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Abstract

This paper compares two generators of yearly water availabilities from sources located at multiple sites with regard to their ability to
reproduce the characteristics of historical critical periods and to provide reliable results in terms of the return period of critical sequences
of different length. The two models are a novel multi-site Markov mixture model explicitly accounting for drought occurrences and a
multivariate ARMA. In the case of the multisite Markov mixture model parameter estimation is limited to a search in the parameter
space guided by the value of parameter k to show the sensitivity of the model to this parameter. Application to two of the longest time
series of streamflows available in Sicily (Italy) shows that the models can provide quite different results in terms of estimated return peri-
ods of historic droughts, although they seem to perform more uniformly when it comes to simulate drought-related statistics such as
drought length, severity and intensity. The role of parameter selection for the multisite Markov mixture model and of the marginal prob-
ability of generated flows in providing results consistent with the characteristics of the observed series is discussed. Both models are
applied to the system of sources supplying the city of Palermo (Sicily) and its environs showing the applicability of the newly developed
multisite Markov mixture model to medium-to-large scale water resources systems.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Droughts; Time series; Markov mixture model; ARMA model

1. Introduction

Owing to the growing pressure of civil and agricultural
uses on water resources, multiyear droughts, i.e. periods
lasting more than one year when the availability of water
resources keeps constantly below the expected value, now
raise concern on water planners and managers in many
Mediterranean areas. As a natural phenomenon, they
probably constitute the most severe test bench of the effi-
ciency of a water resources system and are recognised by
many as the real test bench in the planning and manage-
ment of complex systems featuring regulated resources.
Shortcomings in supply and distribution such as poor
maintenance of the network with high level of losses or

unaware management of reservoirs and aquifers may not
produce in normal or wet years any serious inconvenience
to customers, but they will certainly do during prolonged
dry periods. This is particularly true wherever the sustain-
ability index, i.e. the ratio supply/demand is close to one, as
in most Mediterranean countries. In these areas water
resources systems supplying urban areas make frequently
conjunctive use of surface and groundwater sources spread
over large areas and often heavily rely on reservoirs. In
such cases one year can be assumed as the significant time
unit and droughts can be defined as those periods lasting
an integer number of years, when average annual stream-
flow takes on values below a given threshold (Yevjevich,
1967; Dracup et al., 1980a,b). In this framework, drought
frequency analysis allows to gain awareness of the extent
of previous drought events in terms of duration and mag-
nitude and helps predict the riskiest hydrologic situation
from the standpoint of water supply.
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As illustrated in the following section, drought fre-
quency analysis on multiple sites is often performed via
operational hydrology. The first part of the paper is
devoted to introducing a new generator of yearly flows
explicitly accounting for drought occurrences: it is the
extension to the multiple sites case of a Markov mixture
model (Jackson, 1975) for yearly flow generation. The per-
formances of such a model are compared to those of a mul-
tisite ARMA model, a well-established model widely
employed in water resources planning and analysis.

2. Previous work

According to the definition of multiyear drought based
on the theory of runs (Yevjevich, 1967; Dracup et al.,
1980a,b), a drought event can be considered as consisting
of three components: a duration D, a severity S, i.e. the
sum over D of deficits respect a given threshold, and a mag-
nitude or intensity M = S/D. Based on this definition, both
simulation studies have been carried out in order to fit
probability distributions to drought parameters extracted
from simulated series generated by a streamflow generation
techniques (Millan and Jevjevich, 1971) and analytic distri-
butions have been fitted directly to historical data to obtain
the probability distribution of maximum drought duration
and severity. Other approaches to multiyear drought fre-
quency analysis based on the above definition include the
application of multiple linear regression techniques to
derive estimates of drought parameters using watershed
and climatic information (Paulson et al., 1985) as well as
the use of hazard-function models to reproduce the dura-
tion-dependent termination rate of a drought data set
(Lee et al., 1986).

A noticeable extension of this approach to a region is
that provided by Santos (1983) introducing two critical
thresholds to define regional droughts: one for precipita-
tion values and one for the drought-affected area. The
author is hence able to provide a complete stochastic char-
acterisation of meteorological (i.e. concerning precipita-
tion) regional droughts by deriving the probability
distribution of a number of drought-related parameters
that take account of the areal extent of the drought phe-
nomenon. The results of Santos (1983) may be in principle
applicable to hydrologic drought frequency analysis. When
considering streamflow, however, considerable difficulties
are encountered. This is due not only to the limiting
assumptions on the variable under study, but chiefly to
the nature of the flow process which is discrete over space,
being the watershed the discretization unit. Therefore, sim-
ulation by operational hydrology seems to be one of the
few viable paths to perform risk assessments connected to
hydrologic droughts at multiple sites.

However, drought frequency analysis has also been car-
ried out following a different strategy, i.e. ignoring the
above definition of drought, using operational hydrology
to reproduce the marginal distribution functions of flows
or rainfall and subsequently analysing the simulated series

to obtain information on dry periods. The works of Srikan-
than and McMahon (1985) and Frevert et al. (1989) illus-
trate how frequency analysis of dry periods may be
carried out on simulated series by either assessing the aver-
age values of the smallest n year totals (being n the drought
length) contained in a number of replicates of length N
(being N the return period) or by counting the number of
occurrences of a flow below a specified level (the truncation
threshold) over 1–n years interval. The average of occur-
rences over the generated series provides an estimate of
the non exceedance probability of a given flow level.

Ever since its coming to light, operational hydrology has
been used as a tool for frequency analysis. The paper of
Srikanthan and McMahon (2001) contains a review of
models available up to date for the generation of synthetic
yearly flows. The family of ARMA models has been widely
used for such purpose, as well as different types of Markov
models. Their applications in hydrology at all time scales
are countless and it would be impossible to report them.
Their underlying conceptual basis at yearly scale has been
investigated, among the others, by Salas and Obeysekera
(1992) and by Claps et al. (1993). In particular, Claps
et al. (1993) consider runoff as generated by a linear system
featuring two parallel linear reservoirs (one for the ground-
water component with over-year response lag and one for
the subannual component) and a zero-lag linear channel.
Input to the system is the effective rainfall. Two models
for yearly flows are compatible with such a conceptual
model of runoff: a white noise for ephemeral streams with
no groundwater component from previous years and an
ARMA(1,1) model for streams for which such a ground-
water component is significant. The seasonal streamflow
models consistent therewith are a PIR-ARMA(1, 1) (peri-
odic independent residual ARMA) model and a PIR-
ARMA(2,2) model, respectively.

More recently Thyer and Kuczera (2000) focused on the
long-term persistence of dry and normal years and the need
for explicitly incorporating such alternation in generation
models, and highlighted this as a consequence of the spe-
cific climatic features of certain areas of the world where
the interaction of global climatic mechanisms produces
alternating wet and dry regimes in hydroclimatic time ser-
ies. Thyer and Kuczera (2003a,b) have also proposed an
extension to the multi-site case of the hidden state Markov
model for modelling long-term persistence in precipitation
records. In the Mediterranean, some kind of dependence
between ENSO (El Nino Southern Oscillation) and inter-
annual climatic variability has been highlighted (Mariotti
et al., 2002) and this may constitute a further motivation
for basing yearly generation techniques on models explic-
itly allowing for the alternation of dry and normal years.

