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CODIMENSION GROWTH

OF SPECIAL SIMPLE JORDAN ALGEBRAS

ANTONIO GIAMBRUNO AND MIKHAIL ZAICEV

Abstract. Let R be a special simple Jordan algebra over a field of character-
istic zero. We exhibit a noncommutative Jordan polynomial f multialternating
on disjoint sets of variables which is not a polynomial identity of R. We then
study the growth of the polynomial identities of the Jordan algebra R through
an analysis of its sequence of Jordan codimensions. By exploiting the basic
properties of the polynomial f , we are able to compute the exponential rate of
growth of the sequence of Jordan codimensions of R and prove that it equals
the dimension of the Jordan algebra over its center. We also show that for any
finite dimensional special Jordan algebra, such an exponential rate of growth
cannot be strictly between 1 and 2.

1. Introduction

Let F be a field of characteristic zero and A a not necessarily associative algebra
over F . The study of the polynomial identities satisfied by A has been carried out
in an effective way through the representation theory of the symmetric group. The
combination of algebraic and analytical methods in this theory leads to significant
results (see for instance [3], [4], [11], [19]).

The identities of an algebra A form a T -ideal Id(A) of the free nonassociative
algebra F{X}, and one associates to Id(A) an integral sequence cn(A), n = 1, 2, . . .,
called the sequence of codimensions of A. Recall that if Pn is the space of multilinear
polynomials in the variables x1, . . . , xn, then cn(A) = Pn

Pn∩Id(A) . Such a sequence

measures in some way the polynomial relations vanishing in an algebra A and in
general has overexponential growth. In order to study such a sequence, several
methods have been developed over the years ([11], [19]) and the most significant
results have been obtained when cn(A) is exponentially bounded.

In this setting a celebrated theorem of Regev ([21]) states that any associative
algebra satisfying a nontrivial polynomial identity (PI-algebra) has the sequence
of the codimensions exponentially bounded. Moreover the class of nonassociative
algebras sharing such a property is quite wide and includes finite dimensional alge-
bras ([11]), infinite dimensional simple Lie algebras of Cartan type ([17]), affine
Kac-Moody algebras ([22]), etc. In case cn(A) is exponentially bounded, one
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can construct the bounded sequence n
√
cn(A), n = 1, 2, . . ., and ask if exp(A) =

limn→∞
n
√
cn(A) exists; exp(A) is called the PI-exponent of the algebra A.

In [10] it was proved that for any associative PI-algebra A, exp(A) exists and is
an integer. In the case of finite dimensional Lie algebras, in [23] it was shown that
the PI-exponent also exists and is an integer. The same conclusion was achieved
in [12] for the Jordan algebra Mk(F ) of k × k matrices and in [9] for some special
simple Jordan algebras of small dimension. These results about the integrality of
the PI-exponent are quite surprising since in [7] the authors constructed, for any
real number α > 1, a nonassociative algebra whose exponential rate of growth of
the codimensions equals α.

The main purpose of this paper is to prove the existence of the PI-exponent
for any finite dimensional special simple Jordan algebra. Recall that if F is alge-
braically closed, then any such algebra is isomorphic to one of the following: 1)
Mk(F ) with the Jordan product a ◦ b = ab+ ba, 2) the Jordan algebra (Mk(F ), t)+

of k × k symmetric matrices under the transpose involution, 3) the Jordan al-
gebra (Mk(F ), s)+ of k × k symmetric matrices under the symplectic involution,
4) the Jordan algebra defined by a nondegenerate symmetric bilinear form on a
k-dimensional vector space. The main result proved here is the following.

Theorem. Let A be a finite dimensional special simple Jordan algebra over a field
of characteristic zero. Then exp(A) exists and equals the dimension of A over its
center.

Of independent interest is also a construction for any such algebra, of a multi-
alternating Jordan polynomial in k · dimA variables for any k ≥ 1, which is not an
identity of A. We refer the reader to [14] for the basic properties of Jordan algebras.

The last section of the paper is devoted to finite dimensional special Jordan
algebras and slow exponential growth of the codimensions.

In [5] it was proved that if A is a finite dimensional algebra, dimA = d, then

either cn(A) is polynomially bounded or cn(A) > 1
n2 2

n
3d2 for n large enough. More-

over by [7], given any real numbers 1 < α < β < 2 there exists a finite dimensional
algebra B such that α < exp(B) < β.

Despite these results, the exponential rate of growth of the codimensions cannot
be less than 2 for a wide class of algebras. In fact, if A is either an associative algebra
([16]) or a Lie algebra ([18]), then the asymptotic inequality cn(A) < 2n implies
cn(A) ≤ f(n) for some polynomial f . The same phenomenon occurs in the case of
two and three dimensional nonassociative algebras ([6], [8]) and finite dimensional
Lie superalgebras ([24]). In the last section we show that finite dimensional special
Jordan algebras also cannot have exponential codimension growth strictly between
1 and 2.

Recall that given an associative algebra A, the Lie commutator [a, b] = ab − ba
defines a structure of a Lie algebra on A. Similarly the circle operation a◦b = ab+ba
defines a structure of a Jordan algebra. Throughout we shall use the left-normed
notation on Lie and Jordan monomials; i.e., [x1, . . . , xn] denotes [[x1, x2], . . . , xn]
and similarly for Jordan products x1 ◦ · · · ◦ xn = ((x1 ◦ x2) · · · ) ◦ xn.

Let X = {x1, x2, . . .} be a countable set. We denote by F 〈X〉 the free associative
algebra on X over F and by F J〈X〉 and FL〈X〉 the free special Jordan algebra and
the free Lie algebra on X, respectively. Throughout we shall tacitly assume that
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F J 〈X〉 and FL〈X〉 are canonically embedded in F 〈X〉. Also, we shall use other

symbols such as y, z, xj
i for extra new indeterminates in F 〈X〉.

2. Multialternating Lie polynomials and symmetric matrices

Let A be any associative algebra and V ⊆ A a subspace. Recall that a polynomial
f(x1, . . . , xt) ∈ F 〈X〉 is an identity of V if f(v1, . . . , vt) = 0 for any v1, . . . , vt ∈ V .
Also, a polynomial f ∈ FL〈X〉 is called a Lie polynomial and f ∈ F J 〈X〉 is a
Jordan polynomial. There is a connection between Lie and Jordan polynomials
given in the following.

Lemma 1. Any multilinear Lie polynomial of odd degree is a Jordan polynomial.

