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POLYNOMIAL GROWTH OF THE CODIMENSIONS:

A CHARACTERIZATION

A. GIAMBRUNO AND S. MISHCHENKO

(Communicated by Martin Lorenz)

Abstract. Let A be a not necessarily associative algebra over a field of char-
acteristic zero. Here we characterize the T-ideal of identities of A in case the
corresponding sequence of codimensions is polynomially bounded.

1. Introduction

This paper is concerned with not necessarily associative algebras whose sequence
of codimensions is polynomially bounded. Let A be an algebra over a field F of
characteristic zero and let Id(A) be the T-ideal of polynomial identities of A. If Pn

is the space of multilinear polynomials in the nonassociative and noncommutative
variables x1, . . . , xn, then Pn(A) = Pn

Pn∩Id(A) has a natural structure of a module for

the symmetric group Sn. Its character, denoted χn(A), is called the n-th cochar-
acter of A and its degree cn(A) = degχn(A) is the n-th codimension of A. The
purpose of this note is to characterize Id(A) in case the sequence {cn(A)}n≥1 is
polynomially bounded.

In general the n-th codimension is bounded by n!Cn where Cn is the n-th Cata-
lan number. For associative algebras satisfying a nontrivial polynomial identity,
{cn(A)}n≥1 is exponentially bounded ([8]), but this same conclusion does not hold
for Lie algebras ([9]). Nevertheless overexponential bounds are known for such alge-
bras with nontrivial polynomial identity. It is well-known that for both associative
and Lie algebras the sequence of codimensions cannot have intermediate growth
(between polynomial and exponential) and the case of polynomial growth has been
studied in both cases through a characterization of the corresponding T-ideal as
follows (see [1], [5]).

Decompose the n-th cocharacter

(1) χn(A) =
∑
λ�n

mλχλ,

where χλ is the irreducible Sn-character corresponding to the partition λ � n with
multiplicity mλ ≥ 0. Then, if A is an associative or Lie algebra, {cn(A)}n≥1

is polynomially bounded if and only if there exists a constant K ≥ 0 such that
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mλ = 0 whenever λ = (λ1, . . . , λr) � n and n − λ1 > K. This result is no longer
valid even in the case of Jordan algebras, as will be shown below.

Here we shall give a characterization for general nonassociative algebras. We
shall prove that {cn(A)}n≥1 is polynomially bounded if and only if 1) there exists
a constant K such that mλ = 0 whenever either n − λ1 > K or n − λ′

1 > K,
where λ′ = (λ′

1, . . . , λ
′
s) � n is the conjugate partititon of λ and 2) there exist

constants k, C such that every polynomial f ∈ Pn can be written (mod Id(A)) as a
linear combination of ≤ Cnk polynomials fi and each fi has a fixed arrangement
of parentheses. We shall also show by some examples that the conditions of the
theorem cannot be weakened.

2. The general setting

Throughout A is a not necessarily associative algebra over a field F of char-
acteristic zero and F{X} the free nonassociative algebra on a countable set X =
{x1, x2, . . .}. The polynomial identities satisfied by A form a T-ideal Id(A) of
F{X} and by the standard multilinearization process, we consider only the multi-
linear polynomials lying in Id(A). To this end, for every n ≥ 1, we set Pn to be the
space of multilinear polynomials in x1, . . . , xn, and we let the symmetric group Sn

act on Pn by setting σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
The space Pn(A) = Pn/(Pn ∩ Id(A)) has an induced structure of an Sn-module,

and we let χn(A) be its character, called the n-th cocharacter of A. By complete
reducibility we write

(2) χn(A) =
∑
λ�n

mλχλ,

where χλ is the irreducible Sn-character corresponding to the partition λ � n and
mλ ≥ 0 is the corresponding multiplicity (we refer the reader to [3] for an account
of this approach).

Now, for a fixed arrangement of the parentheses T, let us denote by PT
n the

subspace of Pn spanned by the monomials whose arrangement of parentheses is
precisely T . Also let PT

n (A) = PT
n /(PT

n ∩Id(A)). Then clearly Pn(A) =
∑

T PT
n (A).