3. A space–time model for drought occurrences

The simplest way to take droughts explicitly into
account when modelling yearly flows is to classify years
either as normal or as dry. The alternation of dry and

C. Arena et al. / Physics and Chemistry of the Earth 31 (2006) 1146–1163 1147



Aut
ho

r's
   

pe
rs

on
al

   
co

py

normal years can therefore be viewed as a two-state binary
process in which a dry year represents a failure (state 1) and
a normal year a success (state 0). Concerning the form of
such a process, a two-state homogeneous Markov chain
with transition probabilities a (from dry to normal years)
and b (from normal to dry years) has been proposed by
Jackson (1975) and Gottschalk (1976) and it is an underly-
ing assumption in probabilistic models proposed of maxi-
mum drought duration and severity (Güven, 1983). More
recently, Thyer and Kuczera (2000) propose a hidden state
Markov process to generate hydroclimatic time series with
long-term persistence.

State transition probability b from normal to dry years
is not independent of a, rather it is linked thereto by

b ¼ k=ð1� kÞ � a ð1Þ

where k is the steady-state probability that the process is in
state 1. It is equivalent (Benjamin and Cornell, 1970) to the
fraction of years in which the process is in state 1. Persis-
tence dictates that a + b < 1. The larger the value of
a + b, the closer are annual flows to independence: a is in
fact linked to the first-order serial correlation coefficient
q1 as illustrated in Section 5.

Let now si (i = 1, . . . ,n) be a site where a supply source is
located. Each supply source is characterised by a value of ai

controlling the at site transition mechanism from dry to
normal years or vice-versa. A simple space–time model
for drought occurrences can be thought as being the sum
of two independent binary processes, one allowing for the
pairwise space dependence of the occurrence process of a
normal/dry year at site s Xs,t on the occurrence process
Xk,t of a normal/dry year at site k (the ‘‘key’’ site for site
s) over N years, the other taking into account the charac-
teristics of the transition mechanism at each site:

X s;t ¼ V t � X k;t þ ð1� V tÞ � Ut; t ¼ 1; . . . ;N ð2Þ

where Vt is an independent binary process having Bernoulli
marginal distribution with parameter csk and Ut is a two
state homogeneous Markov chain with transition probabil-
ity ai and marginal distribution with parameter dt = k.

A model of this kind (a Discrete Autoregressive Process
of order 1 in the time domain) has been used to model
monthly streamflows for ephemeral streams featuring zero
flows by Chebaane et al. (1995) and in the space domain by
Straziuso et al. (1998) to model space dependence of zero
monthly rainfall.

A model such as (2) for drought occurrences can be
viewed as deriving from the following physical scheme: Vt

with its parameter csk regulates the space dependence of
occurrences of dry and normal years between sites. Such
a space correlation can be plausibly thought to be derived
chiefly from a climatic homogeneity of the area, that is,
space correlation of normal/dry years is controlled by rain-
fall. On the other hand, each site is characterised by a cer-
tain degree of persistence derived from each watershed’s
features, so that the final value of Xs,t is the superposition
of both effects. Such an interpretation of (2) may be appeal-

ing in view of a regional estimation of parameter csk, which
may be performed on precipitation records.

Transition probabilities of process Xs,t can be derived by
applying the axiom of joint probability (see Appendix A1
for details) to the set of values of Xk,t, Vt and Ut. Transition
probabilities P01 (from dry to normal years) and P10 (from
normal to dry years) are a function of k, of the transition
probability from dry to normal years of the key site, ak,
of the at-site transition probability of process Ut, ai, and
of csk.

Parameter P01 varies linearly with ai and ak and qua-
dratically with csk: Fig. 1 shows P01 vs. csk for various ai

values and for ak = 0.4. It can been seen that P01 is quite
sensitive to the value of csk, i.e. to the correlation of process
Xs,t with process Xk,t at the key site.

4. Mixture distribution for flow values

In this model, the marginal distribution of flow values is
a direct consequence of the model of drought occurrences.
In fact, if the flow process is modelled as an alternation of
normal and dry years where k represents the average num-
ber of years when a year can be classified as dry, the overall
distribution of flows P will be a mixture (or compound) dis-
tribution of two populations, one for dry years and one for
normal years. Such a distribution is in general bimodal
with non zero skewness. If the two subpopulations are
assumed to be normal Nðli; r

2
i Þ with i = 1,0, P is given by

Pðl; r2Þ ¼ k � Nðl1;r
2
1Þ þ ð1� kÞ � Nðl0; r

2
0Þ ð3Þ

First and second-order moment of (3) are provided by
Jackson (1975); the third-order moment of the mixture
distribution is derived in Appendix A2. Fig. 2 shows the
skewness coefficient c for a given k as a function of ratios

ai = 0.65 
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Fig. 1. Transition probability P01 of process Xs,t from dry to normal years
vs. csk values for transition probability ak = 0.4 of key site and k = 0.35.
Plots are given for at-site transition probabilities ai from 0.05 to 0.65.
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l1/l0 and r1/r0. It shows that the model is able to generate
flows with different c.

Two models are selected for reproducing autocorrela-
tion of the historic series (Jackson, 1975): in the first one,
the attribution of a flow value to each year is made with
no reference to the flow value in the past year or years;
in the second one, the following generation scheme is
proposed:

qtw ¼ lw þ q0
rw

ri
ðqt�1;i � liÞ þ rwe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q02

p
ð4Þ

Eq. (4) presents the most general situation of a flow qtw

occurring in a year t of type ‘‘w’’ (e.g. dry) to be generated
from the flow value occurred in the preceding year which
was of type ‘‘i’’(normal). Values li, lw, ri and rw are mean
and standard deviation of flows of type i and w, e is a nor-
mal standard deviate with zero mean and unit variance and
q 0 is a coefficient providing further correlation between
flows in consecutive years. Fig. 3 shows how the lag-one
correlation coefficient q1 varies with the coefficients of vari-
ations of the two normal (for dry and wet years) distribu-
tions for four different values of P01 (the expression of q1

may be found in Jackson (1975) for both models). For each

value of P01, two q1 vs. r1/l1 curves are plotted: one with
q 0 = 0 and one with q 0 = 0.90 to help visualize the region
of variability of q1 with q 0. It should be observed that there
are limitations to the values which can be taken on by q1

for a given transition probability of the series: for instance,
with a fraction k of dry flows equal to 0.35, the greatest
admissible value for q 0 = 0.99 will produce in a site with
P01 = 0.4 and with r1/l1 = r0/l0 = 0.1, a q1 not greater
than 0.41. This may result in an under estimation of auto-
correlation coefficient in the generated series.

The lag-0 correlation qsk between contemporaneous
flows at sites s and k provided by the model is derived in
Appendix A3 for the case in which k is the key site for s.
The value of qsk turns out to be a function of k, of the dis-
tribution parameters lðsÞi , lðkÞi , rðsÞi and rðkÞi (i = 0,1), of q 0(s)
and q 0(k) and of csk. Extensions to other cases in which
both s and r are sites with the same key site or s and r

are sites with different key sites are also possible.

5. Parameter estimation

For the generation of flows at n sites there are 7n param-
eters to be estimated, namely the value of k (one for all
sites), i.e. the fraction of flows to be considered dry, the
four parameters of the two normal distributions l1, l0,
r2

1, r2
0, the transition probability ai, the value of q 0 and

for all sites but the key site, the value of csk.
Techniques for the contemporaneous estimation of

parameters l1, l0, r1, r0 and k of a mixture distribution
are reported by Jackson (1975). The Gibbs sampler is used
in a Bayesian framework by Thyer and Kuczera (2000) to
provide simultaneous estimation of the model parameters
in the single-site case and in the multiple site case (Thyer
and Kuczera, 2003b) for a hidden-state Markov process.
However, all of these methods require a sample size which
can be very seldom found in real-world applications as far
as contemporaneous series of river flows and spring yields
are concerned. In addition, the actual purpose of the paper

 0.05

0.35
0.45

 0.25

0.55
0.65

0.75

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0.0 0.2 0.4 0.6 0.8 1.0

μ1/μ0

C
oe

ff
ic

ie
nt

 o
f 

sk
ew

ne
ss

0.90

0.95

1.00

Fig. 2. Skewness coefficient c of a compound distribution vs. l1/l0 for r1/
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is to introduce and evaluate a model for drought frequency
analysis; hence, for exploratory purposes, we may resort to
simpler methods of estimation, but a comparison between
these results and those that could be obtained by more rig-
orous estimation procedures is in order.

