + c24 + e24), i(a24 + c24 + e24),
i2(a24 + c24 + e24), i(a24 + c24 + e24), i(a24 + c24 + e24), i2(a24 + c24 + e24)),

we make v24 = 0. Also the vector w3 = i(a35, 0, 0, a35, a35, a35, ia35, a35, 0, 0, 0, 0) is in
Fix(J1), so replacing u3 by u3 + w3 and u5 by u5 + w5, where w5 is the vector

(i(b35 + d35) + i2(a35 + e35), i(a35 + e35) + i2(b35 + d35), i(a35 + b35 + c35 + e35),
a35 + b35 + c35 + e35, ib35, 0, 0, 0, ic35, ic35 + i2d35, d35 + i2c35, d35 + ic35),

we make v35 = 0 without destroying v13 = 0. Notice that v13 = 0, v24 = 0 and (26b)
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imply that v14 ∈ Fix(Q2
2+Q2)∩Fix(Q2

4+Q4), which means c14 = a14 and e14 = b14+d14.
Also, v24 = 0V , v35 = 0V and (26b) give v25 ∈ Fix(Q2

3 + Q3) ∩ Fix(Q2
5 + Q5), or

e25 = d25 = a25 + b25. Thus we can annihilate v14 and v25 by adding

w1 =(ib14, 0, 0, b14, b14, b14, ib14, b14, 0, 0, 0, 0),
w4 =(d14, 0, ia14, i2d14, d14, a14+ d14, a14+ i2d14, a14+ id14, ia14+ i2d14, a14+ d14, id14, i2d14),
w5 = ic25, i2c25, c25, 0, i(a25 + b25), i2a25, a25, b25, b25 + ia25, b25 + i2a25, a25 + ib25, b25)

to u1, u4 and u5, respectively (notice that w1 ∈ Fix(J3), w4 ∈ Fix(J2), w5 ∈ Fix(J3)).
Now the question is whether we can annihilate v15 or not. Since we are assuming

v14 = v25 = v13 = v35 = 0V , from (26a) and (26b) it follows that v15 is contained in the
intersection Fix(J3) ∩ Fix(Q2

2 + Q2) ∩ Fix(Q2
5 + Q5). Therefore,

v15 = (ia, i2a, a, 0, ia, i2a, a, 0, ia, i2a, a, 0) (27)

with a = 0, or a = 1. We claim that if a = 1 no further replacement of the vectors
uk by vectors uk + wk gives v15 = 0 (without destroying the achieved conditions). In
fact, if such vectors wk exist, they should have coordinates xkh, ykh, zkh, tkh, rkh, skh,
written as in (22) for uk and satisfying (23), (24) and (25) (the latter for (i, j) 6= (1, 5)).
Also they should fulfill the condition (J1 + idV )(w5) + (J5 + idV )(w1) = v15, i.e., by
comparing the last coordinate but one,

r12 + s11 + x52 = 1. (28)

But (28) is incompatible with the following system of equations
r11 + y11 + z11 + z12 + t11 + s11 = 0, (23a), k = 1,
r21 + y21 + z21 + z22 + t21 + s21 = 0, (23a), k = 2,
r31 + y31 + z31 + z32 + t31 + s31 = 0, (23a), k = 3,
r22 + y22 + z21 + t22 + r21 + s22 = 0, (23b), k = 2,
x11 + x12 + y11 + y12 + z11 + z12 + x21 + x22 + y21 + s21 = 0, (24a), l = 2,

x11 + z12 + x22 + y22 + s22 = 0, (24b), l = 2,
x21 + z22 + x32 + y32 + s32 = 0, (24b), l = 3,
t21 + t22 + r22 + y51 + y52 = 0, (25d), i = 2, j = 5,
x12 + r32 + s31 = 0, (25g), i = 1, j = 3,
y12 + r31 + r32 + s32 = 0, (25h), i = 1, j = 3,
z12 + t11 + x32 + y31 + y32 = 0, (25j), i = 1, j = 3,
z32 + t31 + x52 + y51 + y52 = 0, (25j), i = 3, j = 5,
r11 + r12 + z31 = 0, (25k), i = 1, j = 3,

since the left side of (28) is the sum of all the left sides of the above system. This shows
that there is just one non-splitting extension: it is achieved by the vectors

u1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), u2 = u3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
u4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, i, i2), u5 = (0, 0, 1, 0, 0, i2, 1, 1, 0, 0, 0, 0).

