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Characterizations of
Kurzweil-Henstock—Pettis integrable functions

by

L. D1 PiazzA (Palermo) and K. MUsIAL (Wroclaw)

Abstract. We prove that several results of Talagrand proved for the Pettis integral
also hold for the Kurzweil-Henstock—Pettis integral. In particular the Kurzweil-Henstock-
Pettis integrability can be characterized by cores of the functions and by properties of
suitable operators defined by integrands.

1. Introduction. Our intention is to continue the study of the Kurz-
weil-Henstock—Pettis integral, started in [9] in the case of multifunctions.
The integral is the generalization of the Pettis integral of a function, obtained
by replacing the Lebesgue integrability of scalar functions by the Kurzweil-
Henstock integrability. It integrates essentially more functions than the Pet-
tis integrable ones (cf. |9, Example 1]). We refer to [19] and |20| for informa-
tion about Pettis integrability.

Here we find some conditions guaranteeing the Kurzweil-Henstock—Pet-
tis integrability of a single function. To this end we associate to each scalarly
Kurzweil-Henstock integrable function f : [0, 1] — X an operator Ty : X™* —
KH|0, 1], defined on the dual of the range space of f and taking its values in
the space of real-valued Kurzweil-Henstock integrable functions. In Theo-
rem 2, generalizing a classical result for the Pettis integral, we prove that
a function f is Kurzweil-Henstock—Pettis integrable if and only if the op-
erator T is weak®-weakly continuous on the unit ball. In Theorem 3 we
prove that Kurzweil-Henstock-Pettis integrable functions are determined
by weakly compactly generated subspaces. In Theorem 4 we characterize
the Kurzweil Henstock-Pettis integrability in terms of the notion of core,
introduced by Geitz [13|. Theorems 3 and 4 are generalizations of the cele-
brated results of Talagrand |24 characterizing Pettis integrable functions.
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Theorems 1-4 also hold for the Denjoy-Pettis integral (cf. [14, 12]),
which is a generalization of the Kurzweil-Henstock-Pettis integral obtained
by replacing the Kurzweil-Henstock integrability of scalar functions by the
Denjoy-Khinchin integrability.

2. Basic facts. Let [0,1] be the unit interval equipped with the usual
topology and the Lebesgue measure A; £ denotes the family of all Lebesgue
measurable subsets of [0,1] and if E € £, then |E| is its Lebesgue measure.
£+ denotes the family of all sets of positive Lebesgue measure, and 7 the
family of all closed subintervals of [0,1]. A partition in [0,1] is a collection
P={(I1,t1),...,(Ip tp)}, where Ii,..., I, are non-overlapping subintervals
of 0,1 and ¢; € I;, ¢ = 1,...,p. If UP_, L = [0,1], we say that P is a
partition of [0,1]. Given a subset E of [0, 1], we say that the partition P is
anchored on E if t; € E foreach i = 1,...,p. A gauge on [0,1] is a positive
function on [0,1]. For a given gauge d on [0, 1], we say that a partition
{(I],t]), e oay (Ip,tp)} 1S (5-ﬁﬂ€ if L: C (t{, = 5(:131')1& + 5(’".51]), g ]., vv o g

Functions f,g : [0,1] — R are called equivalent if f = g almost every-
where, in the sense of the Lebesgue measure. Identifying in this way real
functions of bounded variation on [0, 1], we obtain the space BV[0,1]. We
always consider this space with the quotient variation norm || - BV-

Throughout, X is an arbitrary Banach space with dual X™. We do not
assume separability of X. The closed unit ball of X is denoted by B(X). If
Y ¢ X. then Y+ denotes the annihilator of Y in X*. The weak topology of
X is often denoted by o(X, X*). The topology generated on X by a Banach
space Y is denoted by o(X,Y).

Functions f,g : [0,1] — X are said to be scalarly equivalent if for each
z* € X* the set Ny» := {t € [0,1] : o* f(t) # x"g(t)} is of Lebesgue measure
Zero.

DEFINITION 1. A function g : [0,1] — R is said to be Kurzweil Henstock
integrable (or simply KH-integrable) on [0, 1] if there exists a real number 2
with the following property: for every € > 0 there exists a gauge 0 on [0, 1]
such that

|}pj glti)| L] — 2| <€
=1

for each d-fine partition {(I1,t1),...,(Ip,tp)} of [0,1].

We set z := (KH) Ség(t) dt.

We denote by K'H[0,1] the set of all real-valued Kurzweil-Henstock in-
tegrable functions on [0, 1]. When the equivalent functions are identified we

denote the quotient space by KHI0,1]. Throughout the paper also the el-
ements of KH[0,1] are called KH-integrable functions. So, as is common
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in measure theory, quite often we do not distinguish functions from their
equivalence classes, especially in proofs. In particular, stating that z3 f — h
weakly in KHJ[0, 1] means that the equivalence classes of the functions z7, f
converge to the equivalence class of h.