Proof. Since any Lie polynomial is a sum of left-normed monomials, the proof easily
follows from the equality

(1) [a, b, c] = a ◦ (c ◦ b)− (a ◦ c) ◦ b.
�

Lemma 2. Let f = f(x1, . . . , xm, y1, . . . , yk) be a multilinear Lie polynomial alter-
nating on x1, . . . , xm. Then, for v, z ∈ X, the polynomial

g =
m∑
i=1

f(x1, . . . , xi−1, [xi, v, z], xi+1, . . . , xm, y1, . . . , yk)

is also alternating on x1, . . . , xm.

Proof. Clearly it is enough to check that f is alternating on each pair xα, xβ ,
1 ≤ α < β ≤ m. For short let α = 1 and β = 2. Since the polynomial

m∑
i=3

f(x1, . . . , [xi, v, z], . . . , xm, y1, . . . , yk)

is alternating on x1 and x2, it is enough to check that

g′ = f([x1, v, z], x2, . . . , xm, y1, . . . , yk) + f(x1, [x2, v, z], x3, . . . , xm, y1, . . . , yk)

is alternating on x1 and x2. But

g′(x1, x2, . . .) + g′(x2, x1, . . .) = f([x1, v, z], x2, . . .)

+ f(x1, [x2, v, z], . . .) + f([x2, v, z], x1, . . .) + f(x2, [x1, v, z], . . .)

= f([x1, v, z], x2, . . .)− f([x2, v, z], x1, . . .)

+ f([x2, v, z], x1, . . .)− f([x1, v, z], x2, . . .) ≡ 0,

since f(x, y, . . .) = −f(y, x, . . .). �

Throughout we let R = Mq(F ) denote the algebra of q × q matrices over a field
F of characteristic zero and we let ∗ denote either the transpose involution denoted
∗ = t or the symplectic involution denoted ∗ = s on R. Since we are interested in
simple Jordan algebras, we shall also assume that q ≥ 3. Define

R(+) = {a ∈ R | a∗ = a}, R(−) = {a ∈ R | a∗ = −a}.
Then R(+) is a Jordan algebra, R(−) is a Lie algebra and R = R(+) ⊕ R(−) is
a vector space decomposition. Let L = slq(F ) ⊆ R be the Lie algebra of q × q
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traceless matrices. Then L∗ = L and we have

L = L(+) ⊕ L(−),

where L(+) = slq(F ) ∩R(+) and L(−) = R(−).
Recall that, given a ∈ R, the adjoint map ad a : R → R is the left Lie multi-

plication ad a : b → [a, b]. It is readily seen that if a ∈ L(+) is symmetric, then
ad a(L(+)) ⊆ L(−) and ad a(L(−)) ⊆ L(+). Hence, for any a, b ∈ L(+), the product
(ad a)(ad b) preserves L(+) and L(−). We shall denote by tr(ad a ad b) the trace of
the linear transformation ad a ad b on L(+).

In what follows, in order to simplify the notation, we shall often write f =
f(x1, . . . , xm, y1, . . . , yn) = f(x1, . . . , xm, Y ), where Y = {y1, . . . , yn}.

Lemma 3. Let Y = Y0 ∪ Y1 ∪ · · · ∪ Yr ⊆ X be a disjoint union with r ≥ 0 and
Y0 eventually empty. Let f = f(x1, . . . , xm, Y ) be a multilinear Lie polynomial
alternating on each Yi, 1 ≤ i ≤ r, and on x1, . . . , xm, where m = dimL(+). Then,
for any k ≥ 1 and for any v1, z1, . . . , vk, zk ∈ X, there exists a multilinear Lie
polynomial

g = g(x1, . . . , xm, v1, z1, . . . , vk, zk, Y )

such that, for any evaluation ϕ : X → L(+), ϕ(xi) = x̄i, 1 ≤ i ≤ m, ϕ(vj) = v̄j ,
ϕ(zj) = z̄j, 1 ≤ j ≤ k, ϕ(y) = ȳ, for y ∈ Y , we have

ϕ(g) = g(x̄1, . . . , . . . , x̄m, v̄1, z̄1, . . . , v̄k, z̄k, Ȳ )

= tr(ad v̄1 ad z̄1) · · · tr(ad v̄k ad z̄k)f(x̄1, . . . , x̄m, Ȳ ).

Moreover g is alternating on each set Yi, 1 ≤ i ≤ r, and on x1, . . . , xm.

Proof. The proof is by induction of k. Suppose first that k = 1. Then we define

g = g(x1, . . . , . . . , xm, v, z, Y ) =

m∑
i=1

f(x1, . . . , [xi, v, z], . . . , xm, Y ).

Clearly g is alternating on each set Yi, 1 ≤ i ≤ r and, by Lemma 2, is also
alternating on x1, . . . , xm. Consider the evaluation ϕ : X → L(+) such that ϕ(xi) =
x̄i, 1 ≤ i ≤ m, ϕ(v) = v̄, ϕ(z) = z̄, ϕ(y) = ȳ, for y ∈ Y . If the elements
x̄1, . . . , . . . , x̄m are linearly dependent over F , then, since f and g are alternating
on x1, . . . , xm, it follows that ϕ(f) = ϕ(g) = 0 and there is nothing to prove.

Suppose then that x̄1, . . . , x̄m are linearly independent over F . Since dimL(+) =
m, they form a basis of L(+). Hence, for all i = 1, . . . ,m, we can write

[x̄i, v̄, z̄] = αiix̄i +
∑
j �=i

αij x̄j ,

for some scalars αij ∈ F . Since f is alternating on x1, . . . , xm, we have that

f(x̄1, . . . , [x̄i, v̄, z̄], . . . , x̄m, Ȳ ) = αiif(x̄1, . . . , x̄i, . . . , x̄m, Ȳ ).

It follows that

g(x̄1, . . . , x̄m, v̄, z̄, Ȳ ) = (α11 + · · ·+ αmm)f(x̄1, . . . , x̄m, Ȳ ),

and, since α11 + · · ·+ αmm = tr(ad v̄ ad z̄), the lemma is proved in case k = 1.
Now let k > 1 and suppose that we have constructed a multilinear Lie polyno-

mial g = g(x1, . . . , . . . , xm, v1, z1, . . . , vk−1, zk−1, Y ) satisfying the conclusion of the
lemma. We then write g = g(x1, . . . , . . . , xm, Y ′), where Y ′ = Y ′

0 ∪Y1∪ · · ·∪Yr and
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Y ′
0 = Y0 ∪ {v1, z1, . . . , vk−1, zk−1}. If we now apply to g the same arguments as in

the case k = 1, we obtain a polynomial satisfying the conclusion of the lemma. �
The following remark holds.

Remark 1. If q ≥ 3, then L(+) is an irreducible L(−)-module under the adjoint
action.