(29)

In fact, such vectors solve (22), (24) and (25) for (i, j) 6= (1, 5); furthermore, the vector
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(J1 + idV )(u5) + (J5 + idV )(u1) is precisely (27). Summing up we have

4.4.1 Theorem. Let Ḡ ' Sm+1 and assume that the blocks contain more than 3
points. Then m = 5, the blocks contain precisely 16 points and there is an embedding
G ↪→ G6 = GF (2)4 wrS6 mapping the inertial group of G onto the group of translations
of G6 corresponding to the GF (2)-vector subspace

W =
{
(z1, . . . , z6) ∈ V = (GF (4)2)6 :

∑6
i=1 f i(zi) = 0

}
,

where f is the bijective mapping GF (4)2 → GF (4)2 by (12). There are just two non-
isomorphic embeddings of G within G6 which are generated as follows:

1. 〈v 7→ Jk(v) + w : w ∈ W, k = 1, . . . , 5〉 (splits over N),

2. 〈v 7→ Jk(v) + uk + w : w ∈ W, k = 1, . . . , 5〉 (does not split over N),

where Jk are given by (3), (4) and (5) and uk are the vectors (29). 2

4.5 The case Ḡ ' Am+2. It remains to examine the case where Ḡ is the alternating
group Am+2. In such a case G embeds into G̃ = GF (2)4 wrα Am+2, where m = 4, 5, 6
or 7 and α is the unique representation of Am+1 as a subgroup of GL(4, 2) ' A8. This
means that G̃ is one of the four groups Hm+2 introduced in 2.4 and 2.5. According
to Lemma 3.4.1, for each of the groups Hm+2, there is precisely one Am+2-invariant
m-transversal subspace W such as (13) with functions fi and gi given by (14). Now,
we state

4.5.1 Theorem. Let Ḡ ' Am+2. Then 4 ≤ m ≤ 7, the blocks contain precisely
16 points and there is an embedding G ↪→ Hm+2 = GF (2) 4 wrAm+2 mapping the
inertial group of Ω̄ onto the group Nm+2 of translations of Hm+2 corresponding to
the subspace Wm+2 defined by (13) and (14). The group G is the splitting extension
(GF (2)4 wrAm+2)|Wm+2

of Nm+2 by Am+2.

Proof. It is enough to prove that G splits over Nm+2. We may regard G as a subgroup
of H9 (resp. H6 for m = 4) given as an extension

0Nm+2 −→ Nm+2 −→ G
λ−→ Am+2 −→ 1Am+2 (30)

of Nm+2 by a subgroup Am+2 of H9 (resp. H6) isomorphic to Am+2. We shall first
discuss the case m = 5.

The alternating group A7 is generated by the permutations (1375)(26) and (34567).
Thus, the matrix A = Q3Q2Q6Q5Q4Q3, having the non-zero entries given by the
quadratic functions over GF (4):

a31 = q′−2q5q4q3q2, a62 = q6q5q
′−4, a73 = q5q4q

′′−4,
a44 = q′′−2q4q3q2q

′q′′, a15 = q2q
′q′′q3q2q

′q′′q7, a26 = q′q′′q7q2q
′q′′q7q6,

a57 = q7q6q
′q′′q7q6q5, a88 = q4q3q7q6q5q4, a99 = q3q2q6q5q4q3,

and the matrix B = Q4Q6, the non-zero entries of which are
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b11 = q3q5, b22 = q2q4, b43 = q′−1q3,
b54 = q′′−1q2, b65 = q7q

′−1, b76 = q6q
′′−1,

b37 = (q′q′′)2 b88 = q5q7, b99 = q4q6,

generate a subgroup (' A7) of H9 that we may take as A7 in (30). Let
a : x 7→ A(x) + ua, b : x 7→ B(x) + ub

be elements in G such that λ(a) = A and λ(b) = B. In view of Lemma 4.3.3,a, we may
assume the order of b to be 5. Moreover A4 = 1A7 yields

wa := a4(x) + x = ua + A(ua) + A 2(ua) + A3(ua) ∈ W ∩ Fix(A).
The endomorphism A3 +A 2 +A+ idV maps W into W ∩Fix(A) 3 wa. Also W decom-
poses into the direct sum of cyclic K[A]-submodules W1, . . . ,W5 having dimension 4
over K = GF (2) (for instance, the ones generated by