The space KH[0, 1] is endowed with the Alexiewicz norm (cf. [1])

(8}

|glla = sup |(KH)Sg(t) dt‘.
D<a<l 0

The completion HKAﬁ[{], 1] of KHJ[0, 1] is isomorphic to the space of distribu-
tions which are the distributional derivatives of continuous functions (cf. [2]).
As is known, KH-integrability coincides with Denjoy—Perron integrability
(cf. [15]). The Denjoy—Perron integral is also called the Denjoy integral in the
restricted sense (see [21]). If D[0, 1] is the (quotient) space of Denjoy—Perron
integrable functions endowed with the Alexiewicz norm, then its conjugate
space is linearly isometric to the space BV[0,1] (see [1|). Consequently, the
conjugate space KH*[0, 1] is linearly isometric to BV[0, 1].

When we write that on a set L € KHJ0, 1], weak sequential convergence
coincides with convergence in measure, we mean that any sequence in L
converges (or not) in both senses to the same limit.

A family A ¢ KHJ[0, 1] is said to be Kurzweil-Henstock equiintegrable, or
simply K H-equiintegrable, on [0, 1] if in Definition 1, for every € > 0 there
exists a gauge & on [0, 1] which works for all functions in A.

DEFINITION 2. A function f : [0,1] — X is scalarly measurable (resp.
scalarly integrable) if, for each z* € X*, the function z* f is Lebesgue mea-
surable (integrable). A scalarly integrable function f : [0,1] — X is Dunford
integrable if for each nonempty set A € L there exists a vector wy € X™
such that for every z* € X7¥,

(2%, wa) = S x” f(t)dt.
A
If wsq € X for each A € L, then f is said to be Pettis integrable on [0, 1]. We
call w4 the Pettis integral of f over A and we write wy := (P){, f(¢)dt.

DEFINITION 3. A function f : [0,1] — X is scalarly Kurzweil-Henstock
integrable if, for each z* € X*, the function z* f is Kurzweil Henstock in-
tegrable. A scalarly Kurzweil-Henstock integrable function f : [0,1] — X
is Kurzweil- Henstock-Dunford integrable (or simply K H D-integrable) if, for
each interval [a,b] € T, there exists a vector wq, € X™* such that for every
r* € X¥,

b
(x*, we) = (KH) | z* £ (t) .

[}
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If w,, € X for each [a,b] € Z, then f is said to be Kurzweil- Henstock—Pettis
integrable (or simply K HP-integrable) on [0,1]. We call wgp the Kurzweil-
Henstock—Pettis integral of f over [a,b] and we write wgp, := (KHP) Sf{ f(t) dt.

We denote by KHP([0, 1], X) the set of all X-valued Kurzweil-Henstock-
Pettis integrable functions on [0, 1] (functions that are scalarly equivalent are
identified).

It is a classical result that each scalarly integrable function 1s Dunford
integrable. It follows from Theorem 3 of Gémez and Mendoza [12| that a func-
tion f:[0,1] — X is KHD-integrable if and only if f is scalarly Kurzweil-
Henstock integrable (they consider the Denjoy—Khinchin integral).

If f:[0,1] — X is a Kurzweil Henstock scalarly integrable function,
then an operator Tj : X* — KH[0, 1], associated with f, is defined by
Ty(z*) = z*f. If f is scalarly integrable, Ty : X* — 4|0, 1] is defined in
the same way.

For every f :[0,1] — X we define

%= e BX")} C RO,
[dentifying equivalent functions we obtain the set Zy.

7 will denote the topology of convergence in measure. Throughout we
will frequently apply the fact that, due to Fremlin's subsequence theorem
[11], if f is scalarly measurable, then the set Zy is Tp-compact.

We will be concerned with generalizations of the following three funda-
mental results concerning the Pettis integral to the case of the Kurzweil-
Henstock—Pettis integral:

THEOREM A. Let f :[0,1] — X be a scalarly integrable function. Then
f is Pettis integrable if and only of Ty + X* — L1[0,1] is weak™-weakly
continuous. =
TuEoREM B ([24]). Let f : [0,1] = X be a scalarly integrable function.
Then f is Pettis integrable if and only if the following conditions are satisfied:
(i) Ty : X* — L1(0,1] is weakly compact;
(ii) there exists a weakly compactly generated subspace Y C X such that

z*f = 0 a.e. for each * € YL (the exceptional sets Ny- := {t €
[0,1] : z* f(t) # 0} depend on z¥). =
TueoreM C ([24]). A scalarly integrable function f : 0,1] — X s Pettus
integrable if and only if it satisfies the following conditions:
(i) Ty : X* — L1[0,1] is weakly compact:
(i) cory(E) # 0 for every E€ L™, =
In the theorem above
corf(E) := ﬂ{cmwf(E\N) : A(N) = 0}
(see Geitz [13]).
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3. Multipliers of Kurzweil-Henstock—Pettis
integrable functions

DEFINITION 4. Let g : [0,1] — R be of bounded variation. A function

F :[0,1] — X is weakly Riemann—Stieltjes integrable on [0,1] with respect
to g if for each x* € X™* the function z*F is Riemann-Stieltjes integrable on
[0, 1] with respect to g, and there is a point z € X such that

1
(RS)\z*F(t)dg(t) for every z* € X*,

0
where the integral is the classical Riemann-Stieltjes integral.

We set z := (wRS) Sé F(t)dg(t). The following result is well known. We
present it just for completeness.

" (x)

|

PROPOSITION 1. If F : [0,1] — X is weakly continuous (i.e. z*F €
C10,1] for every x* € X*) and g € BVI[0,1], then F is weakly Riemann-
Stieltjes integrable with respect to g on [0,1].