One can therefore explore the parameter space by fixing
k, the percentage of flows which must be considered as
belonging to the population of low flows, and deriving
the other parameters as follows: estimates of l1, l0, r1,
r0 are obtained as the sample mean and standard deviation
of the two sub-populations; estimates of ak, the transition
probability at the key site, may be obtained from the his-
toric record of normal and dry years through the relation-
ships linking mean and variance of drought length to ak,
(Jackson, 1975); as for the estimation of ai, physical consid-
erations should lead to the selection of its appropriate
value, ranging from low values for those supply source with
long-term persistence (e.g. springs) to higher values, close
to independence, for supply sources such as ephemeral
streams. The investigation of this issue is in order: the pro-
visionally adopted criterion is to select the ai value
which yields a value of the transition probability P ðsÞ10 that

allows an adequate reproduction of the lag-1 correlation
coefficient of the series with a q 0 ranging from 0 to 1.
The values of csk may be obtained from the expression of
the lag-0 coefficient between site s and its key site k in
such a way that the lag-0 correlation between one site
and its key site is preserved. Fig. 4 illustrates the estimation
procedure.

6. Model verification

Testing of a streamflow generation technique is usually
performed by controlling that some statistics of the historic
record are preserved by the model. Such statistics are usu-
ally the first three moments of the marginal distribution of
flows and the autocorrelation function of the flow process.
When applying a model for drought frequency analysis,
however, it is advisable to perform specific validation on
some drought-related statistics that can be extracted from
the series (Salas, 1993). A well established procedure (e.g.
Frick et al., 1990) is to generate a large number of simu-
lated series, say 150, of the same length as the historic
record and to identify in each of such series the longest

Select a value of λ (one for all sites) = number of dry years/series length (N)

KEY SITE DEPENDING SITE

Estimate μk, σ2
k, ρ1k, ρks

Estimate sample mean μs , variance σ 2
s, lag 1 

correlation coeff. ρ1s

According to the choice of λ, identify the pattern 
of dry and normal year in the series; estimate ak =
P10 for the key site using E[L] = 1/ak, being L the 

drought length

Estimate sample mean and variance of the two 
subpopulations of dry an normal flows 

μ1s,σ1s
2,μ0s,σ0s

2

Estimate μ1k, σ1k
2 , μ0k, σ0k

2

Select a first trial value for ρ's

Use A.3.11 to estimate γskWhen deemed necessary to obtain the observed 
ρ1, Estimate ρ’ from the relationshipρ ’

k = ρ’ k(ρ1,
μ1k,σ1k, μ 0k, σ0k, λ, ak)

Select a first trial value for ai

Estimate P(s)
10 from the relationship P(s)

10 = 
P(s)

10 (γsk, ak, ai)

Is the resulting value of ρ1=(ρ's, μ1s, σ1s, μ0s, σ0s, λ, P(s)
10)

close to the sample one? If yes, the estimation 
procedure terminates, otherwise select a new ρ's

and ai value

Fig. 4. Parameter estimation procedure of a multisite Markov mixture model for the key site and the depending sites.
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drought duration Dmax and the greatest cumulate deficit
Smax. Averages of Dmax and Smax over the 150 series are
then compared with the historic drought statistics. In this
section, both drought duration and severity are assessed
with reference to the long term mean. Another useful statis-
tics is the greatest drought intensity Imax (I equals drought
severity divided by its duration).

The two longest historic records available in Sicily have
been used for model verification: one is the entire series
(1928–1980) of yearly flows of San Leonardo river at Mon-
umentale, the other is the 74 years. long series of flows of
Oreto river at Parco. Table 1 contains a comparison of his-
toric and generated basic statistics and Table 1a contains a
comparison of historic and generated drought statistics
(average values over 150 series). Three different values of
k (0.20; 0.35 and 0.50) were used for model calibration, as
the model appears to be quite sensitive to the choice of this
parameter, as will be illustrated in the following section.
Oreto at Parco was used as key site and flows at both sites
were generated according to the guidelines of the preceding
section. The model appears to reproduce first and second-
order moment of the marginal distribution of flows quite
satisfactorily as well as the lag-1 autocorrelation coefficient
q1, with slight overestimations of q1 for S. Leonardo at
Monumentale (the ‘‘depending’’ site) as k decreases. Skew-
ness is reproduced far less accurately, as it was expected as it
is not used in any step of the estimation procedure. Also the
lag-0 coefficient of flows seems to be well reproduced by the
model, with increasing overestimations as k decreases. As
far as the drought-related statistics are concerned, the
model provides series with longer average and maximum
drought durations than the observed ones for Oreto a Parco
and longer average, but shorter maximum durations for S.
Leonardo a Monumentale. Drought severity (both average
and maximum) is slightly overestimated for Oreto at Parco
while maximum drought severity for S. Leonardo at Mon-
umentale is underestimated, especially for bigger k values,
while average values are well reproduced. Both average
and maximum drought intensity supplied by the model
appear to be consistent with the observed ones for both test
records. There exists some kind of sensitivity of the drought
statistics to k, especially for San Leonardo a Monumentale,
where decreasing ks provide values of maximum drought
severity closer to the observed one. However, based on these
results, it seems that all k values feature advantages and dis-
advantages from the standpoint of the reproduction of the
observed drought statistics, so that it hardly makes sense
to select a ‘‘best’’ or optimal k value if some kind of likeli-
hood function is not defined. This issue is clearly closely
related to that of parameter estimation and will be the
object of a future work.

Tables 1a and 1b also report basic and drought statistics
for a bivariate ARMA model of yearly flows of Oreto a
Parco and San Leonardo a Monumentale. A similar model
will be used in Section 9 to perform a comparison with the
novel multisite Markov mixture model on their perfor-
mances in drought simulation. Details on the identification T
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and estimation procedure are provided in Section 8. Model
identification led to assume that S.Leonardo river at Mon-
umentale follows an ARMA(0, 0) (a white noise) process
and Oreto a Parco can be modeled as an AR(1). First
and second-order moment of marginal distributions as well
as cross correlation between flows at the two sites are
reproduced quite well by the model; as no transformation
is applied to reproduced asymmetry, the generated third-
order moment is null for both series. This seems, however
to have little impact on the drought statistics, that are quite
close to the historic ones with the exception of an underes-
timation of maximum drought duration and severity for S.
Leonardo a Monumentale and a slight overestimation of
the same statistics for Oreto a Parco. Overall, such behav-
iour is very similar to the one observed for the multisite
Markov mixture model.

7. Model application

The model has been applied to analyse multiyear
drought occurrences in the water resources system supply-
ing Palermo and its environs (Fig. 5). This system is pres-
ently constituted by three reservoirs, four spring-groups,
three major well-fields and a number of small intakes from
rivers. This water system supplies around one million
inhabitants of the crowded north-western coast of Sicily
as well as irrigation districts and industrial areas. This area
has experienced a five-year drought which commenced in
water year 1988/1989 and lasted at least until water year
1992/1993, although some supply sources did not recover
from drought until water year 1995/1996. A detailed
description of this drought event is reported in Mazzola
et al. (1999). Drought severity had a peak in 1989/1990
when the reduction of water yield was about 60% of the
long term mean.