Proof. Suppose first that L(−) is a simple algebra. If M is a proper L(−)-submodule
of L(+), then [M,M ] is an ideal of L(−). By the simplicity of L(−) either [M,M ] =
L(−) or [M,M ] = 0.

Suppose first that [M,M ] = L(−). Since [M,M ] ⊕ M is an L(−)-module and
[L(+), [M,M ]] ⊆ [[L(+),M ],M ] ⊆ [L(−),M ] ⊆ M , [L(+),M ] ⊆ L(−) = [M,M ], we
conclude that [M,M ]⊕M is a proper ideal of L = slq(F ), a contradiction.

In case [M,M ] = 0, we consider the decomposition L(+) = M ⊕ N , where
M and N are L(−)-submodules. By the same arguments as above we have that
[N,N ] = 0. If we denote L0 = L(−), L1 = M and L2 = N , then the decomposition
L = L0 ⊕ L1 ⊕ L2 is a Z3-grading of L = slq(F ). Now, it is well known that, up
to isomorphism of graded algebras, any Z3-grading of L = slq(F ) is induced by a
grading of R = Mq(F ); i.e., there exists a Z3-grading of R, R = R0 ⊕R1 ⊕R2 such
that L1 = R1, L2 = R2 and L0 = L∩R0 ([2]). On the other hand any Z3-grading of
Mq(F ) is elementary ([1]) and R0 is a semisimple not simple associative algebra. It

follows that R0 ∩ slq(F ) = L0 = L(−) cannot be simple and this is a contradiction.

Thus L(+) is an irreducible L(−)-module and we are done.
Suppose now that L(−) is not simple. Then by [13], ∗ = t is the transpose

involution and q = 4. In this case a direct computation shows that L(+) is an
irreducible L(−)-module. �
Definition 1. β : L(+) × L(+) → F is the bilinear form defined by β(a, b) =
tr(ad a ad b), for a, b ∈ L(+).

Next we need to exploit some of the properties of the bilinear form β.

Lemma 4. The bilinear form β is nondegenerate on L(+) = slq(F )(+).

Proof. Denote by I = {a ∈ L(+) | β(a, L(+)) = 0} the (left) kernel of β. Notice
that, since ad [a, b] = [ad a, ad b], the form β satisfies the equality

(2) β([a, c], b) = β(a, [c, b]),

for all a, b ∈ L(+) and c ∈ L(−). If we consider the adjoint action of L(−) on L,
then L(+) is an L(−)-submodule. Now, the equality (2) implies that [I, L(−)] ⊆ I,
i.e., that I is an L(−)-submodule of L(+). By Remark 1 we have that either I = 0
or I = L(+) and, in order to complete the proof of the lemma, it is enough to check
that I �= L(+), i.e., that β is nonzero.

Suppose first that ∗ is the symplectic involution on Mq(F ). Then q = 2p is even
and ∗ is given by (

A B
C D

)∗
=

(
Dt −Bt

−Ct At

)
,

where A,B,C,D are p × p matrices and t denotes the transpose involution. The
matrix a = e11+ep+1,p+1 is symmetric, and we let ϕ = (ad a)2. Since ϕ2 = ϕ, then
ϕ is a diagonalizable linear transformation of L = slq(F ) with eigenvalues 0 and

1. Hence the restriction of ϕ to L(+) is also diagonalizable with possibly the same
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eigenvalues. Since ϕ(L(+)) �= 0, we conclude that trϕ �= 0 and, so, β(a, a) �= 0.
This completes the proof in case ∗ is symplectic.

In case ∗ is the transpose involution, we choose a = e11+ e22. Then, since q ≥ 3,
ϕ = (ad a)2 is a nonzero diagonalizable linear transformation of L with eigenvalues
0 and 1. As above, since the restriction of ϕ to L(+) is nonzero, we conclude that
β(a, a) = trϕ �= 0. �

As an immediate consequence of the above lemma we have that, given any lin-
early independent elements a1, . . . , am ∈ L(+) with m = dimL(+), then

(3) det (βij) �= 0,

where βij = β(ai, aj), 1 ≤ i, j ≤ m. We shall use the above property in order to

construct alternating polynomials nonvanishing in L(+) and R(+).

Lemma 5. Let f = f(x1, . . . , xm, y1, . . . , yr) be a multilinear Lie polynomial alter-
nating on x1, . . . , xm, where m = dimL(+). Then, for any k ≥ 1, there exists a
multilinear Lie polynomial

gk(x1, . . . , xm, v
(1)
1 , z

(1)
1 , . . . , v(1)m , z(1)m , . . . , v

(k)
1 , z

(k)
1 , . . . , v(k)m , z(k)m , y1, . . . , yr)

satisfying the following conditions:

1) gk is alternating on each of the sets {x1, . . . , xm}, {v(i)1 , . . . , v
(i)
m }, and

{z(i)1 , . . . , z
(i)
m }, 1 ≤ i ≤ k;

2) for any evaluation ϕ : X → L(+), such that ϕ(xi) = x̄i, ϕ(yi) = ȳi,

ϕ(v
(j)
i ) = v̄

(j)
i , ϕ(z

(j)
i ) = z̄

(j)
i , we have

(4) ϕ(gk) = (det β̄1) · · · (det β̄k)f(x̄1, . . . , x̄m, ȳ1, . . . , ȳr),

where

β̄s =

⎛
⎜⎜⎝

β(v̄
(s)
1 , z̄

(s)
1 ) · · · β(v̄

(s)
1 , z̄

(s)
m )

...
...

β(v̄
(s)
m , z̄

(s)
1 ) · · · β(v̄

(s)
m , z̄

(s)
m )

⎞
⎟⎟⎠ ,

s = 1, . . . , k.

Proof. Suppose first that k = 1 and write Y = {y1, . . . , yr}. By Lemma 3 there
exists a multilinear Lie polynomial

g = g(x1, . . . , xm, v
(1)
1 , z

(1)
1 , . . . , v(1)m , z(1)m , Y )

such that

g(x̄1, . . . , x̄m, v̄
(1)
1 , z̄

(1)
1 , . . . , v̄(1)m , z̄(1)m , Ȳ )

= tr(ad v̄
(1)
1 ad z̄

(1)
1 ) · · · tr(ad v̄(1)m ad z̄(1)m )f(x̄1, . . . , x̄m, Ȳ ).

Now, for any σ, τ ∈ Sm, we define the polynomial

gσ,τ = gσ,τ (x1, . . . , xm, v
(1)
1 , z

(1)
1 , . . . , v(1)m , z(1)m , Y )

= g(x1, . . . , xm, v
(1)
σ(1), z

(1)
τ(1), . . . , v

(1)
σ(m), z

(1)
τ(m), Y )

and we set

g1(x1, . . . , xm, v
(1)
1 , z

(1)
1 , . . . , v(1)m , z(1)m , Y ) =

1

m!