Proof. Since each BV function can be written as a difference of two non-
decreasing functions, and each non-decreasing function can be written as a
difference of two increasing functions, we may assume that g is increasing.
If ¥4 : [g(0),g(1)] — [0, 1] is defined by ,(t) := sup{s : g(s) < t}, then ),
is increasing, ¥,(g(t)) =t and it is continuous. Moreover,

1 g(1)
(%) \a(t)dg(t) = | a(y(s))ds
0 g9(0)

for every continuous « : [0,1] — R,

Notice now that F o1, is separably valued. Indeed, if @ is a countable
dense subset of [g(0), g(1)] then, due to the weak continuity of F o 1),, the
set F' o 1y(Q) is weakly dense in the range of F o 1),. As F o1, is weakly
continuous and weak separability in a Banach space coincides with norm
separability, the function F o), is strongly measurable. Since F' is bounded,
so is F'o1),. Consequently, F o 1), is Bochner integrable on [g(0), g(1)]. Let

g(1)
zp := (Bochner) S F(1,(1)) dt.
g(0)
If ¥ € X*, then applying (%), we have
g(1) 1
e (z0) = | @ (F(yy(t)) dt = |z*(F(t)) dg(t).
9(0) 0

This proves the existence of the weak Riemann-Stieltjes integral of F' with
respect to g. m
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Now we are in a position to prove the main result of this section.

THEOREM 1. If f : [0,1] — X s KHP-integrable and g € BVI0,1],
then fg is also KHP-integrable. Conversely, if fg s K HP-integrable for ev-
ery KHP-integrable f : [0,1] — X, then g is almost everywhere equal to a
function in BV(0, 1].

Proof. Define F : [0,1] — X by F(t) := (KHP) S:’] f(s)ds. It is a conse-
quence of the classical theory of Kurzweil-Henstock integrability that F' is
weakly continuous (cf. [15]). Hence, according to Proposition 1, F'1s weakly
Riemann-Stieltjes integrable with respect to g; let zo = (WRS) S}] F(t)dg(t).
If z* € X*. then by the classical theorem on integration by parts for the
KH-integral (cf. [15]), we have :

1
(KH) | *(£(1))a(t) dt
0 1
— 2*(F(1))g(1) — (RS) {2*(F (1)) dg(t) = =*[F(1)9(1) - Zo).
0
Thus, fg is KHP-integrable.

The second part of the assertion is well known for real-valued functions
f € KH[0, 1] (see [18, Theorem 12.9]) and this immediately yields the Banach
space case. w

4. Operator characterizations of Kurzweil-Henstock—Pettis in-
tegrable functions. The theorem below is a KHP-analogue of Theorem A.

THEOREM 2. Let f : [0,1] — X be a K H-scalarly integrable function.
Then f is KHP-integrable if and only if the operator Ty : X* — KHI0, 1] s
weak® -weakly continuous.

Proof. Assume the weak*-weak continuity of Ty. Fix [a,b] € T and let
Wap € X** be the KHD-integral of f on la, bl, i.e.

b
(&%, wap) = (KH) | 2" £ (t) dt = (T("); X[a,b))-

in

We have to show that wg € X. But Xjap € BVI0, 1] and so, according to
the contimiity assumption, the right hand side is weak*-continuous. Hence
s is the left side. This means however that wgp 1S a linear weak®-continuous
functional on X*. Consequently, wg € X.

Assume now that f : [0,1] — X is KHP-integrable. According to Theo-
rem 1, if ¢ € BV[0,1], then fg is KHP-integrable, that is, there is w € X
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such that for every z* € X* we have
1

(Ty(z*),g) = (KH) \2*(f(t))g(t) dt = (z*,w).
0

Hence (T%(:), g) is weak*-continuous, which proves the weak*-weak continu-
ity of T. m

PrROPOSITION 2. If f : [0,1] — X is KHP-integrable, then Zs is
o(KH, BV)-compact and o(KH, BV) coincides with 7, on Z;.

Proof. According to Theorem 2, the set Z; is weakly compact. Now take
a sequence () C B(X™) such that z}, f — h weakly in KH[0, 1]. According
to Fremlin’s theorem |11, Theorem 2F] each subsequence of{(z; f) contains an
almost everywhere convergent subsequence. In order to prove that =¥ f — h
in measure it is enough to show that for each subsequence (z5,.) of (z},)
such that z7, f — g almost everywhere in [0, 1], we have h = g a.e. So let
(z7,,) be such a subsequence. If (y7) is a subnet of (z,) weak®-converging
to xy, then x5 f = g almost everywhere in [0,1] and the KHP-integrability
of f yields y5f — x{f weakly in KH[0,1] (cf. Theorem 2). But (y3f) is
also a subnet of (z}, f) and so we have h = zjf = g a.e. Consequently, the
sequence (zy, f) is almost everywhere pointwise convergent to h and (z% f)
converges in measure to h.

Take now a sequence (zy) C B(X*) such that =} f — h in measure.
Applying Fremlin’s theorem [11, Theorem 2F| once again, we deduce that
h € Zy. As Zy is weakly compact, each subsequence of (z¥f) contains a
weakly convergent subsequence. If Ty, f — g weakly, then we have just proven
that x;, f — g in measure. Hence g = h a.e. Thus, each weakly convergent
subsequence of (z7, f) converges weakly to h. Consequently, =¥ f — h weakly.