(f4(e1), g4(e1), 0, 0, 0, e1, 0, 0, 0), (f4(e2), g4(e2), 0, 0, 0, e2, 0, 0, 0),
(f4(e3), g4(e3), 0, 0, 0, e3, 0, 0, 0), (f4(e4), g4(e4), 0, 0, 0, e4, 0, 0, 0),
(f2(e1), g2(e1), 0, e1, 0, 0, 0, 0, 0),

(31)

for a fixed basis e1, e2, e3, e4 of GF (2)4). Thus, if w ∈ W ∩ Fix(A) and ws is the
component of w with respect to Ws (s = 1, . . . , 5), then A(ws) = ws. As in Ws there is
just one non-zero vector fixed by A (the one generating the line (idV +A+A 2+A3)(Ws)),
we infer that W ∩ Fix(A) = (idV + A + A 2 + A3)(W ). Now, let w̄a ∈ W solve
(idV + A + A 2 + A3)(w̄a) = wa, then, up to a replacement of ua by ua + w̄a, we may
assume the order of a to be 4. Now a4 = b5 = 1G imply

ua ∈ Fix(A + A 2 + A3), ub ∈ Fix(B + B 2 + B3 + B4), (32)

or, equivalently, the coordinates of ua and ub satisfy the equations

x1 + x3 + ix 2
3 + iy3 + iy 2

3 + x 2
5 + i2y5 + i2x 2

7 + iy7 = 0,

y1 + x3 + x 2
3 + i2y3 + y 2

3 + ix5 + iy5 + i2y 2
5 + ix7 + i2x 2

7 + iy7 + iy 2
7 = 0,

x2 + i2y2 + i2y 2
2 + i2x6 + ix 2

6 + iy6 = 0,

ix4 + i2x2
4 + iy4 + i2y2

4 = 0,

(33)

and

x3 + i2x4 + iy4 + iy 2
4 + x5 + ix 2

5 + i2y5 + iy 2
5 + ix6 + ix 2

6 + iy6 + i2y 2
6 + i2x 2

7 = 0,

y3 + x 2
4 + iy 2

4 + i2x5 + i2x 2
5 + i2y5 + y 2

5 + x 2
6 + i2y6 + i2x7 + ix 2

7 + y7 = 0,

respectively (we are writing vectors as (z1, . . . , z7, 0, 0) with zi = (xi, yi) ∈ GF (4)2).
Vectors in Fix(B) and Fix(AB) satisfy (idV + B + B 2 + B3 + B4)(x) = x and

(idV + AB + (AB) 2)(x) = x, respectively. Thus, since B5 = (AB)3 = idV , we have

W ∩ Fix(B) = (idV + B + B 2 + B3 + B4)(W ),
W ∩ Fix(AB) = (idV + AB + (AB) 2)(W ).

(34)
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Furthermore W decomposes into the direct sum of four cyclic K[B]-submodules W ′
1,

W ′
2, W ′

3, W ′
4 of dimension 5 over K = GF (2) (for example, the ones generated by the

first four vectors in (31)). As the line (idV + B + B 2 + B3 + B4)(W ′
j) is the subspace

of vectors in W ′
j fixed by B, we have dim(W ∩ Fix(B)) = 4. Let

Wa := W ∩ Fix(A + A2 + A3), Wb := W ∩ Fix(B + B2 + B3 + B4).
Then the first equation of (34) gives dimWb = 16. Also the vectors

(0, 0, i2, i, 0, 0, i, 1, 0, 0, 1, i2, 0, 0, 0, 0, 0, 0), (i2, 1, 0, 0, i, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0),
(i, 1, i2, i2, i2, i2, 0, 0, i2, 0, i, 0, i, 0, 0, 0, 0, 0),(i2, i, i2, i2, 1, 1, i, 1, 1, i2, i, 0, 0, i, 0, 0, 0, 0),

generate a 4-dimensional subspace of W ∩ Fix(A) intersecting Wb trivially. Since
dimGF (2) W = 20 and W ∩ Fix(A) ⊆ Wa, we have