Since the Sn-module PT
n (A) is a homomorphic image of PT

n ≡ FSn, the regular
Sn-representation, it follows that if χn(A)T is the Sn-character of P

T
n (A), then

(3) χn(A)T =
∑
λ�n

mT
λχλ

and mT
λ ≤ dλ = degχλ. Clearly mλ ≤

∑
T mT

λ .
For λ = (λ1, λ2, . . .) � n we denote by λ′ = (λ′

1, λ
′
2, . . .) the conjugate partition

of λ. Also, we will write λ ≤ µ if and only if λi ≤ µi, for all i ≥ 1.
We next state a special case of [6, Theorem 2] that we shall need in what follows.

In what follows we abbreviate the partition (a, . . . , a), b parts, as (ab). Also, for a
real number α, [α] denotes the integral part of α.

Theorem 1 ([6]). Let {ns}s≥1 be a sequence of positive integers such that
lims→∞ ns = +∞ and let {λ(s)}s≥1 be a sequence of partitions λ(s) � ns such
that λ(s) ≤ (aas

s ) where as = [ns

2 ]. Then, for any B with 0 < B < 2, there exists a
constant N such that degχλ(s) > Bns , for all s ≥ N .
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3. Polynomial growth of the codimensions

We start with an easy computation of a bound for the degree of an Sn-character.

Remark 1. For any λ � n we have that degχλ > (n−2s)s

ss , where s = n − λ1 or
s = n− λ′

1.

Proof. If the hij ’s are the hook numbers of the partition λ, then by the hook formula
(see [4]),

degχλ =
n!∏
hij

>
n!

ss(n− 2s)!n(n− 1) · · · (n− s+ 1)

=
(n− s)(n− s− 1) · · · (n− 2s+ 1)

ss
>

(n− 2s)s

ss
.

�

Next we state and prove the main result of the paper.

Theorem 2. Let A be a not necessarily associative algebra over a field of character-
istic zero. Then the sequence of codimensions cn(A), n = 1, 2, . . ., is polynomially
bounded if and only if

(1) there exists an integer N such that for all n ≥ 1, mλ �= 0 in χn(A) =∑
λ�n mλχλ implies n− λ1 < N or n− λ′

1 < N ;
(2) there exist constants C, k such that for every n ≥ 1 there exist m ≤ Cnk

arrangements of parentheses T1, . . . , Tm such that every polynomial f ∈ Pn

can be written as

f ≡
m∑
i=1

fi (mod Id(A)),

where fi ∈ PTi
n .

Proof. Assume that conditions (1) and (2) hold and let λ � n be such that mλ �= 0
in χn(A) =

∑
mλχλ. Then n − λ1 < N or n − λ′

1 < N and by the hook formula
it is easily deduced that degχλ ≤ an2N , for some constant a. Now, for any fixed
arrangement T of the parentheses, χn(A)T =

∑
mT

λχλ, and mλ ≤ degχλ, for all
λ � n. Hence it follows that mT

λ ≤ an2N . This together with condition (2) implies
that

cn(A) =
∑
λ�n

mλ degχλ ≤
∑
T

∑
λ�n

mT
λ degχλ ≤ C1n

k1 ,

where C1 = Ca2 and k1 = 4N + k. We remark that the above argument was used
in [1], where only the case n− λ1 < N was considered.

Suppose now that cn(A), n = 1, 2, . . ., is polynomially bounded. Fix a per-
mutation σ ∈ Sn and, for an arrangement of the parentheses T , let fT be the
corresponding monomial of Pn. Let Wσ = span{fT | T} be the subspace of Pn

spanned by the monomials fT , where T ranges over all arrangements of the paren-
theses. Then dimWσ is the n-th Catalan number. Let fT1 , . . . , fTs be a basis of Wσ

modulo Id(A). Since by hypothesis cn(A) ≤ ant is polynomially bounded for some
constants a, t, then s ≤ cn(A) ≤ ant. It follows that for any fixed arrangement T
of the parentheses,

fT ≡
s∑

r=1

αrf
Tr (mod Id(A)),
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for some α1, . . . , αs ∈ F . We remark that since Id(A) is invariant by permutation
of the variables, T1, . . . , Ts can be determined so that they do not depend on σ. In
other words the same conclusion holds for any permutation τ ∈ Sn. This implies
that condition (2) holds.

Now fix constants C, k such that cn(A) ≤ Cnk, for all n ≥ 1, and suppose by
contradiction that the conclusion (1) of the theorem does not hold. This means
that if we consider the set

S = {s ∈ N | there exists ns and λ � ns with mλ �= 0 and

ns − λ1 = s, ns − λ′
1 ≥ s or ns − λ1 ≥ s, ns − λ′

1 = s},

then S contains an infinite number of integers. We consider the infinite sequence
{ns}s∈S and we are going to show that there exists s ∈ S such that degχλ >
Cnk

s . This will finish the proof. In fact in this case cns
(A) ≥ mλχλ > Cnk

s , a
contradiction.