∑
σ,τ∈Sm

(sgnσ)(sgn τ )gσ,τ .



CODIMENSION GROWTH OF SPECIAL SIMPLE JORDAN ALGEBRAS 3113

Clearly the polynomial g1 is alternating on each of the sets {x1, . . . , xm}, {v(1)1 , . . . ,

v
(1)
m } and {z(1)1 , . . . , z

(1)
m }. Next we show that ϕ(g1) = detβ̄1ϕ(f), for any evaluation

ϕ.
Now, by Lemma 3, it is readily seen that

ϕ(g1) = γϕ(f)

for any evaluation ϕ : X → L(+), where

γ =
1

m!

∑
σ,τ∈Sm

(sgnσ)(sgn τ )β(v̄
(1)
σ(1), z̄

(1)
τ(1)) · · ·β(v̄

(1)
σ(m), z̄

(1)
τ(m)).

We fix σ ∈ Sm and we compute the sum

γσ =
∑
τ∈Sm

(sgn τ )β(v̄
(1)
σ(1), z̄

(1)
τ(1)) · · ·β(v̄

(1)
σ(m), z̄

(1)
τ(m)).

In order to simplify the notation, write v̄
(1)
σ(i) = ai, z̄

(1)
i = bi, i = 1, . . . ,m. Then

γσ =
∑
τ∈Sm

(sgn τ )β(a1, bτ(1)) · · ·β(am, bτ(m))=det

⎛
⎜⎝

β(a1, b1) · · · β(a1, bm)
...

...
β(am, b1) · · · β(am, bm)

⎞
⎟⎠

= (sgnσ)det

⎛
⎜⎝

β(aσ−1(1), b1) · · · β(aσ−1(1), bm)
...

...
β(aσ−1(m), b1) · · · β(aσ−1(m), bm)

⎞
⎟⎠ = (sgnσ)detβ̄1.

Hence

γ =
1

m!

∑
σ∈Sm

(sgnσ)γσ = detβ̄1,

and the proof is completed in case k = 1.
If k > 1, by the inductive hypothesis there exists a multilinear Lie polynomial

gk−1(x1, . . . , xm, v
(1)
1 , z

(1)
1 , . . . , v(1)m , z(1)m , . . . , v

(k−1)
1 , z

(k−1)
1 , . . . , v(k−1)

m , z(k−1)
m , Y )

satisfying the conclusion of the lemma. We then write

gk−1 = gk−1(x1, . . . , . . . , xm, Y ′),

where Y ′ = Y ∪ {v(1)1 , z
(1)
1 , . . . , v

(1)
m , z

(1)
m , . . . , v

(k−1)
1 , z

(k−1)
1 , . . . , v

(k−1)
m , z

(k−1)
m } and

we apply to gk−1, Lemma 3 and the previous arguments. In this way we can
construct the polynomial gk and, for any evaluation ϕ, we have

ϕ(gk) = detβ̄kϕ(gk−1) = detβ̄1 · · · detβ̄kϕ(f).

This completes the proof of the lemma. �

3. Multialternating Jordan polynomials

Recall that R = Mq(F ), q ≥ 3, L = slq(F ), L(+) = slq(F ) ∩ R(+) and L(−) =

R(−). By making use of the results of the previous section, we can now construct
multialternating Lie polynomials nonvanishing in L(+).

Lemma 6. For any k ≥ 0 there exists a multilinear Lie polynomial

g = g(x
(1)
1 , . . . , x(1)

m , . . . , x
(2k+1)
1 , . . . , x(2k+1)

m , y1, . . . , yN )



3114 A. GIAMBRUNO AND M. ZAICEV

satisfying the following conditions:

1) g is alternating on each set {x(i)
1 , . . . , x

(i)
m }, 1 ≤ i ≤ 2k + 1;

2) g is not an identity of L(+);
3) the integer N does not depend on k.

Proof. We start with the case k = 0 by constructing a multilinear Lie polynomial
f = f(x1, . . . , xm, y1, . . . , yN ) alternating on x1, . . . , xm and nonvanishing on L(+).

By a result of Razmyslov ([20, Theorem 12.1]) applied to the adjoint represen-
tation of the Lie algebra L = slq(F ), there exist an integer r ≥ 1 and a multilinear
polynomial h(z1, . . . , zdr, y), where d = dimL = q2 − 1, with the following prop-
erties: 1) h is alternating on each set {z(i−1)d+1, . . . , zid}, 1 ≤ i ≤ r; 2) for any
evaluation zi → z̄i ∈ L, y → ȳ ∈ L we have that h(z̄1, . . . , z̄dr, ȳ) = λȳ, for some
λ ∈ F ; 3) h is not an identity of L.

Let ϕ : zi → z̄i ∈ L, y → ȳ ∈ L be an evaluation such that ϕ(h) �= 0. Then, for
any i = 1, . . . , r, the elements z̄(i−1)d+1, . . . , z̄id must be linearly independent over

F . Since d = dimL, this says that precisely m = dimL(+) among them lie in L(+).
After renaming the variables, we may write

h = h(x1, . . . , xm, z1, . . . , zdr−m, y),

h is alternating on x1, . . . , xm and ϕ(h) �= 0, for some evaluation ϕ : x1 →
x̄1, . . . , xm → x̄m in L(+) and of the remaining variables in L(+) ∪ L(−).

Now, notice that [L(+), L(+)] ⊕ L(+) is a nonzero ideal of the simple Lie alge-
bra L = slq(F ). Hence [L(+), L(+)] = L(−). This implies that if ϕ is a nonzero

evaluation of h such that, say, ϕ : z1 → z̄1 ∈ L(−), then the polynomial

h′ = h(x1, . . . , xm, [y1, y2], z2, . . . , zdr−m, y)

has a nonzero evaluation in L(+)∪L(−) such that x̄1, . . . , x̄m, ȳ1, ȳ2 ∈ L(+). Next we
apply the same procedure to all the variables zi which are evaluated in L(−). Then,
after renaming the variables, we obtain a polynomial f = f(x1, . . . , xm, y1, . . . , yN )
alternating on x1, . . . , xm and nonvanishing in L(+). This completes the case k = 0.

If k ≥ 1, we apply Lemma 5 to f and we obtain a polynomial gk which is
alternating on 2k + 1 sets of variables each of order m. By (4), for any evaluation
ϕ in L(+),

ϕ(gk) = (det β̄1) · · · (det β̄k)ϕ(f).