W = Wb +(W ∩Fix(A)) = Wb +A3(W ∩Fix(A)) = Wb +A3(Wa) = A(Wb)+Wa. (35)

Clearly ab : x 7−→ AB(x) + A(ub) + ua and (ab)3 is a translation in Nm+2 defined
by (idV + AB + (AB) 2)(A(ub) + ua), the order of AB being 3. By (34) and (35) the
latter vector (∈ W ∩Fix(AB)) can be written as (idV + AB + (AB) 2)(A(w′b) + w′a) for
suitable w′a ∈ Wa and w′b ∈ Wb. Thus, up to a replacement of ua by ua + w′a and ub by
ub + w′b, we may assume that the order of ab is 3, which means

A(ub) + ua ∈ Fix(AB + (AB)2), (36)

or the coordinates of A(ub) + ua satisfy the equations

x1 + i2x3 + ix2
3 + i2y3 + i2y2

3 + x4 + i2x2
4 + i2y4 + iy2

4 = 0,
y1 + i2x2

3 + i2y3 + ix2
4 + y4 = 0, x2 + x5 + i2y2

5 + x6 = 0,
y2 + x5 + i2x2

5 + i2y5 + i2y2
5 + ix6 + x2

6 + i2y2
6 = 0, i2x7 + x2

7 + iy7 + y2
7 = 0.

(37)

If the order of the transformation a3ba2b2 is 2, then a and b generate a complement of
Nm+2 isomorphic to A7 (see for instance [4, p. 10]) and our claim is proved. Actually
we can always arrange ua in such a way the order of a3ba2b2 is 2 by adding to ua a
suitable vector w′′a ∈ W obtained as follows.

The element a3ba2b2 corresponds to the mapping x 7→ A3BA2B2(x) + v, where
v := (A3BA + A3B + A 2 + A + idV )(ua) + (A3BA 2B + A3BA 2 + A3)(ub).

The order of A3BA 2B being 2, (a3ba2b2)2 ∈ Nm+2 is the translation of the vector
w := (A3BA 2B 2 + idV )(v).

The fact that w ∈ W is a further restriction for ua and ub (in addition to (32) and
(36)). Thus it turns out that w has coordinates of the shape
(a, ia + i2b, i(a + b), c + id, d + i(a + b) + i2c, b + c + d + ia,

ic + i2a, id + i2(a + b + c), ic, d + ic, a + b, a + b + ic + i2d, i2d, a + b + d, 0, 0, 0, 0).
Now the vector
(a + ib, b + i2d, d + i(a + b + c), c + d + i2(a + b), b + id + i2(a + c), i(c + d) + i2(a + b),

a + c + i2d, a + ic + i2d, c + i2d, a + b + c + d, a + b + d, c, 0, 0, 0, 0, 0, 0),
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is in W ∩Fix(A+A2 +A3)∩Fix(AB +(AB)2) as its coordinates fulfill (14), (33), (37).
Also (A3BA2B2 + idV )(A3BA + A3B + A2 + A + idV ) maps this vector to w, so we
take it as w′′a and make w zero, i.e. any extension in H7 of N7 by A7 splits.

Now let m 6= 5. The linear mappings
Pk = Q2 . . . Qk+1 (k = 1, . . . , m),

with Ql given by (6), with entries (7) (m = 4) or (9) (m > 5), fulfill (8) for r = m;
so they generate a translation complement in Hm+2, that we can take as Am+2 in (30).
Then P1 = Q2 and, for k > 1, the non-zero entries p

(k)
rs of the matrix Pk are

p
(k)
21 = q′−1q2 . . . qk, p

(k)
12 = q′q′′q′−1q2 . . . qk−1,

p
(k)
k+2,k+1 = qt−k . . . q7q

′′−1, p
(k)
k+1,k+2 = qt−k+1 . . . q7q

′′−1q′q′′,
p
(k)
rr = qt−r+2 . . . qt+k−r+1 (k + 2 < r),

p
(k)
ss = qt−s+2 . . . q7q

′′−1q′q′′q′−1q2 . . . qk−s+1 (3 ≤ s ≤ k),

(38)

where, of course, the indicated products of ql occur just if indices allow. Let
pk : x 7→ Pk(x) + uk

an element in G with λ(pk) = Pk. We proceed assuming m > 5.
Up to adding an element in Wm+2, we may take uk with the eighth and ninth