Now, for any s ∈ S write ns = sas and consider the sequence {as}s∈S .
Suppose first that such a sequence is not bounded. Then there exists a sub-

sequence {asi}i≥1, such that limi→∞ asi = +∞. Recalling that by hypothesis
cn(A) ≤ Cnk, for all n ≥ 1, we have

lim
i→∞

cnsi
(A)

(asi − 2)si
≤ lim

i→∞

Cnk
si

(asi − 2)si

= C lim
i→∞

si
k

2si−k
·

bksi
(bsi − 1)si

= C2k lim
i→∞

si
k

2si
·

bksi
(bsi − 1)k

· 1

(bsi − 1)si−k
= 0,

where asi = 2bsi .
Thus there exists N1 ≥ 1 such that for all i ≥ N1 we have

cnsi
(A) < (asi − 2)si =

(nsi − 2si)
si

ssii
.

By Remark 1 we then get that degχλ > cnsi
(A), and we are done.

Therefore we may assume that the sequence {as}s∈S is bounded by some constant
M ≥ 1. Now, since degχλ = degχλ′ , without loss of generality we may assume
that for s ∈ S, ns − λ1 = s and ns − λ′

1 ≥ s, where mλ �= 0.
Suppose first that there exists a subsequence {asi}i≥1 such that 2 < asi ≤ M ,

for all i ≥ 1. Let λ � nsi be such that mλ �= 0 and nsi − λ1 = si, nsi − λ′
1 ≥ si.

We construct the partition µ = (si, λ2, . . . , λr) where λ = (λ1, . . . , λr). Since
si =

∑r
i=2 λi is the number of boxes outside the first row, we have that µ � 2si.

Let B be a fixed constant with 1 < B < 2.
If λ2 = 1, then µ = (si, 1

si) � 2si ≤ nsi . Then by the hook formula,

degχµ =

(
2si − 1

si

)
>

22si

2si + 1
.

Thus there exists N3 > 0 such that for all i ≥ N3, degχµ > B2si . In case λ2 ≥ 2,
µ ≤ (ssii ). By Theorem 1, there exists N4 > 0 such that for all i ≥ N4, degχµ >
B2si . Thus in any case, for i ≥ max {N3, N4}, we have that degχµ > B2si .

Recall that nsi = siasi . Hence si ≥
nsi

M and

degχµ > B2si ≥ B2
nsi
M = bnsi ,
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where b = B
2
M > 1 is a constant. Then let N5 > 0 be a constant such that, for all

i ≥ max {N3, N4, N5}, bnsi > Cnk
si
. This says that degχλ ≥ degχµ > Cnk

si
, and

we are done.
Therefore we may assume that there exists N6 such that, for all s ≥ N6, we

have that as ≤ 2. Let λ � ns be such that mλ �= 0 and ns − λ1 = s, ns − λ′
1 ≥ s.

Since sas = ns, then λ′
1 ≤ λ1 = ns − s ≤ ns − ns

2 = ns

2 . Thus λ ≤ (dd), where
d = [ns

2 ]. By Theorem 1, there exists a constant N7 ≥ N6 such that for all s ≥ N7,

degχλ > Bns . Since for some constant N8 ≥ N7 we have that Bns > Cnk
s , we get

that for such an s, degχλ > Cnk
s , and the proof is complete. �

It is clear that any nilpotent algebra has polynomial growth of the codimensions.
Next we give three examples of algebras (associative, Lie and Jordan, respectively)
which are not nilpotent but whose codimensions are linearly bounded. Recall that if
χn(A) =

∑
λ�n mλχλ is the n-th cocharacter of an algebra A, then ln(A) =

∑
λ mλ

is called the n-th colength of A. In each of the three examples, ln(A) will be equal
to one for all n, and according to [7] these three algebras generate the only varieties
whose colength is equal to one.

The first example is A = F [x], the polynomial ring in one variable over F . Then
A is an associative commutative algebra, and it is easily checked that

χn(A) = χ(n),

for all n ≥ 1.
The second example is M2, the two-dimensional metabelian Lie algebra with

basis h, e and multiplication defined by [h, e] = e. It is well-known that

χn(M2) = χ(n−1,1).