Since by Lemma 4 β is nondegenerate, by (3) det β̄i �= 0, for some evaluation β̄i.
Hence, since f is not an identity of L(+) it also follows that the polynomial gk is
not an identity of L(+). This completes the proof of the lemma. �

Suppose that there exists an element a ∈ L such that ab = ba or ab = −ba for
all b ∈ L(+). In this case, a commutes with all the elements of [L(+), L(+)] = L(−);
hence it generates a 1-dimensional module for the Lie algebra L(−), under the
adjoint action of L. Recall that L = slq(F ), and it is well known that since q ≥ 3,

L is a faithful L(−)-module. It follows that a = 0. We have proved the following.

Remark 2. If a ∈ L is such that ab = ba or ab = −ba for all b ∈ L(+), then a = 0.
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Now we are ready to prove the existence of Jordan multialternating polynomials.

Theorem 1. Let F be a field of characteristic zero and let R = Mq(F ) be the
algebra of q × q matrices with transpose or symplectic involution ∗, q ≥ 3. Let
R(+) = {a ∈ R | a∗ = a} be its Jordan subalgebra of symmetric elements. If
m = dimR(+), then, for all k ≥ 1, there exists a multilinear Jordan polynomial

h = h(x
(1)
1 , . . . , x(1)

m , . . . , x
(2k+1)
1 , . . . , x(2k+1)

m , y1, . . . , yN )

satisfying the following conditions:

1) h is alternating on each set {x(i)
1 , . . . , x

(i)
m }, 1 ≤ i ≤ 2k + 1;

2) h is not an identity of R(+);
3) N does not depend on k.

Proof. Recall that L = slq(F ), L(+) = L ∩ R(+), L(−) = L ∩ R(−) = R(−) and

L = L(+) ⊕ L(−), a direct sum of vector spaces.
Since dimL(+) = dimR(+)−1 = m−1, by Lemma 6 there exists a Lie polynomial

g = g(x
(1)
1 , . . . , x

(1)
m−1, . . . , x

(2k+1)
1 , . . . , x

(2k+1)
m−1 , y1, . . . , yN )

nonvanishing on L(+). If deg g is odd, then by Lemma 1, g is a Jordan polynomial.
In case deg g is even, we replace g with the polynomial

g′ = [g(x
(1)
1 , . . . , x

(2k+1)
m−1 , y1, . . . , yN ), yN+1].

Let ϕ : X → L(+) be an evaluation such that ϕ(g) �= 0. Then by Remark 2,
[ϕ(g), ȳN+1] �= 0 for some ȳN+1 ∈ L(+). This proves that g′ does not vanish
on L(+). Moreover g′ is a Lie polynomial of odd degree. Hence, without loss of
generality, we may assume that g itself has odd degree.

Now define

h = h(x
(1)
1 , . . . , x(1)

m , . . . , x
(2k+1)
1 , . . . , x(2k+1)

m , y1, . . . , yN )

= Alt1 · · ·Alt2k+1(g ◦ x(1)
m ◦ · · · ◦ x(2k+1)

m ),

where Alti means alternation on the variables x
(i)
1 , . . . , x

(i)
m . For instance,

Alt1(g ◦ x(1)
m )

=
∑

σ∈Sm

(sgnσ)g(x
(1)
σ(1), . . . , x

(1)
σ(m−1), . . . , x

(2k+1)
1 , . . . , x

(2k+1)
m−1 , y1, . . . , yN ) ◦ x(1)

σ(m).

Then h satisfies the conclusion 1) of the theorem, and we need only to prove that
h is not an identity of R(+).

Since g is not an identity of L(+), there exists an evaluation ϕ : x
(j)
i → x̄

(j)
i ∈

L(+), yj → ȳj ∈ L(+) with ϕ(g) = ḡ �= 0. Now we extend ϕ to x
(1)
m , . . . , x

(2k+1)
m , by

setting ϕ : x
(i)
m → x̄

(i)
m = E, for all i = 1, . . . , 2k + 1, where E is the identity q × q

matrix.
Recalling that g is a Lie polynomial, we get that

g(. . . , x̄
(j)
σ(1), . . . , x̄

(j)
σ(m−1), . . .) ◦ · · · ◦ x̄

(j)
σ(m) ◦ · · · = 0,

as soon as σ(m) �= m. Therefore, since∑
σ∈Sm,σ(m)=m

(sgnσ)g(. . . , x̄
(j)
σ(1), . . . , x

(j)
σ(m−1), . . .) = (m− 1)!ḡ,
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we obtain

ϕ(h) = ((m− 1)!)2k+1ḡ ◦ E ◦ · · · ◦ E = 22k+1((m− 1)!)2k+1ḡ �= 0

and the proof is complete. �

4. Central polynomials for simple Jordan algebras

of bilinear forms

In this section we let R = F ⊕ V be a Jordan algebra defined by a symmetric
bilinear form β on a vector space V . Recall that the product is defined by uv =
β(u, v) · 1, where 1 is the unit element of F , and it acts on V as the identity linear
transformation. In case β is nondegenerate and dimV ≥ 2, then R is simple.

Recall that a central polynomial for an algebra A with 1 is a polynomial f whose
values are scalar multiples of 1 in A and f is not a polynomial identity of A.

Proposition 1. If dimV = n, then

(5) f = f(x1, . . . , xn+1, y1, . . . , yn+1)

=
∑

σ∈Sn+1,τ∈Sn+1

(sgnστ )(xσ(1) ◦ yτ(1)) ◦ · · · ◦ (xσ(n+1) ◦ yτ(n+1))

is a central polynomial of R.

Proof. We start by proving that f takes scalar values in R, i.e., values of the type
λ = λ1 ∈ F .

Let {e1, . . . , en} be an orthogonal basis of V , that is, β(ei, ej) = 0 if and only
if i �= j. If we set en+1 = 1 ∈ F , then {e1, . . . , en+1} is a basis of R. Since f is
multilinear it is enough to check that

(6) f(ei1 , . . . , ein+1
, ej1 , . . . , ejn+1

)

is central in R, for all 1 ≤ i1, j1, . . . , in+1, jn+1 ≤ n + 1. Now, if {i1, . . . , in+1} �=
{1, . . . , n+1}, then the elements ei1 , . . . , ein+1

are linearly dependent and the value
of f in (6) is zero, since f is alternating on x1, . . . , xn+1. Hence {i1, . . . , in+1} =
{1, . . . , n + 1}. Similarly {j1, . . . , jn+1} = {1, . . . , n + 1} and the value of f in (6)
is a linear combination of monomials of the type

(7) a = (ek1
◦ el1) ◦ · · · ◦ (ekn+1

◦ eln+1
),

where {k1, . . . , kn+1} = {l1, . . . , ln+1} = {1, . . . , n + 1}. Suppose that i and j are
such that ki = lj = n + 1. Then, in case i = j, all factors ekα

◦ elβ in (7) are
scalars and a ∈ F . If i �= j, then eki

◦ eli = eli , ekj
◦ elj = ekj

and, since any
other product of the type ekα

◦ elβ with kα, lβ ≤ n gives a scalar, we get that
a = λ(ekj

◦ eli) = λ′ ∈ F . We have proved that all values of f are scalar multiples
of 1 in R.