coordinate zero. Thus p1, . . . , p5 generate a subgroup of H7 and we may assume
p3
1 = 1G, p2

i = 1G (i = 2, . . . , 5),
(pi+1pi)3 = 1G (i = 1, . . . , 4), (pjpi)2 = 1G (2 ≤ i + 1 < j ≤ 5),

every extension in H7 of N7 by A7 being splitting. This means

a) u1 ∈ Fix(P1 + P 2
1 ), bi) ui ∈ Fix(Pi), (i = 2, . . . , 5),

ci) Pi+1(ui) + ui+1 ∈ Fix(Pi+1Pi + (Pi+1Pi)2), (i = 1, . . . , 4),
dij) Pj(ui) + uj ∈ Fix(PjPi), (2 ≤ i + 1 < j ≤ 5).

(39)

As ker(Pm|W + idW ) = im(Pm|W + idW ) and (PmPm−1)3 = 1Am+2 , we may take pm of
order 2 with (pmpm−1)3 = 1G (use Lemma 4.3.3,a, b). Hence

Pm(um) = um, Pm(um−1) + um ∈ Fix(PmPm−1 + (PmPm−1)2).
Now, in order to prove that the extension (30) is splitting we have to provide further
replacements of the vectors uk making the transformations pmpk of order 2 for k =
1, . . . , m − 2. This means to make zero the vectors vkm = (pmpk)2 ∈ Wm+2. The
vectors vkm are subject to the conditions given by Lemma 4.3.3,c, d, as well as to
conditions determined by N. Blackburn in [2, section 1] that may be written as follows:

aij) (idV + Pj)(vim) + (idV + Pi)(vjm) = 0V (2 < i + 1 < j < m− 1),
bi) (idV + P1)(vim) + (Pi + Pm)(v1m) = 0V (2 < i < m− 1),
ci) (idV + PmPm−1 + (PmPm−1)2)(vim) = 0V (i < m− 2),
d) (idV + P3P2 + (P3P2)2)(v2m + v3m) = 0V ,
e) (idV + P1P2 + (P1P2)2)(P1(v1m) + v2m) = 0V .

(40)
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Now we have to discuss separately the cases m = 6 and m = 7. Let m = 6. By Lemma
4.3.3,d, P6P1 and P1 + P 2

1 leave v16 ∈ W8 fixed. This forces v16 to have coordinates

(x4 + x2
4 + iy4 + i2y2

4 + iy5 + i2y2
5 + ix6 + i2x2

6 + iy8 + i2y2
8 ,

x4 + x2
4 + i2y4 + i2y5 + ix6 + i2x2

6 + y6 + i2y2
6 + i2x8 + x2

8 + iy8 + i2y2
8 ,

ix4 + i2x2
4 + iy2

4 + y5 + i2y2
5 + iy6 + y2

6 + ix8 + y8 + y2
8 ,

ix2
4 + iy4 + i2y5 + i2y2

5 + ix6 + i2x2
6 + i2y6 + iy2

6 + i2x8 + iy8 + i2y2
8 ,

ix2
4 + y4 + iy5 + iy6 + y2

6 + x2
8 + y8 + y2

8 ,

x4 + ix2
4 + y4 + i2y2

4 + i2y5 + iy2
5 + x6 + ix2

6 + y6 + i2y2
6 + x8 + y8 + iy2

8 ,

x4, y4, i2y5 + y2
5 , y5, x6, y6, i2x8 + ix2

8 + iy2
8 , x8 + ix2

8 + iy8 + i2y2
8 , x8, y8, 0, 0)

with x41 = y42 = x61 = y62 = 0. Also, by (40, c1), (P6P5 + (P6P5)2)(v16) = v16, i.e.
x81 = y61 and y82 = x62. Consider now, the vector w6 ∈ W8 having coordinates