In this paper, the supply sources considered for risk
assessment are the three reservoirs of Scanzano, Piana degli
Albanesi and Poma and the three spring groups of Scillato,
Gabriele and Risalaimi. For all of the sources considered
historic records of different length and quality are avail-
able: the Palermo water company (AMAP) supplied water
yield data for springs and all the information needed to
draw monthly budgets among stored, withdrawn and lost
water volumes in reservoirs.

Since the length of the various records in the data set
was not homogeneous, it was decided to consider a com-
mon period for all supply sources starting in water year
1967/1968 and ending in 1995/1996. The data set also
exhibits inconsistencies. For each river basin featuring
missing data, inconsistencies were filled by developing sim-
ple regression relationships among flow in month i, precip-
itation over the catchment area in month i and flow in the
preceding month. Although considerable discrepancies are
observed between recorded and reconstructed flows in
some month, especially in summers, the predicted monthly
means and standard deviations are rather reliable, and so
are the aggregated yearly values.T
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Parameter estimation was performed according to the
guidelines of the previous section: parameters are reported
in Table 2 for a choice of k = 0.35. Given its central posi-
tion in the area under study, Scanzano reservoir was
selected as key site for three other sites: Piana reservoir,
Scillato and Risalaimi springs. Poma reservoir has Piana
reservoir as a key site (see Fig. 5). Gabriele spring does
not show any significant correlation with the other sites
and is hence modelled independently. The effect of path
selection on model performance was not investigated. A
series of 20,000 yearly flows was generated for each site
for three different values (0.20, 0.35 and 0.50) of k, the frac-

tion of flows over the series’ length to be considered low:
Table 3 shows a comparison between historic and gener-
ated mean, standard deviation, coefficient of skewness
and first serial correlation coefficient q1, for k = 0.35.

8. Multisite ARMA model for yearly flow generation

In order to compare the results supplied by the multisite
Markov mixture model (M.m.m. in the following) and con-
trast its performances, a multivariate ARMA model has
been fitted to the series. The modelling approach suggested
by Salas et al. (1980) and Loucks et al. (1981) is followed

Fig. 5. The Palermo water resources system. Red circles indicate civil demand centers. The green area west is the irrigation area supplied by Poma
reservoir. The large gray area is the Palermo urban area. (For interpretation of the references in colour in this figure legend, the reader is referred to the
web version of this article.)

Table 3
Comparison of historic (h) and generated (g) (Multisite Markov mixture model – k = 0.35) basic statistics for the sites considered

Sites l [106 m3] r [106 m3] c q1

h g h g h g h g

Reservoirs Scanzano 16.80 16.98 8.31 8.39 0.10 �0.01 0.55 0.56
Piana degli Albanesi 14.19 14.30 4.76 4.74 �0.79 �0.79 0.29 0.30
Poma 42.98 43.34 16.91 16.74 �0.16 �0.21 0.18 0.43

Springs Scillato 19.92 19.65 3.08 3.13 �0.95 �0.82 0.72 0.49
Risalaimi 7.89 7.88 1.84 1.86 �0.22 �0.30 0.38 0.39
Gabriele 5.45 5.44 0.48 0.49 �0.13 �0.12 0.73 0.75

Table 2
Estimated parameters of the multisite M.m.m. for the selected sites – k = 0.35

Sites l1 [106 m3] r1 [106 m3] l2 [106 m3] r2 [106 m3] ai q 0

Reservoirs Scanzano 8.06 4.16 21.17 6.09 0.30 0.40
Piana degli Albanesi 8.42 3.03 17.08 1.99 0.40 0.20
Poma 24.69 8.23 53.57 10.00 0.30 0.00

Springs Scillato 16.34 2.37 21.71 1.31 0.05 0.99
Risalaimi 5.86 1.09 8.91 1.16 0.05 0.40
Gabriele 4.93 0.31 5.71 0.33 0.05 0.30
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based on the assumption of diagonality for the coefficient
matrices U and H. This implies, in the general multi-site
ARMA(1,1) model for the generation of N yearly flows at
n sites,

Xt ¼ UXt�1 þ Vt �HVt�1 ð5Þ

the elements of U and H are the parameters of univariate
ARMA(1,1) models fitted at each site. In (5) Xt is an
n · 1 vector of normally distributed flow residuals (zero
mean) occurring at the n sites at time t and Vt is an n · 1
vector of normally distributed random fluctuations with
covariance matrix G. Spatial correlation among concurrent
flows at different sites is provided by the innovations Vt

which are independent in time, but correlated in space,
through their covariance matrix.

Under the assumption of diagonality for U and H, the
model fitting process consists of two independent stages:
estimation of /1i and h1i, i = 1, . . . ,n and estimation of G

conditioned on U and H.
As far as the first step is concerned, a mixed approach,

based on traditional analysis and on conceptual congru-
ency was followed. Model selection according to tradi-
tional analysis is based on the study of the empirical
autocorrelogram and on the empirical partial autocorrelo-
gram of the series to which a model is to be fitted (e.g. Salas
et al., 1980), whereas the conceptual framework proposed
by Claps et al. (1993) restricts the choice of a model for
flows at annual scale either to a white noise for ephemeral
streams or to an ARMA(1,1) process for streams with a
significant groundwater component. For springs, a third
choice, namely an AR(1) process, is compatible with the
conceptual scheme proposed by Claps et al. (1993).

The historic records were tested for normality by Pear-
son’s test, the hypothesis of normality for all of the series
could not be rejected at a 5% significance level, but that
of Scillato spring.

Estimation of parameters / and h was carried out as a
first trial by method of moments and the thereby estimated
parameters were used as starting point for the search of
parameters / and h minimising the sum of squares of resid-
uals. For each choice of / and h, residuals were obtained
by iterative backward procedure (Box and Jenkins, 1976).

An AR(1) model was fitted to the three spring groups
after examination of partial autocorrelogram and as a

result of Least Square (LS) estimation of parameters which
provided values of h of around 10�2.

Selection of a model for the remaining sites was a more
controversial issue: physical grounds suggest that persis-
tence should not be strong for these rivers which are char-
acterised by a reduced groundwater contribution; on the
other hand, data analysis via empirical autocorrelograms
and partial autocorrelagrams and parameter estimates
seem to indicate the contrary. The reason of such discrep-
ancy is to be sought in the reduced length of the record
used for calibration, containing a long dry period; how-
ever, ignoring persistence may lead to underestimate his-
toric drought parameters; thus, it was decided to accept
the ARMA(1, 1) as a model for yearly flows of these
streams. The results of the estimation procedure are
reported for all the sources considered in Table 4.

Model calibration for each site si allowed to obtain
residuals eit: it is assumed that residuals can be expressed as

eit ¼ Bnit ð6Þ

in which eit is a vector (1 · s sites) of residuals independent
in time but spatially correlated, B is a matrix (s · s) of coef-
ficients and nit is a vector (1 · s sites) of normal standard
deviates with zero mean and unit variance. Before the esti-
mation of B, eits were tested for normality and for lack of
correlation of time via the Portmanteau lack-of-fit test.

