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Abstract

Let A be an algebra over a field F of characteristic zero and let cn(A), n = 1,2, . . . , be its sequence
of codimensions. We prove that if cn(A) is exponentially bounded, its exponential growth can be any real
number > 1. This is achieved by constructing, for any real number α > 1, an F -algebra Aα such that
limn→∞ n

√
cn(Aα) exists and equals α. The methods are based on the representation theory of the symmet-

ric group and on properties of infinite Sturmian and periodic words.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let F be a field of characteristic zero. The theory of polynomial identities plays a significant
role in the general theory of algebras over F . For instance, if F is an algebraically closed field,
it turns out that any finite dimensional simple associative or Lie algebra is uniquely determined
by its identities (see [17,20]). Also, in the associative case, the polynomial identities allow to
establish a surprising link between finitely generated and finite dimensional algebras [11]. In
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general, the study of the polynomial identities and of the corresponding varieties is one of the
most fruitful approaches to the investigation of some important classes of non-associative alge-
bras [23].

On the other hand, the description of the identities of a given algebra is a very difficult problem
in general. Even if A = Mn(F) is the algebra of n × n matrices over F , the description of
the identities is known only for n = 2. One of the effective ways of studying the identities of
a given algebra is that of combining algebraic and analytical methods. The idea of applying
numerical methods for investigating the identities was originally realized in the associative case
(see for instance [1,18]) and the results obtained in recent years have given new impetus to the
development of the theory (see [7]). The same analytical approach was also effectively applied
in Lie theory (see [7,13]).

In general, given an algebra A over F , one can associate to A a numerical sequence cn(A),
n = 1,2, . . . , called the sequence of codimensions of A (see next section for details). The se-
quence cn(A), n = 1,2, . . . , gives in some way a measure of the polynomial relations vanishing
in the algebra A and in general has overexponential growth. For instance, if F {X} is the free
(non-associative) algebra on a set X, |X| � 2, cn(F {X}) = pnn! where pn = 1

n

(2n−2
n−1

)
is the nth

Catalan number. For the free associative algebra F 〈X〉 and the free Lie algebra L〈X〉 we have
cn(F 〈X〉) = n! and cn(L〈X〉) = (n − 1)!, respectively.

A number of methods have been developed in the years in order to deal with codimension
sequences without any further assumption (see for instance [16,18]). But the most significant
results have been obtained in case cn(A) is exponentially bounded.

There is a wide class of algebras with exponentially bounded codimension growth. For in-
stance, if dimA = d < ∞, then cn(A) � dn [3]. Also, any associative PI-algebra (algebra
satisfying a non-trivial polynomial identity), any infinite dimensional simple Lie algebra of Car-
tan type [2] or any affine Kac–Moody algebra has exponentially bounded codimension growth
[18,21].

In case the sequence of codimensions is exponentially bounded, say cn(A) � dn, one can con-
struct the bounded sequence n

√
cn(A), n = 1,2, . . . , and it is an open problem if limn→∞ n

√
cn(A)

exists.
In the 80s Amitsur conjectured that for any associative PI-algebra A, limn→∞ n

√
cn(A) exists

and is a non-negative integer. This conjecture was recently confirmed in [5,6]. In [22] it was also
shown that the same conclusion holds for any finite dimensional Lie algebra.

For associative algebras it was known long time before [10] that the sequence of codimensions
cannot have intermediate growth, i.e., either cn(A) � 2n asymptotically or cn(A) is polynomially
bounded. A similar result for general Lie algebras was proved in [14]. Only recently it was shown
that for any finite dimensional algebra A either cn(A) is polynomially bounded or cn(A) > ϕ(d)n

where dimA = d and ϕ is some explicit function with ϕ(d) > 1 [8].
There is only one known example of infinite dimensional Lie algebra L with 3.1 < n

√
cn(L) <

3.9 [15]. Nevertheless, even for this algebra it is unknown if limn→∞ n
√

cn(L) exists.
The first goal of this paper is to construct examples of (non-associative) algebras A such that

limn→∞ n
√

cn(A) exists and is non-integer. Actually we prove that for any real number t � 1 there
exists an algebra A = A(t) such that limn→∞ n

√
cn(A(t)) = t (Corollary 7.1). Then we discuss

the asymptotics of the codimensions of finite dimensional algebras. Clearly, if F is countable,
then limn→∞ n

√
cn(A) can take only a countable set of values. Hence not every real number

greater than 1 can be realized as the exponential growth of the codimension sequence of a finite
dimensional algebra. Nevertheless, the set
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{
lim

n→∞
n
√

cn(A)
∣∣ dimF A < ∞

}
is a dense subset of R (Corollary 7.2).