(ix2
4 + y4 + iy2

4 + iy2
5 + ix2

6 + i2x8 + i2x2
8,

x4 + iy2
4 + i2y5 + iy2

5 + ix2
6 + y6 + i2y2

6 + i2x8 + i2x2
8 + iy8 + y2

8 ,

ix2
4 + iy2

4 + y5 + i2y2
5 + ix2

6 + y6 + i2x8 + i2x2
8,

ix2
4 + iy2

4 + i2y5 + i2y2
5 + iy2

6 + x8 + x2
8 + i2y8 + iy2

8 , 0, 0,

x4 + ix2
4 + iy2

4 , y4 + iy2
4 , iy5 + y2

5 , i2y5 + y2
5 , iy6 + y2

6 , x6 + i2y6 + iy2
6 ,

i2y6 + iy2
6 + i2x8 + i2x2

8 + i2y8 + iy2
8 , x6 + i2y6 + iy2

6 + x8 + x2
8 + y8 + i2y2

8 ,

ix2
6 + i2y6 + iy2

6 + x8 + x2
8 + y8 + i2y2

8 , y6 + i2y2
6 + x8 + x2

8 + iy8 + y2
8 , 0, 0).

Looking at (38), we see that (idV + P6P1)(w6) = v16; thus we can make p6p1 of order
2 by replacing u6 by u6 + w6. Notice that P6 and P6P5 + (P6P5)2 leave w6 fixed and
this guarantees that the conditions p2

6 = 1G and (p6p5)3 = 1G still hold.
As v26 is contained in W8 ∩Fix(P2)∩Fix(P6) by Lemma 4.3.3,c, v26 has cordinates

(i2x4 + x2
4 + x5 + i2x2

5 + i2y8 + y2
8 , ix2

4 + i2x2
5 + y2

6 + y8, i2x4 + x2
4 + x5 + i2x2

5 + i2y8 + y2
8 ,

i2x4 + ix2
4 + iy2

6 + y8 + y2
8 , ix4, x4 + ix2

4, x4, x4 + ix2
4,

x5, i2x5, 0, y6, i2y2
8 , i2y8, iy8 + iy2

8 , y8, 0, 0),

where x51 = x52 and y61 = 0. Also (40, c2, e) give y81 = 0 and x51 = y62 = y82, so

v26 = ((i(a26 + b26), b26 + ia26, i(a26 + b26), a26, ia26 + i2b26,

i2(a26 + b26), a26 + ib26, i2(a26 + b26), i2c26, ic26, 0, ic26, ic26, c26, ic26, ic26, 0, 0).

Now the vectors

w2 = (0, 0, 0, 0, 0, 0, 0, 0, ic26, c26, ic26, ic26, ic26, c26, 0, 0, 0, 0),
w6 = (b26, ia26 + i2b26, a26, i(a26 + b26), ia26 + i2b26, i2(a26 + b26), 0, . . . , 0),

fulfill (idV + P6)(w2) + (idV + P2)(w6) = v26 and a replacement of u2 by u2 + w2 and
u6 by u6 + w6 yields (p6p2)2 = 1G. Also w2 ∈ Fix(P2) ∩ Fix(P2P1 + (P2P1)2), whereas
w6 ∈ Fix(P6)∩Fix(P6P5 +(P6P5)2)∩Fix(P6P1), or the conditions p 2

2 = (p2p1)3 = p 2
6 =

(p6p5)3 = (p6p1) 2 = 1G are preserved. Unfortunately P3(w2) 6∈ Fix(P3P2 + (P3P2)2),
thus we have to restore (39, c2). This can be done by replacing u3 by u3 + w3 with
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w3 = (ic26, c26, ic26, ic26, ic26, c26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
As we made v16 zero, (40, b3) forces v36 to be stable under P1. Also, since v26 = 0V ,
condition (40, d) yields v36 ∈ Fix(P3P2 + (P3P2)2), and this occurs just if v36 = 0.
Likewise v46 ∈ Fix(P1) by (40, b4), hence

v26 = (i2x3 + ix2
3 + i2y3 + y2

3 , ix3 + i2x2
3 + i2y3 + i2y2

3 , i2x3 + ix2
3 + iy3,

i2x3 + i2x2
3 + i2y3 + iy2

3 , x3, y3, 0, . . . , 0).

Also v46 ∈ Fix(P6) by Lemma 4.3.3,c, so y3 = i2x3 + i2x2
3. Besides by (40, a24) it

follows P2(v46) = v46, which means x3 = 0 and then v46 = 0. Thus p1, . . . , p6 generate
a translation complement in H8 isomorphic to A8, i.e. the extension (30) splits.