Next we prove that f is not an identity of R. We consider the evaluation ϕ of f
such that ϕ(x1) = ϕ(y1) = e1, . . . , ϕ(xn+1) = ϕ(yn+1) = en+1. Then

ϕ(f) =
∑

σ∈Sn+1,τ∈Sn+1

(sgnστ )(eσ(1) ◦ eτ(1)) ◦ · · · ◦ (eσ(n+1) ◦ eτ(n+1)) =
∑

τ∈Sn+1

wτ ,

where

wτ =
∑

σ∈Sn+1

(sgnστ )(eσ(1) ◦ eτ(1)) ◦ · · · ◦ (eσ(n+1) ◦ eτ(n+1)).
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Now we fix τ ∈ Sn+1 and we compute wτ . Since Sn+1 = Sn+1τ , we can write

wτ =
∑

ρ∈Sn+1

(sgn ρττ )(eρτ(1) ◦ eτ(1)) ◦ · · · ◦ (eρτ(n+1) ◦ eτ(n+1))

(8) =
∑

ρ∈Sn+1

(sgn ρ)(eρ(i1) ◦ ei1) ◦ · · · ◦ (eρ(in+1) ◦ ei(n+1)
),

where we have set τ (1) = i1, . . . , τ (n+ 1) = in+1.
If in (8), ρ is such that ρ(n + 1) = n + 1, then the product (eρ(i1) ◦ ei1) ◦ · · · ◦

(eρ(in+1) ◦ ein+1
) = vρ is nonzero only if ρ = (1). In this case sgn ρ = 1 and

vρ = λ ∈ F , where λ = λ1 · · ·λn with λi = ei ◦ ei �= 0, 1 ≤ i ≤ n. Now let ρ
be such that ρ(n + 1) = t �= n + 1. Then the factor eρ(t) ◦ et is nonzero only if
eρ(t) = en+1 = 1, i.e., ρ(t) = n + 1. In this case vρ is nonzero only if ρ(j) = j, for
all j �= t, n+ 1. Hence ρ = (t, n+ 1), vρ = λ ∈ F and sgn ρ = −1.

It follows that wτ = (1− n)λ ∈ F . Therefore

ϕ(f) =
∑

τ∈Sn+1

wτ = (n+ 1)!(1− n) · λ �= 0,

and f is not an identity of R. �

5. Codimension growth

In this section we shall compute the exponential rate of growth of the codi-
mensions of any finite dimensional special simple Jordan algebra. We start by
computing an upper bound of the codimensions of any finite dimensional algebra.

Let F{X} be the free nonassociative algebra on a countable set X and, for
n ≥ 1 let Pn denote the space of multilinear polynomials of F{X} in the variables
x1, . . . , xn. If A is a not necessarily associative algebra, we still denote by Id(A)
the T -ideal of F{X} of polynomial identities of A and cn(A) = dim Pn

Pn∩Id(A) .

Proposition 2. If A is a finite dimensional algebra, dimA = d, then cn(A) ≤ dn+1.

Proof. Let a1, . . . , ad be a basis of A over F . For a fixed n, let

m1(x1, . . . , xn), . . . ,mN (x1, . . . , xn)

be a basis of Pn over F . Then a multilinear polynomial

f(x1, . . . , xn) =
∑

αjmj(x1, . . . , xn)

is an identity of A if and only if it vanishes under any evaluation x1 → ai1 , . . . , xn →
ain i.e., the following linear relation is satisfied:

(9) f(ai1 , . . . , ain) =
∑

αjmj(ai1 , . . . , ain) = 0.

The total number of such evaluations is dn since any xi can take d distinct values.
We regard the coefficients αj as indeterminates. By rewriting the right-hand side of
(9) as a linear combination of the basis elements of A, any relation (9) can be viewed
as d linear equations on the αj ’s since dimA = d. Hence, (9) can be regarded as a
system of dn+1 linear equations in N indeterminates αj , 1 ≤ j ≤ N . The space of
solutions has dimension N − r, where r is the rank of the system, r ≤ dn+1. Any
solution of (9), i.e., any N -tuple of coefficients αj , 1 ≤ j ≤ N , gives a multilinear
identity of A. Moreover, linearly independent solutions give linearly independent
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identities. Therefore dim(Pn∩Id(A)) = N−r and cn(A) = dimPn/(Pn∩Id(A)) =
r ≤ dn+1. �

Now we restrict our attention to Jordan algebras. Let P J
n be the space of multi-

linear Jordan polynomials in x1, . . . , xn. Recall that P J
n is spanned by the Jordan

products xσ(1) ◦ xσ(2) ◦ · · · ◦ xσ(n), where σ ∈ Sn with all possible arrangements

of brackets. Given a Jordan algebra B denote by IdJ (B) the T -ideal of F J 〈X〉 of
polynomial identities of B.

It is well known that the symmetric group Sn acts on P J
n : if σ ∈ Sn and

f(x1, . . . , xn) ∈ P J
n , then σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). We refer the reader

to [15] for a description of the representation theory of Sn. As in the associative case,

if B is a Jordan algebra, P J
n ∩ IdJ (B) is an Sn-module and cJn(B) = dim

PJ
n

PJ
n∩IdJ (A)

is called the nth Jordan codimension of B. In case B is a Jordan algebra such that
its codimensions cJn(B), n = 1, 2, . . . , are exponentially bounded (e.g., if B is finite

dimensional), one defines the Jordan exponent of B as expJ(B) = limn→∞
n
√
cJn(B),

in case such a limit exists.
In the next theorem we prove that for most special simple Jordan algebras B,

the Jordan exponent exists and expJ(B) = dimB.

Theorem 2. Let F be a field of characteristic zero, R = Mq(F ), q ≥ 3, with an

involution ∗ and R(+) its Jordan subalgebra of symmetric elements. Then, for all
n ≥ 1, there exist constants C > 0, t such that

Cntmn ≤ cJn(R
(+)) ≤ mn+1,

where m = dimR(+). Hence the Jordan exponent of R(+) exists and expJ(R(+)) =
dimR(+).