Estimation of elements of B was carried out according
to Salas et al. (1980), considering that the covariance
matrix of residuals G is the Gramian of matrix B (Bras
and Rodriguez Iturbe, 1993). The covariance matrix of
residuals G was estimated by the method of moments (Ste-
dinger et al., 1985). It should be observed that asymmetry
is not well reproduced by the model as a consequence of the
assumption of normality of the series; however, no trans-

Table 4
Estimated parameters for the at-site ARMA(p,q) models

Sites / r(/) h r(h) r2(�) R2

Reservoirs Scanzano 0.858 0.145 0.473 0.25 0.6498 0.35
Piana degli
Albanesi

0.750 0.259 0.436 0.350 0.7816 0.22

Poma 0.844 0.341 0.727 0.44 0.9244 0.08

Springs Scillato 0.732 0.149 – 0.219 0.4642 0.54
Risalaimi 0.578 0.226 – 0.277 0.389 0.61
Gabriele 0.882 0.086 – 0.182 0.0395 0.96

Table 5
Comparison of basic statistics of historic (h) and generated (g) series by ARMA MOM

Sites l [106 m3] r [106 m3] c q1

h g h g h g h g

Reservoirs Scanzano 16.80 16.70 8.31 7.74 0.10 0.16 0.55 0.51
Piana degli Albanesi 14.19 14.11 4.76 4.56 �0.79 0.03 0.29 0.26
Poma 42.98 43.35 16.91 16.37 �0.16 0.20 0.18 0.14

Springs Scillato 19.92 19.88 3.08 3.04 �0.95 �0.05 0.72 0.73
Risalaimi 7.89 7.86 1.84 1.87 �0.22 0.00 0.38 0.40
Gabriele 5.45 5.46 0.48 0.51 �0.13 0.01 0.73 0.74
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formation was applied either to the data or to residuals to
reproduce asymmetry (Table 5).

9. Data analysis for drought frequency assessment

The data generated for each site at year i are summed to
give the overall water yield of the whole system in year i.
20,000 years have been generated for each site. The analysis
of the yearly overall water yield was performed using the
procedure described by Frevert et al. (1989), i.e. by first
dividing the 20,000 years series in 20 sub-series of 1000 years.
In each of such 1000 years series, 1000 � n + 1 sequences of
n years (n = 1,2, . . . , 8) are considered by shifting each time
the starting point of one year. The overall water yield in each
sequence of n years is compared to a volume varying from
1800 Mm3 to 5 Mm3 i.e. in a range from circa 0.2 to 15 times
the mean annual yield of all supply sources. The number of
times in which the overall water yield in a n-years sequence is
smaller than the given threshold is divided by the number of
n-years sequences contained in the twenty 1000 years series
to give the non-exceedance probability of a given water yield
in n years. Results are visualised in Figs. 6a and 6b. The
graphs in Fig. 6 can be used to assess the return period of var-
ious historical droughts: in water year 1989–1990, for
instance, historical data indicate that the overall water yield
was 44.3 Mm3 corresponding on the curve n = 1 year, to a
non-exceedance probability ranging from 0.013 for the Mar-
kov mixture model with k = 0.20 and 0.0033 for the ARMA.
Such probabilities are equivalent to a return period of
respectively 77 years and 303 years. Similarly, in water years
1988/1989 and 1989/1990 the overall water yield was of
105.8 Mm3, corresponding, for n = 2 years, to a return per-

iod ranging from 273 years for M.m.m with k = 0.20–
688 years for M.m.m with k = 0.35 and ARMA gives
344 years. However, although some source displays flow val-
ues higher than the average also in 1991/1992 or 1993/1994,
drought did not terminate until the very wet water year 1995/
1996, during which all reservoirs refilled completely. There-
fore, one is interested in assessing the return period of the
overall volume made available by the sources during the
seven water years from 1988/1989 to 1994/1995 that can be
regarded as a single drought phenomenon: for n = 7 and
an overall water yield of 522 Mm3, one reads in Fig. 6b
non-exceedance probabilities ranging from 0.0046 for the
M.m.m. with k = 0.35 and 0.010 for the multisite ARMA,
corresponding to a return period of 217 and 98 years, respec-
tively. The M.m.m with k = 0.20 has an identical value to
ARMA i.e. an estimated return period equal to 97 years.

This comparison shows that the two models can lead to
quite different results, with return periods generated by the
multisite M.m.m showing a considerable sensitivity to the
value of parameter k, although ARMA and M.m.m
k = 0.20 supply similar results, with M.m.m k = 0.20 pro-
viding lower return periods for almost all of the critical
sequences.

These results have been obtained using the series of the
aggregated values of flows. Some of the questions arising
from these results include: (1) are the models able to repro-
duce spatial correlation? They may actually give place to
marginal (at-site) series with a good reproduction of his-
toric droughts frequency and severity, but may produce
overall water availabilities not consistent with the historic
pattern of dry periods; (2) are the models capable to repro-
duce marginal droughts per se at all? (3) is it possible to
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Fig. 6a. Non-exceedance probabilities of given system’s overall water yields (logarithmic plot) in n (1, 2 and 3) years according to multivariate ARMA
(solid line), multisite Markov mixture model with k = 0.20 (dashed), multisite Markov mixture model with k = 0.35 (dotted) and with k = 0.50 (dash–
dotted line). Horizontal dotted lines are critical historical sequences of 1, 2 and 3 years (cumulated flow values are reported in brackets).
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identify some optimal k value for the multisite M.m.m from
the standpoint of drought simulation? In order to investi-
gate these issues, the return period of critical sequences
of different length was assessed for each site and for the
combination of sites for different values of k (0.20, 0.35
and 0.50), as illustrated in Tables 6a and 6b. Before dis-
cussing the results of Tables 6a and 6b, Fig. 7 can also
be helpful to understand the different responses provided
by the models. It represents the lower tails of the generated
cumulative distribution functions (cdf) of yearly flows of
Oreto a Parco, San Leonardo a Monumentale and the
sum of flows of both sites together with the empirical cdfs
estimated by nonparametrical kernel methods (Silverman,
1986). The reason of choosing these two sites clearly resides
in the interest for the behaviour of long series and in the
availability, for these two sites, of the drought statistics
introduced in Section 6. Fig. 7 also contains a table where
the return period of historical critical periods lasting n

years is shown in an identical fashion as in Tables 6a and
6b. From the plots it is clear that at least for k = 0.20
and k = 0.35, the multisite M.m.m is able to reproduce clo-
sely the empirical cdf of flows for Oreto at Parco, whereas
the ARMA model seems to fit better than the M.m.m the
empirical distribution of San Leonardo and of Oreto + S.
Leonardo. The goodness of fit of such lower parts of the
cdfs to the empirical one has consequences on both the esti-
mated return periods and, to some degree, on the drought
statistics. For S. Leonardo river, the cdfs of the multisite
M.m.m. with k = 0.35 and k = 0.50 are completely domi-
nated by the historic one which may explain the underesti-
mation of maximum drought severity and the very high
estimated return period for n = 7 years. On the other hand,
M.m.m. with k = 0.50 and ARMA provide almost identical
maximum drought severities and very different return peri-

ods for the 7 years critical period; this could be due to a dif-
ferent way of generating the severest critical periods for the
two models: ARMA generates averagely shorter but more
intense critical periods, whereas multiyear droughts gener-
ated by the M.m.m are averagely longer and less intense.
The cdf provided by the ARMA model crosses the histor-
ical one at smaller values than M.m.m. with k = 0.20 and
this explains why the ARMA and the M.m.m. with
k = 0.20 provide smaller return periods respectively for
smaller and larger n values. Similar considerations also
hold for the sum of flows of Oreto and S. Leonardo.
Return periods for lower ns are better estimated by the
ARMA model; however, as the pdf of the ARMA model
tends to diverge from the historical empirical one for rela-
tively low values of flow, estimations provided by the other
models tend to be more reliable for higher n values, with
M.m.m. k = 0.20 supplying very similar values to those
generated by ARMA for n = 7.