Let m = 7. Thanks to Lemma 4.3.3,d, the vector v17 has coordinates

(x4 + ix2
5 + i2x6 + i2x2

6 + y6 + y2
6 + y7 + ix9 + x2

9 + y9 + i2y2
9 ,

ix2
4 + x5 + i2x6 + i2x2

6 + iy6 + iy2
6 + iy2

7 + ix9 + x2
9 + i2y9 + iy2

9 ,

x4 + i2x5 + i2x2
5 + ix6 + iy2

6 + i2y2
7 + ix9 + x2

9 + iy9 + iy2
9 ,

ix5 + i2x6 + iy2
6 + iy2

7 + ix9 + i2x2
9 + y9 + iy2

9 ,

i2x4 + i2x2
4 + x2

5 + i2x2
6 + iy2

6 + i2y7 + y2
7 + ix2

9 + i2y9 + i2y2
9 ,

x4+ ix2
4+ ix2

5+ ix6+ i2y6+ iy2
6+ y7+ i2y2

7+ x9+ ix2
9+ y9, x4, i2x4+ i2x2

4, x5,

x5+ ix2
5, x6, y6, iy7+ y2

7 , y7, i2x9+ i2x2
9+ i2y9, i2x9+ x2

9+ y9+ iy2
9 , x9, y9).

with x61 = x62 and y61 = 0. Besides, by (40, c1), (P7P6 + (P7P6)2)(v17) = v17, which
means y91 = y71 + y72 + x91 + x92 and y92 = y71 + x92. Let

w7 := (x4 + x2
4 + x5 + ix2

5 + ix6 + x2
6 + y6 + y2

6 + i2y2
7 + x9 + i2x2

9,

x4 + ix2
4 + x5 + i2x2

5 + i2x6 + ix2
6 + y6 + y2

6 + iy7 + i2y2
7 + ix2

9,

x4 + i2x5 + i2x2
5 + i2x6 + ix2

6 + y6 + y2
6 + y7 + i2x2

9,

ix5 + x6 + i2x2
6 + y6 + y2

6 + i2y7 + y2
7 + ix2

9, 0, 0, i2x4 + x2
4,

ix4 + ix2
4, ix2

5, x5, iy6 + iy2
6 , i2x6 + ix2

6 + iy6 + iy2
6 , i2y7, iy7,

y2
7 + x9 + i2x2

9, i2y7 + iy2
7 + ix9 + ix2

9, y2
7 + x2

9, iy7 + i2y2
7 + ix9).

We have w7 ∈ W9 and (idV + P7P1)(w7) = v17. Thus we can make p7p1 of order 2 by
replacing u7 by u7 + w7. Notice that w7 is fixed by both P7 and P7P6 + (P7P6)2, so
that the conditions p2

7 = 1G and (p7p6)3 = 1G are both preserved.
Consider now the vector v27 ∈ W9 ∩ Fix(P2) ∩ Fix(P7) having coordinates

(i2x4+ i2y4+ y2
4+ ix5+ iy6+ i2y2

6+ iy7+ iy2
9 , ix2

4+ y4+ iy2
4+ i2x2

5+ iy6+ i2y2
6+ i2y2

7+ i2y9,

x4 + x2
4 + iy4 + i2y2

4 + iy6 + i2y2
6 + i2y7 + iy2

7 + iy9 + i2y2
9 ,

ix2
4 + y4 + iy2

4 + i2x2
5 + iy6 + i2y2

6 + i2y2
7 + i2y9, x4 + x2

4 + y2
4 ,

x4 + ix2
4 + i2y4 + y2

4 , x4, y4, x5, i2x5, iy6 + iy2
6 , y6, iy7, y7, y9 + i2y2

9 , iy2
9 , iy9, y9),

with x41 = y41 = x51 = y61 = y72 = 0. By (40, c2, e) v27 is also fixed by P7P6 and
P1P2 + (P1P2)2, so it has coordinates

v27 = (a27 + ib27, a27 + i2b27, a27 + b27, a27 + i2b27, a27 + i2b27, ib27 + i2a27, ia27, ib27,

ic27, c27, id27, id27, i(c27 + d27), c27 + d27, id27, c27 + i2d27, d27 + i2c27, ic27 + i2d27).
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Now, in view of Lemma 4.3.3,c and (40, bi), we can write the vectors vi7, i > 2, as:

v37 = (ia37, a37, ia37, ia37, ia37, a37, 0, . . . , 0),
v47 = (i2a47, i2a47, ia47, i2a47, i2a47, ia47, 0, . . . , 0),
v57 = (ia57, a57, ia57, ia57, ia57, a57, 0, . . . , 0).