It follows that on Z;, weak-sequential convergence coincides with se-
quential convergence in measure. Moreover, Fremlin's subsequence theorem
implies that Z; is 7,-compact.

To prove the coincidence of the topologies we will prove that they have the
same closed sets. So let ) # W C Z; be arbitrary. If wgy € W’ (= o(KH, BV)-
closure of W), then due to the relative weak compactness of W, there are
xy, f € W such that z),f — wg weakly, and so by the coincidence of the
sequential convergences, also z f — wp in measure. Thus, W° C W ™.

The proof of the reverse inclusion is similar. Indeed, if v9 € W ™ then.
due to metrizability of convergence in measure, there are ¥ f € W such that
T, [ — vy, and consequently x¥ f — vg weakly. This proves that W ™ C W°
and completes the whole proof. =

For the Lebesgue integral it is easy to deduce that if a sequence of
Lebesgue integrable functions is almost everywhere pointwise convergent to
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g1 and weakly convergent to gg in L1[0,1], then g1 = g2 almost everywhere.
In particular, in the case of a scalarly integrable function f:10,1] — X, due
to Fremlin’s subsequence theorem, condition (i) in Theorems B and C can
be replaced by the following topological condition:

On the set Zy C L1[0,1] the topology o(L1, Loo) coincides with Tp.

The KH-integral behaves differently. In [7] there is an example of a se-
quence of real-valued KH-integrable functions with pointwise limit different
from its limit in the weak topology of KH[0,1]. We are going to show that
for KHP-integrable functions such pathologies cannot take place on Zj.

Since [7] is not easily accessible, we sketch the construction and deduce
the consequence that is important for us.

EXAMPLE 1. Let a > 3 be arbitrary and let C, be the Cantor set in [0, 1]
with measure (a — 3)/(a— 2). Denote by g = (a,b}), k = 1ws 55 2L,

n=1,2,..., the contiguous intervals of C. Then |g}| =a™".
For every n € N define a continuous function F,, : [0, 1] — [0, 1] by setting
o~ fr=1orz=a;;, k= S LTS (.

F =
n(2) {[] fx=00rz=0,k=1,...,22 8=1,...,m,

and extending linearly to the whole interval [0, 1], without producing new
vertices of the graph. Then let

fula) = {

The sequence (f,) of KH-integrable functions (they are in tact even Lebesgue
integrable) is as desired. Indeed, by easy computations we get

Fl(z) if Fy(x) exists,

0 otherwise.

"_Zl—n&i if;I:EQiq521,---7n13:11--*12i_1=
]_ =1 2 P =1 n 215-—! —
Mo =12(1-33(2))  wreULULE
p=0
L0 otherwise,

o', being the closure of ot. It can be easily seen that ( fn(zx)) converges to
2a — 2)(a—3)"t on Cy \ {a}, b} : k = 1,...,2" 1, n € N} and to zero
clsewhere. We denote the limit function by f. Notice that f € L;[0,1] C
KHI0, 1].

Now let h € BV|0, 1] be arbitrary. The sequence (F},) converges uniformly
to zero. Therefore, integrating by parts we get

1 1
lim (h, fn) = lim (KH) | fnhdz = lim([Fﬂ Al — (KH) | Fr dh) — 0.
| 0 . 0

So the sequence ( f,) is weakly convergent to zero. Thus, f— fn — 0 pointwise
on [0,1] and f — fn — f weakly in KH|0,1].
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Define a function g : [0,1] — ¢p by g(t) := (f(t) — fa(t))22,. If g were
KHP-integrable in ¢p, then for each I € I we would have the equality
(KHP) {, g(t) dt = ((KH) §,[£(t) — fa(t)] dt)3=,. But (f — f,) is o(KH, BV)-
convergent to f that is not negligible and so there is an interval I € 7 such
that

(KH) | [£(t) — fa()] dt — (KH) | £(t) dt # 0.
I I
Consequently, g is not KHP-integrable in cg.

We now prove that the canonical injection of Z, = {z*g : |z*| < 1}
into KHJ0, 1] has relatively weakly compact image. To prove it notice that if
z* € Iy, then o™ = (ay), where ) ° | |ay,| < 1. If ac6 W denotes the closed
absolutely convex hall of W, then )

z'g =) an(f — fn) € &0O{f — fu:n €N},
n=1

and the last set is weakly compact in ﬁﬁ[{]* 1] (due to Krein's theorem, cf. [16,
p. 162]). Hence, Z, is relatively weakly compact in KH[0,1]. Equivalently,
Ty : I3 — KH|0, 1] is weakly compact.

Thus, we have obtained a function g : [0,1] — ¢4 such that on Z, the
weak topology o(KH,BV) and the topology of convergence in measure do
not coincide,

As already noted, g is not KHP-integrable but the operator T, : [; —
KH[0, 1] is weakly compact. Since g is determined by a separable space, it is
clear that in order to get a generalization of Theorem B for the KHP-integral
one cannot simply replace L0, 1] by KH|0, 1]. An additional assumption is
unavoidable. =

LEMMA 1. Let f € KH[0,1] be such that, for every I € T, (KH) \e S =0
Then f(t) = 0 almost everywhere in [0, 1].