Back to the application with six sites, as lower return
periods are generated by more conservative models, results
of Tables 6a and 6b confirm that only in some cases is the
novel multisite M.m.m. able to provide drought frequen-
cies that are more conservative than its ARMA counter-
parts both at-site and overall. Firstly, it should be
observed that, for most site combinations and for all of
the selected ks, the M.m.m. is able to provide single-year
droughts as severe or more severe than the historical one
more frequently than the ARMA model; this is still clearer
in Table 6b where no return period for n = 1 generated by
the multisite M.m.m. is higher than those generated by the
ARMA model. Although the above examples show that
this fact does not necessarily imply that the marginal distri-
bution of flow is better reproduced by the M.m.m. than by
the ARMA model, this provides some further evidence of
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Fig. 6b. Non-exceedance probabilities of given system’s overall water yields (logarithmic plot) in n (4 . . . , 8) years according to multivariate ARMA (solid
line), multisite Markov mixture model with k = 0.20 (dashed), multisite Markov mixture model with k = 0.35 (dotted) and with k = 0.50 (dash–dotted
line). Horizontal dotted lines are critical historical sequences of 4, 5, 6 and 7 years (cumulated flow values are reported in brackets).
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Table 6a
Estimated return period (in years) of historical critical sequences lasting n years (from 1 to 7) according to multisite M.m.m. and multivariate ARMA for each source

Years Reservoirs

Scanzano Piana degli Albanesi Poma

Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA

0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50

1 0.6 27 76 108 171 2.9 40 53 47 113 11.6 60 52 39 65
2 3.0 284 2111 594 233 7.1 633 655 339 422 29.7 110 209 71 147
3 14.5 38 121 78 40 17.2 85 133 90 98 56.1 88 176 73 142
4 19.4 53 284 142 52 22.0 339 655 271 253 72.8 231 679 147 365
5 29.4 48 165 81 38 28.5 463 1727 396 358 100.1 181 731 162 322
6 41.1 39 96 54 29 39.7 234 475 151 174 146.9 61 122 60 95
7 46.8 53 178 78 36 48.4 243 463 148 168 174.0 76 164 76 119

Springs

Scillato Risalaimi Gabriele

Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA

0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50

1 13.7 14 19 24 43 3.5 90 161 179 100 4.6 47 21 34 25
2 26.8 48 41 56 84 8.6 88 139 144 82 9.2 38 25 37 27
3 40.4 78 54 83 107 14.1 78 128 110 85 13.9 35 28 39 28
4 55.1 79 57 86 97 19.5 114 190 132 119 19.0 18 14 20 19
5 72.7 50 35 53 59 25.0 137 240 124 161 24.4 11 8 10 12
6 89.2 41 30 43 52 32.1 76 125 71 103 29.7 8 6 7 10
7 106.9 32 24 34 44 38.8 60 92 58 88 35.1 6 4 5 8
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the role played by the shape of the lower tail of the mar-
ginal pdf in the assessment of the return period. In any
case, when it comes to generating multiyear droughts, the
M.m.m. performs less uniformly, both at site and overall.
This may seem strange, given that the M.m.m. is designed

to produce long sequences of dry years, but the features of
the distribution function of the subpopulation of dry flows
are probably not able to grant, even in the case of model 2,
that a dry year following a very dry year should be very dry
as well. This may be the reason why the model seems to

Table 6b
Estimated return period (in years) of historical critical sequences lasting n years (from 1 to 7) according to multisite M.m.m. and multivariate ARMA for
different combinations of the supply sources and overall (all sources summed together)

Years Piana + Scanzano Scillato + Risalaimi

Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA

0.20 0.35 0.50 0.20 0.35 0.50

1 3.5 35 64 77 422 17.2 42 104 100 142
2 10.1 905 3800 422 904 35.8 160 213 162 153
3 31.8 56 121 84 76 54.7 200 317 250 202
4 41.4 114 487 202 125 74.9 263 253 260 218
5 57.9 156 358 165 99 97.7 211 162 179 158
6 80.8 80 143 86 61 122.4 107 94 106 110
7 95.3 111 211 98 69 145.7 96 76 86 99

Piana + Scanzano + Poma Overall

Critical sequence
[106 m3]

k ARMA Critical sequence
[106 m3]

k ARMA

0.20 0.35 0.50 0.20 0.35 0.50

1 15.1 66 76 72 253 44.3 77 116 98 303
2 39.8 633 1357 311 500 105.8 273 698 454 345
3 87.9 121 283 135 178 183.9 98 273 252 153
4 114.2 322 1461 339 404 240.7 415 1083 656 400
5 158.1 333 1357 380 306 316.2 419 1385 804 348
6 227.7 109 211 107 111 393.5 434 1074 736 365
7 269.3 158 297 135 127 521.9 97 217 117 98
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3 201 286 800 1333 189 673 51 57 86 32 298 357 645 339 132 
4 342 123 370 1053 156 904 96 99 145 47 475 138 220 233 94 
5 475 120 308 667 179 1124 194 187 256 75 629 131 225 267 123 
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Fig. 7. Lower tails of the observed (solid line) and generated (ARMA-triangles, M.m.m. with k = 0.20 dotted, M.m.m. with k = 0.35-squares, M.m.m.
with k = 0.50-crosses) cumulative probability functions of yearly flows of Oreto at Parco, San Leonardo at Monumentale and the sum of both. Dotted
vertical lines indicate the 1-years. observed critical period. Table reports the estimated return periods of critical observed sequences of various lengths.
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supply more conservative results when the selected k is low
enough (as in the case of k = 0.20) that yearly flows in dry
years are drawn from a distribution with such parameters
that the probability that sequences of dry years actually
have low flow values is increased.

However, the relationship between k and return period
does not appear to be monotonic, as a choice of k = 0.50
provides results that are in some case only slightly less con-

servative than those obtained by selecting k = 0.20 and in
some at-site case even works somewhat better than that
with k = 0.20. This could be due to the fact that the more
frequent occurrence of dry years for k = 0.50 compensates
for its higher values of low flows. In any case, results
obtained by an intermediate k value (k = 0.35) are decid-
edly less satisfying, pointing out that a search in the param-
eter space for the optimal parameter set should be
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Fig. 8a. Historic and generated lag-0 coefficients between site 1, 2 and 3 and the remaining sites.

C. Arena et al. / Physics and Chemistry of the Earth 31 (2006) 1146–1163 1159



Aut
ho

r's
   

pe
rs

on
al

   
co

py

performed in order to ensure good performances of the
model. The optimal criteria to be adopted for such a search
and the related methods shall be the issue of future research
work. However, ultimate evidence of the superiority of a
model on the other, if any, could only be obtained by a
in vivo test of the models, i.e. by using generated data, pos-
sibly disaggregated at the desired time scale, as input to a
simulation model of a multi-source water system and com-

paring the properties of the generated reliability and vul-
nerability-related indices.

Secondly, although more objective and formal criteria
should be provided to test the multisite M.m.m’s ability
to reproduce spatial correlation, cross-analysis of Tables
6a and 6b and Fig. 8 where lag-0 correlation coefficients
between sites are summarized, does not seem to show that
gaining a greater accuracy in the reproduction of spatial
correlation would enhance the results of drought frequency
analysis, as long as the appropriate k is not selected.