These vectors are related to v27 via (40, a2i) and (40, d); in particular we have

c27 = d27 = 0, a37 = a27 + b27, a47 = a27, a57 = a27 + b27. (41)

Now w7 = (a27 + i2b27, ia27 + i2b27, ib27, a27 + i2b27, a27 + i2b27, ib27 + i2a27, 0, . . . , 0)
fulfills (idV + P2)(w7) = v27, so the replacement of u7 by u7 + w7 makes p7p2 of order
2. Notice that P7(w7) = P7P1(w7) = (P7P6 + (P7P6)2)(w7) = w7 and this ensures that
the already achieved conditions on pi are not destroyed. By (41) v27 = 0 yields now
vi7 = 0 for all i > 2 and we conclude that the extension (30) splits.
Finally, let m = 4. By Lemma 4.3.3,a, b, we may take p1 of order 3 and, for l > 1, pl of
order 2 with (plpl−1)3 = 1G, ul ∈ Fix(Pl) and Pl(ul−1) + ul ∈ Fix(PlPl−1 + (PlPl−1)2).
Thus we have only to transform to zero the vectors vij = (pjpi)2 ∈ W6 with | j− i |> 1,
being careful to retain the achieved conditions. We have to proceed analogously to the
case m > 5. By Lemma 4.3.3,c, d, it turns out that v24 is fixed by P2 and P4, whereas
(PiP1)(v1i) = (P1 + P 2

1 )(v1i) = v1i (i = 3, 4). Thus we can represent the vectors vij as

v13 = (i2a2
13 + ib2

13 + ic2
13, 0, i2a13 + b13 + c13, ia13 + b13 + ic13, ia2

13 + i2b2
13 + ic2

13,

a2
13 + b2

13, a13, b13, ia2
13, ia2

13 + i2b2
13, c13, ic13),

v14 = (ia2
14 + ib2

14 + c14, ia2
14 + ib2

14 + c14, a14, a14 + ib14 + i2c2
14, ia2

14 + b2
14 + i2c14,

ia2
14+ i2b2

14+ ic14, b14, b14, c14, ia2
14+ i2b2

14+ c14, a14+ i2b14+ ic2
14,

i2a14+ ib14+ ic2
14),

v24 = (a24 + b24, i(a24 + b24), i(a24 + b24)2, 0, a24, ia24, ia2
24, 0, b24, ib24, ib2

24, 0).

Furthermore, it follows from [2, section 1] that the vectors vij fulfill the conditions

a) (idV + P4P3 + (P4P3)2)(v13 + v14) = 0V ,
b) (idV + P1P2 + (P1P2)2)(P1(v14) + v24) = 0V .

(42)

We can annihilate each of vij successively. Adding
w4=(i2a24+ ib24, i2a24+ b24, i2a2

24+ b2
24, ia2

24+ ib2
24, a24+ b24, ia24+ ib24, ib2

24, 0, b24, 0, 0, ib2
24)

to u4 we make v24 = 0 (in fact, (idV + P2)(w4) = v24) and this implies, with the aid of
(42, b), c14 = i2a2

14 + b2
14. Adding the vector w1 with coordinates

(ia2
14+ b2

14, i2b2
14, b14, i2a14+ ib14, i2a2

14+ i2b2
14, i2a2

14+ ib2
14, b14, 0, a2

14+ ib2
14, ia2

14+ i2b2
14, 0, 0)
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to u1 we make v14 = 0, (in fact, (idV + P4P1)(P4(w1)) = v14), which implies, together
(42, a), c13 = ia13 + ib13. Now we can add the vector

w1 = (i2b2
13, ia2

13, a13 + i2b13, i2a13 + ib13, ia2
13 + ib2

13, ia2
13 + b2

13, 0,

ia13 + i2b13, a2
13 + b2

13, ia2
13 + ib2

13, i2a13 + i2b13, 0)

to u1 in order to get v13 = 0 (in fact, (idV + P3P1)(P3(w1)) = v13). Notice that all
of the added vectors wk do not violate the previous achieved conditions. Thus we can
conclude that the extension (30) is in any case splitting. 2
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