The third example is the algebra A constructed by Shestakov (see [10, Example 2,
pg. 84]). Let V be an infinite-dimensional vector space with basis {e1, e2, . . . } and
let G = {e1, e2, . . . | eiej = −ejei} be the exterior algebra on V without unit
element. We consider the algebra A = G ⊕ V , with multiplication defined by the
rule

(u+ x)(v + y) = vx+ uy,

where u, v ∈ G, x, y ∈ V. It is easy to see that A is a Jordan algebra satisfying the
identities

xxx ≡ 0, (x1x2)(x3x4) ≡ 0.

Moreover it can be checked that

χn(A) = χ(2,1n−1).

It is worth noticing that the set of left normed multilinear monomials xnxixi1 · · ·
xin−2

, where i1 < · · · < in−2 for i = 1, . . . , n− 1, is a basis of Pn (mod Id(M2)) and
(mod Id(A)).

Due to the well-known duality between Sn-representations and polynomial GL-
representations, in the following examples we shall use GL-representations, and we
refer the reader to [2] for an account of the theory.

Next we give an example of an algebra A satisfying condition (2) of the theorem
but not condition (1), and cn(A) is not polynomial bounded.

Example 1. Let A be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be zero.
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Let λ � n be such that n − λ1 ≥ 2. Then if f(x1, . . . , xn) is a highest weight
vector associated to λ, f is alternating either on three variables or on two pairs of
variables. In either case every monomial of f evaluates to a word of A containing at
least two subwords equal to a2. It follows that f ∈ Id(A), and so the corresponding
multiplicity mλ in χn(A) must be zero. Thus

χn(A) = m(n)χ(n) +m(n−1,1)χ(n−1,1).

Let La and Ra denote the linear transformations on A of left and right multipli-
cation by a, respectively. If w(La, Ra) is any word of length n − 2 in La and Ra,
then w(La, Ra)(a

2) is the evaluation of a highest weight vector associated to the
partition (n) which is not an identity of A. Since there are 2n−2 distinct such words,
we get 2n−2 highest weight vectors which are linearly independent mod Id(A). Thus
m(n) = 2n−2 and cn(A) ≥ 2n−2 is not polynomial bounded.

If A is an associative algebra, an equivalent condition for the codimensions of
A to be polynomially bounded is that its colength is bounded by a constant, i.e.,
ln(A) =

∑
λ�n mλ < K, for some constant K. Unfortunately this is not true for

general nonassociative algebras or even for Lie algebras.
In fact, as the referee has pointed out (see [1]), one may fix a positive integer d and

consider the Lie T-ideal generated by all multilinear Lie polynomials which generate
irreducible Sn-modules with n − λ1 > d. Then the Sn-cocharacter is a sum of all
irreducible Sn-characters with n−λ1 ≤ d with multiplicity equal to the multiplicity
in the free Lie algebra. Even for d = 2 one has colength approximately equal to n,
since in the free Lie algebra m(n−1,1) = 1, m(n−2,2) = [n−3

2 ] and m(n−2,1,1) = [n−2
2 ].

For d large enough the colength may grow as a polynomial of an arbitrarily high
degree.

We next give one more example of an algebra A such that {cn(A)}n≥1 is polyno-
mial bounded, hence satisfies conditions (1) and (2) of Theorem 2, but m(n) grows
polynomially like n

2 .

Example 2. Let A be the commutative algebra generated by one element a such
that (aiaj)ak = 0 for all i ≥ j ≥ 2 and k ≥ 1. Here at = (((aa)a) · · ·a) is the left
normed product of a with itself t times.

We claim that if λ � n is such that n − λ1 ≥ 3, then mλ = 0. In fact, if
f(x1, . . . , xn) is a highest weight vector associated to λ, every monomial of f eval-
uates to a word of A containing some aiajak with i ≥ j ≥ 2 and k ≥ 1. Thus
f ∈ Id(A), and condition (1) is satisfied.

Now if we consider all arrangements of brackets on a word in A of length n, we
get the words an and aiaj with i ≥ j ≥ 2, i+ j = n. Their number is [n2 ]. Hence if

m is defined as in condition (2) of Theorem 2, we have that m ≤ 1
2n.

We remark that this also implies that there are [n2 ] highest weight vectors asso-
ciated to the partition (n) which are linearly independent mod Id(A). Thus [n2 ] is
an upper bound for the multiplicity m(n).
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