Proof. By hypothesis F(t) = (KH){; f = 0 in [0,1]. Since F'(t) = f(¢)

almost everywhere in |0, 1] (cf. for example [15]), the statement follows. =

Notice that due to Lemma 1 the topology o(KH, BV) is Hausdorff on Z;.
The theorem below is a KHP-analogue of Theorem B.

THEOREM 3. Let f : [0,1] — X be a scalarly KH-integrable function.
Then f is KHP-integrable if and only if the following two conditions are

fulfilled:

(TC) on Zy C KHI|0, 1] the topology o(KH,BV) coincides with Ty
(DC) there exists a weakly compactly generated subspace ¥ ¢ X such
that for each x* € Y one has *f = 0 almost everywhere.
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Proof. KHP = (TC) has been proven in Proposition 2.

KHP = (DC). Let now Y be the closed linear subspace of X generated
by the collection {(KHP), f : I € I}. Since KH"[0,1] = BV([0, 1]), by the
Gantmacher theorem we know that the adjoint operator T}‘ : BV — X™
is also weakly compact. Let I € T be an interval; then its characteristic
function s belongs to BV([0, 1}).

For each z* € X* we have

(Tixr,a*) = (x1, Tyz*) = (KH) |z" f = 2’ (KHP) | f.
I I

Thus, T7xr = (KHP) §; f € X and

{(KHP) \f:Te I} c 2T B(BV(0,1]).-
I
As T;B(B‘J[[}, 1]) is weakly compact, Y is weakly compactly generated.

Let * be in Y+, Then for each I € 7 we have

0=z* (KHP) | f = (KH) | z* .
I I

Therefore, by Lemma 1, z*f = 0 almost everywhere in [0, 1] and condition
(DC) is satisfied.

(TC)+ (DC) = KHP. Here we apply an idea borrowed from Proposition
2.2 of [22]. Assume now that conditions (TC) and (DC) are satisfied and
define an operator Qy : Y* — KH[0, 1] by setting Qy (y*) = T (yext), Where
yr € Y* is an arbitrary norm-preserving extension of y* to the whole X. A
direct calculation shows that Qy is well defined, bounded and Ty is weak™-
weakly continuous if and only if Qy is weak"-weakly continuous if and only if
Ty is o(X™*, Y )-weakly continuous. Hence, according to Theorem 2, in order
to prove the KHP-integrability of f it suffices to show that 1y is o(X*,Y)-
weakly continuous.

As Y is weakly compactly generated (hence has the Mazur property, 1.e.
each element of Y** which is sequentially weak*-continuous on Y™ belongs
to Y), it is enough to prove that Ty is sequentially o(X*, Y )-weakly contin-
wous. So let (z*) C B(X*) be a sequence o(X*,Y)-converging to zero. By
condition (TC), Z; is weakly compact. Then there is h € KH[0,1] and a
subsequence (2*) of (z*) such that 2}, f — h weakly in KH[0, 1]. By (DC) we
have 2* f — h in measure. Let (2}, : k € N) and z5 € B(X") be such that 23
is a weak* cluster point of (2},) and z}; f — 23 f a.e. Consequently, 25 € Y-
and so h = z5 f = 0 a.e. It follows that every subsequence of (z} f) contains
a subsequence which is weakly convergent to zero in KH 0, 1]. Consequently,
Tyxk — 0 weakly in KHJ[0, 1]. This gives us the desired sequential o(X*, Y )-
weak continuity of 7. =
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REMARK 1. As can be easily seen from the proof above, the subspace Y
in Theorem 3 may be assumed to have only the Mazur property.

COROLLARY 1. If f:]0,1] — X is KHP-integrable, then each set E €
LT contains an F € LT such that fxr is Pettis integrable.

Proof. According to [14, Corollary 32| if E € L', then there is £t 3
M C E such that f|M is scalarly integrable (since each KH-integrable real
function is Denjoy-Khinchin integrable, we may apply [14]). Then, applying
for instance Corollary 3.1 from [19], one finds M D> F' € LT such that fyp
is scalarly bounded (i.e. there is e > 0 such that for each z* € X* we have
[z*f|F| < al|z*|| a.e.). But this means that Typ : X* — L1 (A|F) is weakly
compact. Together with condition (DC) of Theorem 3. this yields the Pettis
integrability of f|F' (cf. [20, Theorem 4.5]). =

Even when X = R there are simple examples of f such that each E € L™
contains an F' of positive measure with fy g Lebesgue integrable but f itself
not KH-integrable.

LEMMA 2. Let f : [0,1] — X be a scalarly integrable function. If Ty
18 0(Ly, Lao)-compact, then it is o(KH, BV)-compact and on the set Z; C
KH|0, 1| the weak topology o(KH, BV) coincides with 1.

Proof. Let U : Ly — KHI0,1] be the natural injection and let (% f)
be a net of functions in TyB(X"). Assume that T} is o(L;, L )-compact
and the net (z}f) is o(L1, L )-convergent to a function ¢ € L.,. Then
(xt f —g,U*h) = (Uz.f —Ug,h) for every h € BV|[0,1] and so the net
(Uzgf) is weakly convergent in KHI[0,1] to Ug. It follows that T} is
o(KH, BV)-compact.