10. Conclusions

Two stochastic generation techniques of yearly flows
have been compared with regard to the quality of multiyear
drought frequency assessments at multiple sites they are
able to provide. One of such models, the here introduced
multisite Markov mixture model accounts explicitly for
the alternation of normal and dry years, whereas the other
is the well established multinormal ARMA(p,q). Such a
novel model is motivated by the fact that the evidence that
interactions of global climatic mechanisms with quasi-cyclic
characteristic produce alternating wet and dry regimes in
hydroclimatic time series has been found in a number of
regions and this calls for appropriate models. Properties
of the newly developed model both at-site and jointly are
investigated in terms of transition probabilities, at-site
lag-1 correlation coefficients and lag-0 correlation coeffi-
cients among sites. In the application to drought frequency
assessment of the water resources system supplying Palermo
(Italy), parameter estimation is partly given up in favour of
a search in the parameter space based on different values of
k, the number of years over the series length to be consid-
ered dry. However, an exhaustive technique for parameter
estimation is the major issue of future research efforts. Anal-
ysis of results show a sometimes significant variability of the
estimated return periods with the model and, within the
multisite Markov mixture model, with the value of k. How-
ever, the mere use of the estimated return period of
observed critical sequences of flows of different length as a
criterion to infer a superiority of one model on the other
appears to be far too reductive, as it seems to be closely
related to the shape of the lower parts of the probability dis-
tribution of flows which varies from site to site. Lower esti-
mated return periods are not necessarily more realistical
than higher ones, as shown with reference to the series
employed for model validation. It is remarkable however,
that the drought statistics assessed for the two test series
of San Leonardo at Monumentale and Oreto at Parco are
quite homogeneous for the different models.

Results seem to show that under many conditions and
site combinations, the multisite M.m.m. can yield return
periods of occurrences of dry periods which are more con-
servative (i.e. shorter) than those supplied by the multisite
ARMA model. In the application, this holds true for most
choices of k for one-year droughts, whereas multiyear
droughts tend to be assessed more conservatively by either
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Fig. 8b. Historic and generated lag-0 coefficients between site 4, 5 and 6
and the remaining sites.
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low or high values of k, with intermediate k values yielding
seemingly overestimated return periods of droughts. The
proposed space–time model for drought occurrences
appears to allow a quite satisfactorily reproduction of spa-
tial correlation among sites, as shown by generated the lag-0
correlation coefficients. The model introduced hence shows
to have a potential to generate yearly flows with the specific
aim at reproducing droughts and can be employed in simu-
lation studies of multi-source water systems. In any case,
besides the above-mentioned goal of developing an appro-
priate parameter estimation procedure for the novel multi-
site Markov mixture model, future research will all focus on
the comparison of the impact of such models in simulation
studies of a water system with regulated sources.

Appendix A1. Transition probability of the occurrence

process of normal and dry years at a site

Transition probability P ðsÞij of flows at site s from state j

(dry or normal) at time t � 1 to state i (normal or dry) at
time t is defined as follows:

P ðsÞij ¼ ProbfX s;t ¼ ijX s;t�1 ¼ jg

and may be derived by considering Eq. (2) in the text and
the axiom of joint probabilities:

P ðsÞij ¼
ProbfX s;t ¼ i; X s;t�1 ¼ jg

PfX s;t�1 ¼ jg

Xk,t, Vt and Ut are independent binary processes. Of the
23 = 8 combinations describing all the possible outcomes
of terms forming Eq. (4), four yield Xs,t = 1 and the other
four yield Xs,t = 0

For instance, at time step t, Xs,t = 0 because

X k;t ¼ 1; V t ¼ 0; U t ¼ 0 ðA1:1aÞ
X k;t ¼ 0; V t ¼ 1; U t ¼ 1 ðA1:1bÞ
X k;t ¼ 0; V t ¼ 1; U t ¼ 0 ðA1:1cÞ
X k;t ¼ 0; V t ¼ 0; U t ¼ 0 ðA1:1dÞ

And at the preceding time step t � 1, Xs,t�1 = 1 because

X k;t�1 ¼ 1; V t�1 ¼ 1; U t�1 ¼ 0 ðA1:2aÞ
X k;t�1 ¼ 1; V t�1 ¼ 1; U t�1 ¼ 1 ðA1:2bÞ
X k;t�1 ¼ 0; V t�1 ¼ 0; U t�1 ¼ 1 ðA1:2cÞ
X k;t�1 ¼ 1; V t�1 ¼ 0; U t�1 ¼ 1 ðA1:2dÞ

From any of the combinations (A1.2) at time step t � 1,
process Xs,t can shift to state 0 at the following time step
through any combination (A1.1). If we consider all of the
16 likely combinations, we shall have allowed for all of
the possible transitions from state 1 at time t � 1 to state
0 at time t. At a given time step, a combination like
(A1.2) excludes all the others and the same holds for com-
binations of type (A1.1); hence the overall conditional prob-
ability that the state at step t is 0, given that at step t � 1 it
was produced by, say, combination (A1.2a), will be the sum
of the transition probabilities from (A1.2a) to each of the
combinations (A1.1). Since processes Xk,t; Vt and Ut are

independent, the terms of such sum are the products of
the transition probabilities from Xk,t�1 to Xk,t, Vt�1 to Vt

and Ut�1 to Ut, except for Vt which, being a Bernoullian
process, has its transition probability from one state
to the other simply coinciding with its marginal probabil-
ity of being in the arrival state. For instance, it can be
easily shown that the transition probability from state 1,
as obtained by combination (A1.2a) to state 0 is
given by (1 � ak)(1 � csk) (1 � bi) + akcskbi + akcsk(1 � bi)
+ ak(1 � csk)(1 � bi). To obtain the joint probability that
any of the combinations (A1.1) occurs at step t and that
combination (A1.2a) occurs at step t � 1, such sums must
be multiplied by the marginal probability that combination
(A1.2a) occurs which is given by k(1 � k)csk, thus yielding:

½ð1� akÞð1� cskÞð1� biÞ þ akcskbi þ akcskð1� ðbiÞ
þ akð1� cskÞð1� biÞ� � kð1� kÞcsk ðA1:3Þ

Since each combination (A1.2) excludes the others at a gi-
ven time step, the overall joint probability that process Xs,t

is in state 1 at time t � 1 and is in state 0 at time t is the sum
of four terms like (A1.3). Finally, the transition probability
P01 is obtained by dividing the overall joint probability by
the marginal probability of process Xs,t’s being in the
departure state.