Proof. It is well known that the codimensions of an algebra do not change upon
extension of the base field. Hence without loss of generality we may assume that
F is algebraically closed and ∗ is either the transpose or the symplectic involution
(see for instance the proof of [11, Theorem 3.6.8]).

By Theorem 1, for all k ≥ 1, there exists a multilinear Jordan polynomial

h = h(x
(1)
1 , . . . , x(1)

m , . . . , x
(2k+1)
1 , . . . , x(2k+1)

m , y1, . . . , yN )

such that h is alternating on each set of indeterminates {x(i)
1 , . . . , x

(i)
m }, 1 ≤ i ≤

2k + 1, and h is not a polynomial identity of R(+). For simplicity we rename the
variables and we write

h = h(x1, . . . , x(2k+1)m, Y ),

where Y = {y1, . . . , yN}.
For a fixed k, let n = (2k + 1)m. By abuse of notation, we let P J

n+N be the

space of multilinear Jordan polynomials in x1, . . . , xn, y1, . . . , yN . Then h ∈ P J
n+N

and we regard P J
n+N as an Sn-module by letting Sn act on x1, . . . , xn. We then

consider FSnh, the Sn-submodule of P J
n+N generated by h, and we decompose it

into irreducible submodules.
Let λ � n be a partition of n. Given a Young tableau Tλ of shape λ � n, let RTλ

and CTλ
denote the subgroups of Sn stabilizing the rows and the columns of Tλ,

respectively. It is well known that if we let

R̄Tλ
=

∑
σ∈RTλ

σ and C̄Tλ
=

∑
τ∈CTλ

(sgnτ )τ,
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the element eTλ
= R̄Tλ

C̄Tλ
is an essential idempotent of the group algebra FSn,

generating an irreducible Sn-module associated to λ.
Since h �∈ IdJ (R(+)), there exists a Young tableau Tλ, λ � n, such that eTλ

h �≡ 0
in R(+). Write λ = (λ1, . . . , λr).

If λ1 ≥ 2k + 2, then eTλ
h is symmetric on at least 2k + 2 variables among

x1, . . . , xn. But for any σ ∈ R̄Tλ
these variables in σC̄Tλ

are divided into 2k + 1
disjoint alternating subsets. It follows that σC̄Tλ

h is alternating and symmetric on
at least two variables and, so, eTλ

h = 0 in the zero polynomial, a contradiction.
Thus λ1 ≤ 2k + 1.

Suppose now that r ≥ m + 1. Since the first column of Tλ is of height at
least m+ 1, the polynomial C̄Tλ

h is alternating on at least m+ 1 variables among
x1, . . . , xn. From dimR(+) = m it follows that for any σ, σC̄Tλ

h ≡ 0 on R(+) and,
so, also eTλ

h = R̄Tλ
C̄Tλ

h ≡ 0 on R(+), a contradiction.
We have proved that FSneTλ

h �⊆ IdJ (R(+)), for some Young tableau Tλ of shape
λ = ((2k + 1)m), a rectangle of width 2k + 1 and height m.

Now let n ≥ m +N be an arbitrary integer and write n = (2k + 1)m +N + r,
for some k ≥ 1 and 0 ≤ r ≤ 2m. Let h = h(x1, . . . , x(2k+1)m, Y ) be the polynomial
constructed above and set h′ = h, if r = 0, or

h′(x1, . . . , x(2k+1)m+r, Y ) = h(x1, . . . , x(2k+1)m, Y ) ◦ x(2k+1)m+1 ◦ · · · ◦ x(2k+1)m+r,

if r > 0. Clearly h′ ∈ P J
n . Moreover, if λ = ((2k + 1)m) and Tλ is the Young

tableau given above such that eTλ
h �∈ IdJ (R(+)), it is clear that eTλ

h′ �∈ IdJ (R(+))
also holds.

Write FSn =
⊕

µ�n Iµ, where Iµ is the minimal two-sided ideal of FSn corre-

sponding to the partition µ. By the branching rule of S(2k+1)m (see [15, Theorem
2.4.3]) we have that

FSneTλ
h′ ⊆

⊕
µ⊇λ
µ�n

Iµh
′,

and, since eTλ
h′ �∈ IdJ (R(+)), there exists a partition µ � n and a tableau Tµ such

that FSneTµ
h′ �⊆ IdJ (R(+)). This says that cJn(R

(+)) ≥ dµ = dimFSneTµ
. But

again by the branching rule, dµ ≥ dλ = d((2k+1)m). Since n − (2k + 1)m ≤ r and

asymptotically d((2k+1)m) � C0((2k+1)m)sm(2k+1)m, for some constants C0, s (see
[11, Lemma 6.2.5]), we obtain that

cJn(R
(+)) ≥ Cntmn,

for some constants C > 0, t.
Putting together Proposition 2 and the above inequality, we get Cntmn ≤

cJn(R
(+)) ≤ mn+1, for some constants C, t. In particular limn→∞

n
√
cJn(R

(+)) = m,
and we are done. �

The same result also holds for Jordan algebras of bilinear forms.

Theorem 3. Let R be a finite dimensional simple Jordan algebra of a bilinear form
over a field of characteristic zero. Then, for all n ≥ 1, there exist constants C > 0, t
such that

Cntmn ≤ cJn(R) ≤ mn+1,

where m = dimR. Hence the Jordan exponent of R exists and expJ (R) = dimR.
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Proof. By Proposition 1 there exisits a multilinear polynomial f(x1, . . . , xm, y1, . . . ,
ym) alternating on x1, . . . , xm and on y1, . . . , ym, where m = dimR, which takes
scalar values on R and is not an identity of R. Hence, for all k ≥ 1 there exists a
multilinear Jordan polynomial

h = h(x
(1)
1 , . . . , x(1)

m , . . . , x
(2k)
1 , . . . , x(2k)

m )

such that h is alternating on each set of indeterminates {x(i)
1 , . . . , x

(i)
m }, 1 ≤ i ≤ 2k,

and h is not a polynomial identity of R. The same arguments as in the previous
theorem give us a lower bound for the codimensions:

cJn(R) ≥ Cntmn

for some constants C > 0, t.

By Proposition 2 we get cJn(B) ≤ mn+1. Hence limn→∞
n
√
cJn(R

(+)) = m and
the proof is complete. �

We can now state the following result.

Theorem 4. Let R be a finite dimensional special simple Jordan algebra over a
field of characteristic zero. Then expJ(R) exists and equals the dimension of R
over its center.