Since T is o(L1, Lso)-compact, each sequence from Ty B(X*) contains a
o(Lj, L )-convergent subsequence. Let (z f) with & € B(X*), n € N, be
o(KH, BV)-convergent to h € Z;. Applying Theorem 2F of [11], we can find
a subsequence (zy, f) that is a.e. pointwise convergent to g. The sequence
contains a further subsequence (:}:ﬂkp )p (L1, L )-convergent and a.e. con-
vergent to h € L1[0,1]. If we now apply the theorem of Mazur, we get
convex combinations hy, € conv{zy, :q = p} a.e. convergent to h. Clearly
g = h a.e. This proves that o(KH, BV )-convergent sequences are convergent
in measure to the same limits. The coincidence of the topologies follows as
in Proposition 2. =

The following result gives a characterization of Pettis integrable functions
as a subset of KHP-integrable functions. An example of a KHP-integrable
function that is scalarly integrable but not Pettis integrable is presented
in |12].
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PrOPOSITION 3. Let f : [0,1] — X be a scalarly integrable and KHP-
integrable function. Then f is Pettis integrable if and only if the operator
Ty : X* — L1[0,1] is o(L1, Lo )-compact.

Proof. If f is Pettis integrable, then the weak compactness of Ty follows
from Theorem B.

If Ty is o(L1, Leo)-compact, then it follows from Lemma 2 that (TC) is
fulfilled. m

In the following we denote by 7, the topology of pointwise convergence in
the space of all real-valued functions. The following lemma is a reformulation

of Lemma 5-1-2 from [24].

LEMMA 3. Let Z ¢ KHI[0,1] be a convex and Tp-compact set. Assume
that the image of the canonical embedding of Z into KH[0,1] is a weakly
compact subset of KH|[0, 1] and the weak topology o(KH,BV) coincides with
Tm on that image. If the canonical embedding Z — KH|0, 1| is not pointwise
weakly continuous at g € Z, then there is f € Z which s not equal a.e. to
g, but g is in the T,-closure of the set

W;i:={h€Z:h=fael}

Proof. By assumption, we may assume that there are A’ € BVand a < 8
such that (KH) Ség(t)h’(t) dt < o and g is in the 7y-closure of the set ¥ =
{h € Z: (KH) {j h(t)h'(t) dt > B}

For a finite set F' C [0,1] and € > 0, let

Up.:={h€e Z: |(h—g)(t) LeVie F}.
If Cpe := Y NUpg, then Cpe # 0 and the closure Hp, of the image 5;-'5

—

of Cr. in KH[0,1] is convex and weakly compact, and Cp. is weakly se-
quentially dense in Hg .. The family of sets Hp,. has the finite intersection
property and so there is f' € KH|0, 1| which is in every Hp.. In particular,
(f',h') > B. Fix (F,¢). Then there is a sequence {fy} C 5;::5 weakly con-
vergent to f’. By Fremlin’s theorem [11, Theorem 2F], there is a function
f" and a subsequence { f, } of {fn} converging to f" almost everywhere. As
Z is Tp-compact, let fpe € Z be a m,-cluster point of {f,}. Since f" = fp.
a.e., we get f" € KH|0, 1].

By assumption, f' = f" € KHI0, 1].

So we have f,, — f’ a.e. Then fr. = f' a.e. Since Up is Tp-Closed, we
have fr. € Upe. It follows that g is a 7-cluster point of the set {fre: F,e}.
Take for f an arbitrary fr.. We then have

1 1 1
(KH) W' f = (KH) | K fre = (KH) |#'f' > 8.
0 0 0

Since f = fp. a.e. for every (F,e), we get the result. m
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LEMMA 4 (cf. [19, Lemma 6.2]|). Assume that f : [0,1] — X is scalarly
measurable and cory(E) # 0 for every E € LT, If 2* € X*, then z*f = 0
a.e. if and only if x* = 0 on cors|0, 1].

The theorem below is a KHP-analogue of Theorem C.

THEOREM 4. A scalarly KH-integrable function f : [0,1] — X is KHP-
integrable if and only if the following conditions are satisfied:

(TC) on Zy C KH[0,1] the topology o(KH, BV) coincides with ty;
(CC) cory(E) # 0 for every E € LT,

Proof. Assume that conditions (TC) and (CC) are fulfilled, but f is not
KHP-integrable. By (TC) and Fremlin’s subsequence theorem the set Z I
is weakly compact. Let Z := Z;. Applying Theorem 2 and Lemma 3, we
get the existence of two functionals y*, 2* € B(X*) such that |{t € [0,1] :
y*f(t) # 2*f(t)}| > 0 and y*f is in the T,-closure of the set

Wpi={z"f:2* € B(X") & z*f =2*fae.}.

Let (z3,f) C Wy be a net 7,-convergent to y* f. We may assume that rr — y*
in o(X*, X). Since for every a we have zif = 2*f a.e. on [0,1], it follows
from Lemma 4 that z%, |mrf 0,1] = 2" |cor[0,1]- But then y*]mrf 0,1] = z*|mrf 0,1
which yields, again by Lemma 4, y*f = 2*f a.e. on [0,1]. This however
contradicts our assumption and so f is KHP-integrable.

Assume now that f € KHP([0,1],X). Then (TC) is a consequence of
Theorem 3, and (CC) follows from Corollary 1 and Theorem C.