Appendix A2. Third-order moment of a mixture distribution
of two normal subpopulations

The third order moment measured about the mean is
defined as follows:

kx ¼
Z þ1

�1
ðx� lÞ3fX ðxÞdx

kx ¼
Z þ1

�1
x3fX ðxÞdx� l3

Z þ1

�1
fX ðxÞdx

� 3l
Z þ1

�1
x2fX ðxÞdxþ 3l2

Z þ1

�1
xfX ðxÞdx

kx ¼ k
Z þ1

�1
x3Nðl1;r

2
1Þdxþ ð1� kÞ

Z þ1

�1
x3Nðl0;r

2
0Þdx� l3

� 3l k
Z þ1

�1
x2Nðl1;r

2
1Þdxþ ð1� kÞ

Z þ1

�1
x2Nðl0;r

2
0Þdx

� �

þ 3l2 kl1 þ ð1� kÞl0ð Þ

With xi = li + eri; i = 0 (normal), 1 (dry).
Recalling that E[e] = 0,E[e2] = 1, E[e3] = 0, and re-

arranging:

kX ¼ kl3
1 þ 3kl1r

2
1 þ ð1� kÞl3

0 þ 3ð1� kÞl0r
2
0 � 3l½kl2

1

þ kr2
1 þ ð1� kÞl2

0 þ ð1� kÞr2
0� þ 3l0½kl1 þ ð1� kÞl0�

Rearranging one obtains:

kX ¼ kl3
1 þ ð1� kÞ � l3

0 � l3

þ 3kr2
1ðl1 � lÞ þ 3ð1� kÞr2

0ðl0 � lÞ
þ 3kðl2l1 � ll2

1Þ þ 3ð1� kÞðl0l
2 � ll2

0Þ
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Appendix A3. Deriving an expression for the lag-0 coefficient

between two sites, one being the key site for the other

The lag-0 correlation coefficient between two sites X(s)

and X(k) is defined as follows:

qsk ¼ Ef½X ðsÞ � EðX ðsÞÞ� � ½X ðkÞ � EðX ðkÞÞ�g=ðrs � rkÞ
ðA3:1Þ

that is,

qsk ¼
E½X ðsÞX ðkÞ� � ls � lk

rs � rk
ðA3:2Þ

Model 1 (flow values at a site are drawn from the appro-
priate subpopulation regardless of the flow value at the
same site in the preceding year):

E X ðsÞi X ðkÞj

h i
¼ E lðsÞi þ eðsÞrðsÞi

� �
� lðkÞj þ eðkÞrðkÞj

� �h i
ðA3:3Þ

In the assumption that e(s) = e(k) = e "s,k, (A3.3) is equal
to lðsÞi * lðkÞj þ rðsÞi * rðkÞj ; being E[e0] = 0 and E[e2()] = 1 by
definition.

Model 2 (flow values at a site are drawn from the appro-
priate subpopulation taking account of the flow value at
the same site in the preceding year according to Eq. (4)
in the text):

E X ðsÞi X ðkÞj

h i
¼ E lðsÞi þ q0ðsÞrðsÞi =r

ðsÞ
j � qðsÞj � lðsÞj

� ��h

þ eðsÞrðsÞi ð1� q0ðsÞ2Þ0;5
�
� lðkÞj þ q0ðkÞrðkÞj =rðkÞi

� qðkÞi � lðkÞi

� �
þ eðkÞrðkÞj ð1� q0ðkÞ2Þ0;5

i
ðA3:4Þ

In these products, terms containing (q(0) � l(0))! 0, since
E(q(0) � l(0)) = E(q(0)) � l(0) = 0; terms containing e(s) also
go to 0 in the expectation. There remain the following terms:

lðsÞi lðkÞj ; ðA3:5Þ

q0ðsÞq0ðkÞrðsÞi =r
ðsÞ
j rðkÞj =rðkÞi � qðsÞj � lðsÞj

� �
� qðkÞi � lðkÞi

� �

ðA3:6Þ
e2rðkÞj rðsÞi ð1� q0ðsÞ2Þ0;5ð1� q0ðkÞ2Þ0;5 ðA3:7Þ

The expectation of product X(s)X(k) may be written as
follows:

E½X ðsÞX ðkÞ� ¼
X1

i¼0

X1

j¼0

P skði; jÞ � E X ðsÞi X ðkÞj

h i
� lslk ðA3:8Þ

It is noteworthy that there exists a different expression of
E½X ðsÞi X ðkÞj � for each of the four possible combinations of

X ðsÞi and X ðkÞj , depending from the state of sites s and k al
time step t and at the preceding one: the appropriate value
of the transition probability should hence be applied to
each of the likely values. However, this should only be
done for terms (A3.6) since terms (A3.5) and (A3.7) are
not affected by the state of the preceding time step, but
the very same actually holds also for (A3.6): if one develops
products in (A3.6), one finds that each of them equals

q0ðsÞq0ðkÞrðsÞi rðkÞj : leaving aside q0ðsÞq0ðkÞrðsÞi =r
ðsÞ
j rðkÞj =rðkÞi , the

expected value of (qðsÞj � lðsÞj Þ � ðq
ðkÞ
i � lðkÞi Þ equals EðqðsÞj

qðkÞi Þ � lðsÞj lðkÞi . Each of such terms equals lðsÞj lðkÞi þ
rðsÞj rðkÞi � lðsÞj lðkÞi , i.e. rðsÞj rðkÞi , which yields q0ðsÞq0ðkÞrðsÞi rðkÞj ,

when multiplied by q0ðsÞq0ðkÞrðsÞi =r
ðsÞ
j rðkÞj =rðkÞi for each of the

four possible combinations; hence one has

E½X ðsÞX ðkÞ� ¼
X1

i¼0

X1

j¼0

P skði; jÞ � lðsÞi lðkÞj þ q0ðsÞq0ðkÞrðsÞi rðkÞj

h

þ rðkÞj rðsÞi ð1� q0ðsÞ2Þ0;5ð1� q0ðkÞ2Þ0;5
i
� lslk

ðA3:9Þ
where Psk(i, j) is the joint probability that site s is in state i

and site k is in state j. Psk(i, j) can be evaluated using the
axiom of joint probability:

P skði; jÞ ¼ PrfX k ¼ jg � PrfX s ¼ ijX k ¼ jg
Conditional probabilities Pr{Xs = ijXk = j} are found
recalling the adopted space–time model: (Eq. (2) in the
text) Xs,t = Vsk,t Æ Xs,t + (1 � Vsk,t) Æ Us,t.

Hence

P 00 ¼ PrfX k ¼ 0g � PrfX s ¼ 0jX k ¼ 0g ðA3:10Þ
PrfX k ¼ 0g ¼ 1� k

X s;t ¼ 0 when X k;t ¼ 0 if :

V sk;t ¼ 1 and U s;t ¼ 0 ðA3:10aÞ
V sk;t ¼ 1 and U s;t ¼ 1 ðA3:10bÞ
V sk;t ¼ 0 and U s;t ¼ 0 ðA3:10cÞ

Events A3.10a,A3.10b and A3.10c are mutually excluding,
hence their occurrence probability must be summed.

Each of the events (A3.10) is the composition of two
events, V e U which are independent, hence their occur-
rence probabilities must be multiplied:

PrfX s ¼ 0jX k ¼ 0g ¼ csk � ð1� kÞþ csk � kþð1� cskÞ � ð1� kÞ

¼ csk � kþ 1� kÞ; i:e:

P 00 ¼ csk � k � ð1� kÞþ 1� kÞ2

P 01 ¼ PrfX k ¼ 0g �PrfX s ¼ 1jX k ¼ 0g

PrfX k ¼ 0g ¼ 1� k

X s;t ¼ 1 when X k;t ¼ 0 only if V sk;t ¼ 0 and Us;t ¼ 1; hence

PrfX s ¼ 1jX k ¼ 0g ¼ ð1� cskÞ k

P 01 ¼ �ð1� kÞ � ð1� cskÞ k

In an analogous way one finds P10 and P01:

P 10 ¼ k � ð1� kÞ � ð1� cskÞ
P 11 ¼ k � ð1� kÞ � csk þ k2

which substituted in (A3.9) yield the following expression
of lag-0 correlation coefficients between two sites one of
which is the key site for the other:
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where

DlðkÞ ¼ lðkÞ0 � lðkÞ1

DlðsÞ ¼ lðsÞ0 � lðsÞ1

DrðsÞ ¼ rðsÞ0 � rðsÞ1

DrðkÞ ¼ rðkÞ0 � rðkÞ1
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