Proof. Since the codimensions do not change upon extension of the base field, we
may regard R as an algebra over its center F . Now, if F̄ is the algebraic closure of F ,
then R̄ = R⊗F F̄ is a special simple Jordan algebra over F̄ and dimF R = dimF̄ R̄.
Putting together [14, Corollary 2, p. 204], Theorem 2 and Theorem 3, we get the
desired conclusion. �

Corollary 1. Let R be a finite dimensional special semisimple Jordan algebra over
a field of characteristic zero. Then expJ (R) exists and is an integer.

Proof. Write R = R1 ⊕ · · · ⊕ Rm, a direct sum of special simple Jordan algebras.
Since for all 1 ≤ i ≤ m, cn(Ri) ≤ cn(R) ≤ cn(R1) + · · · + cn(Rm), we get that
expJ (R) = maxi(exp

J(Ri)). �

6. Lower bounds for the codimension growth

In this section we want to determine the least exponential rate of growth of a
finite dimensional Jordan algebra. In general, for nonassociative algebras, in [5,
Theorem 2] it was proved that for a finite dimensional algebra A, dimA = d, cn(A)

is either polynomially bounded or cn(A) > 1
n2 2

n
3d2 for n large enough. Moreover,

for any 1 < α < β < 2, in [7] the authors constructed a finite dimensional algebra
B such that α < exp(B) < β. In the next theorem we show that, as in the case of
associative or Lie algebras, finite dimensional special Jordan algebras cannot have
exponential rate of growth of the codimensions strictly between 1 and 2.

Theorem 5. Let R be a finite dimensional special Jordan algebra. Then either
the sequence of codimensions cJn(R) is polynomially bounded or cJn(R) ≥ Cnq2n for
some constants C > 0, q.

Proof. As we remarked in the previous section, we may assume that F is alge-
braically closed and let us denote by I the nilpotent radical of R. If I = R, then R
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is nilpotent and cJn(R) = 0 asymptotically. Hence we may assume that I �= R. By
[25, p. 97 Corollary] A/I is also a special Jordan algebra and let

R/I = B1 ⊕ · · · ⊕Bm

be the decomposition of A/I into the sum of simple algebras. If there exists j ≥ 1
such that dimBj = d > 1, then by Theorem 3 we have that cJn(A) ≥ cJn(A/I) ≥
cJn(Bj) = Cntdn and we are done.

Hence we may assume that B1
∼= . . . ∼= Bm

∼= F (as Jordan algebras). Since I is
nilpotent, by [14, Lemma 3, p. 149] any set of orthogonal idempotents can be lifted
modulo I. Hence, since B1, . . . , Bm are unitary algebras, there exist m nonzero
orthogonal idempotents e1, . . . , em in R.

Recall that

(10) cJn(R) = dim
P J
n

P J
n ∩ Id (R)

(see Section 5) and consider the structure of an Sn-module on M =
PJ

n

PJ
n ∩ Id (R) . By

complete reducibility M decomposes into a finite sum of irreducible submodules
and by [5, Theorem 1] the number of such submodules is a polynomially bounded
function of n. Therefore in order to complete the proof we need only to estimate
the dimension of an irreducible submodule of M .

First suppose that any multilinear Jordan monomial m = m(x1, . . . , xn) vanishes
in R provided that two variables are evaluated in ei and ej , for some i �= j. That
is,

(11) m(e1, . . . , e1︸ ︷︷ ︸
p1

, . . . , em, . . . , em︸ ︷︷ ︸
pm

, a1, . . . , ak)

is equal to 0 in R as soon as at least two among p1, . . . , pm are nonzero, a1, . . . , ak ∈
I, k ≥ 0, and p1 + · · · + pm + k = n. We shall prove that in this case, cJn(R) is
polynomially bounded.

Now we consider the embedding of A into its special universal envelope U . Then
I ⊆ rad(U) where rad(U) is the Jacobson radical of U .

Let λ = (λ1, . . . , λr) � n be such that λ2 + · · · + λr ≥ N where rad(U)N = 0.
For any multilinear polynomial h = h(x1, . . . , xn), the polynomial C̄Tλ

h contains λ2

sets of alternating variables, each of order at least 2. When evaluating the variables
in R, we must substitute either at least two distinct ei’s or at least two equal ei’s
in an alternating set or at least N elements from I. In all cases the value of the
polynomial is zero. It follows that

FSneTλ
h �≡ 0

only if λ2 + · · · + λr < N . From the hook formula that gives the dimension of an
irreducible FSn-module (see [15]), it easily follows that dimFSneTλ

is bounded by
a polynomial of degree N and the proof is complete in this case.

Now suppose that there exists a monomial m(x1, . . . , xn) with a nonzero evalu-
ation (11), where at least two among p1, . . . , pm are nonzero and a1, . . . , ak ∈ I. In
order to simplify the notation suppose p1 �= 0, p2 �= 0 and rename the variable so
that m = m(x1, x2, y1, . . . , yt) and m(e1, e2, ȳ1, . . . , ȳt) �= 0, for some ȳ1, . . . , ȳt ∈ R.
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Starting from m we shall now construct a polynomial in n pairs of alternating
variables, for all n = 1, 2, . . .. In fact define

f = f(x1, . . . , x2n+2, y1, . . . , yt)

=
∑

σ1,...,σn∈S2

(sgnσ1) · · · (sgnσn)

×m(xσ1(1) · · ·xσn(n)x2n+1, xσ1(n+1) · · ·xσn(2n)x2n+2, y1, . . . , yt),

where σi ∈ S2 acts on the indices i, n+ i. By evaluating

x1, . . . , xn, x2n+1 → e1, xn+1, . . . , x2n, x2n+2 → e2,

y1 → ȳ1, . . . , yt → ȳt,

we get a sum of 2n evaluated monomials corresponding to the distinct n-tuples of
permutations (σi1 , . . . , σin). If at least one σij is different from 1, then the value
of the corresponding summand is zero since e1e2 = 0. Hence the only nonzero
summand is m(en+1

1 , en+1
2 , ȳ1, . . . , ȳt) = m(e1, e2, ȳ1, . . . , ȳt) �= 0 and f is not an

identity of R. On the other hand, if we let S2n act on P J
2n+t+2 by the permutation

action only on the variables x1, . . . , x2n, the complete linearization of f generates in
P J
2n+t+2 an S2n-module whose irreducible components correspond to the partition

λ = (n, n). Now, by the hook formula, for any µ � 2n + t + 2 such that µ ≥ λ
in the left lexicographic order, we have that dµ ≥ dλ. Hence, since asymptotically
dλ � C0(2n)

s22n (see, for example [11, Lemma 6.2.5]), and t + 2 is constant, one
can easily find constants C > 0 and q such that cJn(R) ≥ Cnq2n for all n. �
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