REMARK 2. If ¢g € X isomorphically, then Gamez and Mendoza [12]
constructed an example of a KHP-integrable function f which is not Pettis
integrable on any portion of some perfect subset F of 0,1]. According to [14,
Theorem 33] we may assume (taking a suitable subset of F) that f is scalarly
integrable on a portion F'N I of F. Consequently, applying Theorem 4 and
then Theorem C, we see that the operator Tripany + X* = Li(A|(F N 1))
is not weakly compact. Equivalently, Ty, : X* — L1[0, 1] is not weakly
compact.

When investigating KH-integrals one meets immediately KH-equiinte-
grable sets of functions. We now formulate consequences of Theorems 3 and
4 in the case when Zy satisfies some equiintegrability conditions.

LEMMA 5. Let f:[0,1] — X be a scalarly KH-integrable function such

that each infinite subset of Z; contains an infinite countable K H-equuinte-
grable subset. Then on Zy C KH(0, 1] the weak topology o(KH, BV) coincides
with Tm.

Proof. Let (z, f)n C Z; be o(KH,BV)-convergent to g € KH|0, 1]. Ac-

cording to Fremlin’s subsequence theorem there is a subsequence (z3, f )k
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almost everywhere converging to a function h. We may assume that (z},, f)x
is KH-equiintegrable. Since it is pointwise bounded, by Theorem 4 of [8]
it converges to h in the Alexiewicz norm, and hence weakly. Consequently,
g = h a.e. and each subsequence of (z},f), contains a further subsequence
that is a.e. convergent to g. Thus, (z; f), converges in measure to g.
According to Fremlin's subsequence theorem the set Zy is 7m-compact.
Take now a sequence (z} f)n C Z converging in measure to g € KHI[0, 1]. If
(x}, f)& is almost everywhere converging to g, then clearly g = z* f for some
z* € B(X*) and so g € Z;. Moreover (z, f)i is pointwise bounded. Ap-
plying the equiintegrability of a subsequence (m;';kp f)p. we see that (m;kp fp
converges to g weakly in KHJ[0, 1] (see Theorem 4 of [8]). It follows that each
subsequence of (z¥ f), contains a subsequence weakly convergent to g and so
(z* f)n is weakly convergent to g. Consequently, Zy is o(KH, BV)-compact
and sequential ¢(KH, BV)-convergence on Zy coincides with sequential 7y-
convergence. The coincidence of the two topologies on Zy now follows exactly

as in Proposition 2. This completes the proof. =

REMARK 3. In Lemma 5 one may weaken the assumptions, assuming
that for each countable subset H C Z; there is a set N of measure zero such
that the set {hxne : h € H} is KH-equiintegrable. As observed in [15] the
concept of KH-equiintegrability, unlike the concept of uniform integrability,
does not allow one to ignore sets of measure zero.

COROLLARY 2. Let f :[0,1] — X be a scalarly KH-integrable function
such that each infinite subset of Zy contains a KH-equiintegrable infinite

subset. If f satisfies (DC) or (CC), then f € KHP(X, [0,1]).

For a Banach space with the Mazur property we have the following suf-
ficient condition for KHP-integrability:

PROPOSITION 4. If X has the property of Mazur (in particular when X
is separable or weakly compactly generated), then f is KHP-integrable if and
only if f:[0,1] — X 1s scalarly KH-integrable and each infinite subset of the
collection {z*f : ||z*|| < 1} contains a KH-equiintegrable sequence.

Proof. We first show that the linear function a : X* — (—00,00) given
by a(z*) := (KH) S[IJ z* f(t) dt is w*-continuous. So consider a sequence of
functionals z¥ € B(X*). Assuming that z) — x( in the weak™ topology, we
et the pointwise convergence z}, f(t) — zf(t). We may suppose that the
sequence (z¥ f) is KH-equiintegrable; then we have (see [17])

1 1
a(xy) = (KH)S:ci’jf(t] dt = li_rﬂn (KH}Sr;f(t] df = li;tln a(x;,).
0 0

Consequently, a is w*-continuous, and so there exists xg € X such that
a(z*) = £*(xg). Thus, f is KHP-integrable.
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The converse follows from Lemma 5, Theorem 3 and Remark 1. =

REMARK 4. If in the definition of the Kurzweil-Henstock-Pettis inte-
gral we replace the Kurzweil-Henstock integrability of scalar functions by
the Denjoy-Khinchin integrability, we obtain the Denjoy—Pettis integral, in-
troduced in [14]| and studied in [14, 12]. Denote by DK[0, 1] the set of all
real-valued Denjoy-Khinchin integrable functions on [0,1] and by DK]|0, 1]
its quotient space. Then endow DK]|0, 1] with the Alexiewicz norm

x

lglla = sup |(DK)§g(t)dtl,
0<a<l 4

where (I*JK)SEE stands for the Denjoy-Khinchin integral. Then the space
KHI0, 1] is dense in DK]J0, 1], the completion of DK[0, 1| in the Alexiewicz
norm coincides with the completion KH[0, 1] of KH[0, 1], and the conjugate
space DK*[0, 1] is linearly isometric to BV|[0, 1] (cf. [4]). Moreover, the clas-
sical theorem on integration by parts also holds for the Denjoy-Khinchin
integral (cf. [15, Theorem 15.14|). Using the above facts instead of the cor-
responding ones for the Kurzweil-Henstock integral, it is easy to see that
Denjoy-Pettis versions of Theorems 1-4 also hold true. Clearly, we have

to take into account that the range space of the operator T} is, this time,
DK]0, 1].