The main tool in our study is the ordinary representation theory of the symmetric group.
Also, by applying methods of algebraic combinatorics [12], to each algebra A(t) we associate
an infinite word w in the alphabet {0,1} and we relate the complexity of w to the sequence of
codimensions of A(t). It turns out that the basic properties of Sturmian and periodic words will
allow us to prove our result.

The techniques developed in this paper allowed us to construct examples of infinite di-
mensional non-associative algebras whose growth of the codimensions is intermediate between
polynomial and exponential [8]. As it was mentioned above, this phenomenon cannot occur in
case of associative or Lie algebras.

2. Preliminaries and basic tools

Throughout F is a field of characteristic zero and F {X} = F {x1, x2, . . .} is the free non-
associative algebra of countable rank over F . Given a polynomial f = f (x1, . . . , xn) ∈ F {X},
we say that f ≡ 0 is a polynomial identity for an F -algebra A (or that A satisfies f ≡ 0) if
f (a1, . . . , an) = 0 for all a1, . . . , an ∈ A. In case A satisfies a non-trivial polynomial identity,
A is called a PI-algebra. Let

Id(A) = {
f ∈ F {X} | f ≡ 0 in A

}
denote the subset of F {X} of polynomial identities of A. It is clear that Id(A) is an ideal invariant
under all endomorphisms (i.e., a T-ideal) of F {X}. We refer the reader to [4,7,20,23] for an
account of the basic properties of PI-algebras.

For every n � 1, let Pn be the subspace of F {X} of all multilinear polynomials in the variables
x1, . . . , xn. Notice that since the number of distinct arrangements of parentheses on a monomial
of length n is the Catalan number 1

n

(2n−2
n−1

)
, it readily follows that dimF Pn = (2n−2

n−1

)
(n − 1)!.

Now let A be an arbitrary algebra and let Id(A) be its T-ideal of identities in the free algebra
F {X}.
Definition 2.1. The non-negative integer

cn(A) = dim
Pn

Pn ∩ Id(A)

is called the nth codimension of A.

As it was mentioned in the introduction, the sequence cn(A), n = 1,2, . . . , is exponentially
bounded for a wide class of algebras. For such algebras one can define the following numerical
invariant

Definition 2.2. Let A be an algebra over F and let the sequence cn(A), n = 1,2, . . . , be expo-
nentially bounded. Then the PI-exponent of A is the real number

exp(A) = lim
n→∞

n
√

cn(A) (1)

provided the limit on the right-hand side of (1) exists.
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Since charF = 0, by the well-known multilinearization process, every T-ideal is determined
by its multilinear polynomials. Hence the T-ideal Id(A) is completely determined by the sequence
of spaces {Pn ∩ Id(A)}n�1. These spaces are studied through the representation theory of the
symmetric group.

For the convenience of the reader we recall the basic notions and constructions of this theory
(see [9]).

Let Sn be the symmetric group on {1, . . . , n}. Since charF = 0, by Maschke’s theorem any
finite dimensional Sn-representation is completely reducible. In other words, if M is a finite
dimensional module for the group algebra FSn, then M can be decomposed as

M = M1 ⊕ · · · ⊕ Mq (2)

where M1, . . . ,Mq are irreducible FSn-modules. In the language of Sn-characters (2) can be
rewritten in the form

χ(M) = χ(M1) ⊕ · · · ⊕ χ(Mq), (3)

where χ(M) is the character of M and χ(Mi) is the character of Mi , i = 1, . . . , q . The number
q of irreducible summands in (2) and (3) is called the length l(M) of M . Now, it is well known
that there is a one-to-one correspondence between irreducible Sn-characters and partitions of n.
Recall that a sequence λ = (λ1, . . . , λr ) of positive integers is called a partition of n, and we
write λ � n, if λ1 � · · · � λr and λ1 + · · · + λr = n. To a partition λ � n one can associate a
Young diagram Dλ which is an array of boxes such that the j th row of Dλ contains λj boxes. If
we fill up the boxes of Dλ with the integers 1, . . . , n, we obtain a Young tableau of shape λ.