5. Convergence theorems. It is the aim of this section to present a
generalization of some convergence theorems proved in [5] and [8].

THEOREM 5. Let (fn)n be a sequence of KHP-integrable X -valued func-
tions and let f : [0,1] — X be a function. Assume that the following condi-
tions are satisfied:

(a) z*fn — x*f a.c. for each x* € X* (the exceptional sets depend
on z*);

(b) the sequence (fn)n is pointwise bounded;

(c) each countable subset of {z*f, : ||z*|| < 1, n € N} s KH-equiinte-
grable.

Then f 1s KHP-integrable and
lim ||z*f, —x*flla=0 for each z* € X*,
T

Proof. We first prove that each sequence {z} f : =z € B(X")} is KH-
equiintegrable. So let {z} f : z; € B(X™)} be an arbitrary sequence. Then
set Npn = {t € [0,1] : &7, fu(t) = a5, f(t)} and N = |7 Nem.

Fix an arbitrary € > 0. According to (c¢) and [15, p. 361], there is a gauge
¢’ such that if {(I1,t1),...,(Ip,tp)} is a §'-fine partition of [0, 1], then for
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every n,m € N,

p 1
1 i fatxne (6)I1] = [ fn(® dt| <e.
0

§=1
Moreover, it follows from (a) that for each m there s nm, € N such that
for every n =2 nm,

p p
PN AN RS BEFCITEOIH

=1 1=1

< E.

By (c) the sequence (zy,fn)n 18 equiintegrable and by (b) it s pointwise
bounded. Then, by Theorem 4 of 8], there is Ky = Mim such that for every

n = km, -
1

1
is:s:nfn[t) dt — Smﬁlf(t) dt‘ < E.
0

0
Consequently, for each m,

p 1
3 et et — S f (1) e

1=1 0

P p
< ‘Z ot f(t)xve (G L] = D @i fi () Xve (t) |}
=1 =1

1

p
+ |Z:.::nfkm (t:)xve (86 ] = \ @ i () d*‘
te=l ¢

1

1
+ [V, (6 dt = §amf () dt. < 3.
0 0
But according to [8] there is a gauge 5" on N such that if {(T1,t1),- .- (Ip, tp)}
is a 8"-fine partition anchored in N, then sup,, S x| f(t:)] | L] <€ Soit
5(t) == &' (t)xne(t)+0" (t)xn (t), then for each partition {(I1,t1),- .- (Ip,tp)}
of [0, 1] that is d-fine, we have

1

4
[ ah f (eI — Y f (0 de| < e,
=1 0

which proves the equiintegrability of the sequence (23 f )

It follows from Lemma 5 that on the set Z; the topologies o(KH,BV) and
o, coincide. Thus condition (TC) of Theorem 3 is satisfied. In order to prove
the KHP-integrability of f we need to show yet the existence of a weakly
compactly generated space ¥ C X such that z*f = 0 a.e. if 2% € Y+. But
as each f,, is in KHP([0,1],X) there is a weakly compact set W, C B(X)
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such that z*f,, = 0 a.e. if z* € Y-, where Y}, is the Banach space generated
by Wy. Consequently, if W = [J_, 27"W,,, then W is weakly compact and
the Banach space Y generated by W has the required property. Thus, f is
KHP-integrable.

Since each sequence (z*f,)n is equiintegrable and pointwise bounded,
applying Theorem 4 of [8] we get

lim|z*f, —2*flla=0 foreachz*e€ X*. »
n

REMARK 5. A more careful analysis of the above proof shows that one
can weaken condition (c) to: each countable set {z}, fm, 1 k € N, ||z}, |

< 1} contains a subset {E:n;,:; fmp, 1 € N, ”I:"k:” < 1} that is KH-equi-
integrable.

REMARK 6. We recall that the concept of KH-equiintegrability, unlike
uniform integrability, does not allow one to ignore sets of measure zero (see
e.g. [15]). As in condition (a) of Theorem 5 the assumption of “pointwise
convergence  has been relaxed, we had to assume the pointwise boundedness
of the functions. As in Lemma 5 we might have weakened (c), assuming that
one can choose countable subsets KH-equiintegrable on a set of full measure.

It is known that a sequence of real-valued pointwise convergent functions
1s KH-equiintegrable if and only if the sequence of their primitives is uni-
formly ACG(,, (see e.g. [17], [3]). For the definition of the uniform ACGY,
condition we refer to [4|. So if we observe that under the assumption of the
uniform ACGE‘S} of the primitives the notion of KH-equiintegrability is not
altered by possibly changing the values of a function on a null set, then
the proot of the next theorem follows, after suitable changes, as for Theo-
rem 1 in [5]. In any case we note that in the proof of Theorem 1 in [5] a few
important details have been neglected or overlooked.

THEOREM 6. Let (fn)n be a sequence of KHP-integrable X -valued func-
tions and let f:[0,1] — X be a function. Assume that:

(a) 2*f, — =*f a.e. for each x* € X* (the exceptional sets depend on
i

(B) each countable subset of {x*F, : ||[z*|| < 1, n € N} is uniformly
ACGE‘S], where Fy, s are the KHP-primitives of fn's.

Then f i1s KHP-integrable and
lim ||z*fn — 2" f|la=0 for each 2" € X,
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