Given a Young tableau Tλ let RTλ and CTλ be the subgroups of Sn stabilizing the rows and the
columns of Tλ, respectively. Then write

R̄Tλ =
∑

σ∈RTλ

σ, C̄Tλ =
∑

τ∈CTλ

(sgn τ)τ

for the corresponding elements of the group algebra FSn. Then the element eTλ = R̄TλC̄Tλ is an
essential idempotent of FSn, i.e., e2

Tλ
= αeTλ , for some non-zero scalar α. It is well known that

eTλ generates a minimal left ideal of FSn, that is realizes an irreducible representation of Sn.
Moreover for any two tableaux Tλ and T ′

λ of the same shape λ the left modules FSneTλ and
FSneT ′

λ
are isomorphic. On the other hand, FSneTλ and FSneTμ are not Sn-isomorphic as soon

as λ �= μ. Recall also that eTλM �= 0 for any irreducible Sn-module M isomorphic to FSneTλ .
Since the characters of two equivalent representations coincide, by using standard notation,

we write

χλ = χ(FSneTλ)

the irreducible character of the module FSneTλ . Combining together similar summands, we can
rewrite (3) in the form

χ(M) =
∑

mλχλ, (4)

λ�n
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where mλ is a non-negative integer called the multiplicity of χλ in χ(M) (mλ = 0 if the right-
hand side of (2) does not contain summands isomorphic to FSneTλ ). Recall that for any Sn-
module Q, the degree of the character χ(Q) is degχ(Q) = dimQ. Then from (2), (3) and (4) it
follows that

dimM =
∑
λ�n

mλdλ

where dλ = degχλ is the degree of the character χλ and

l(M) =
∑
λ�n

mλ.

Given a partition λ = (λ1, . . . , λt ) � n, denote by λ′
1, . . . , λ

′
r the heights of first, second, r th

column of the Young diagram Dλ, respectively. Clearly r = λ1, λ′
1 + · · · + λ′

r = n and λ′
1 �

· · · � λ′
r . Hence λ′ = (λ′

1, . . . , λ
′
r ) is a partition of n called the conjugate partition of λ.

In what follows we shall also use the hook formula for the dimension dλ of the irreducible Sn-
representations. Let λ = (λ1, λ2, . . .) be a partition of n and let Dλ be the corresponding Young
diagram. Denote by (i, j) the box of Dλ at the intersection of the ith row and the j th column
and define the hook number

hij = λi − (j − 1) + λ′
j − (i − 1) − 1 = λ1 + λ′

j − i − j + 1

where λ′ = (λ′
1, λ

′
2, . . .) is the conjugate partition on λ. Then

dλ = n!∏
(i,j)∈Dλ

hij

is the hook formula for dλ = degχλ.
Now let the symmetric group Sn act on the left on Pn by requiring that for σ ∈ Sn and

f (x1, . . . , xn) ∈ Pn,

σf (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

Since for any PI-algebra A, the subspace Pn ∩ Id(A) is Sn-invariant, this in turn induces a struc-
ture of Sn-module on the space Pn(A) = Pn

Pn∩Id(A)
. The Sn-character of Pn(A), denoted χn(A),

is called the nth cocharacter of the algebra A and

cn(A) = degχn(A) = dimF Pn(A)

is the nth codimension of A. Then the nth cocharacter of the PI-algebra A decomposes as

χn(A) =
∑
λ�n

mλχλ (5)

where mλ � 0 is the multiplicity of χλ in χn(A). In particular

cn(A) =
∑

mλdλ. (6)

λ�n
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The two sequences {χn(A)}n�1 and {cn(A)}n�1 will be the main object of our study.
Another important numerical sequence is the sequence of colengths. If the nth cocharacter of

A has the decomposition given in (5), the nth colength of A is

ln(A) =
∑
λ�n

mλ. (7)

The equalities (6) and (7) are very useful in the study of the asymptotic behavior of the se-
quence cn(A). For instance, if A is an associative PI-algebra, then all dλ appearing in (6) with
non-zero multiplicity mλ, are exponentially bounded as functions of n, whereas ln(A) in (7) is
polynomially bounded. In the following sections we shall construct a family of non-associative
algebras sharing the same properties. This will allow us to reduce the study of the asymptotic
behavior of cn(A) to the estimate of the asymptotic behavior of the degrees of the corresponding
representations of the symmetric groups.

3. The algebra A(K)

Given a sequence of integers K = {ki}i�1 such that ki � 2 for all i, we define a (non-
associative) algebra A(K) that will be the main object of our investigation.

Definition 3.1. Let K = {ki}i�1 be a sequence of positive integers ki � 2. Then A(K) is the
algebra over F with basis

{a, b} ∪ Z1 ∪ Z2 ∪ · · ·

where

Zi = {
z
(i)
j

∣∣ 1 � j � ki

}
, i = 1,2, . . . ,

and multiplication table given by

z
(i)
2 a = z

(i)
3 , . . . , z

(i)
ki−1a = z

(i)
ki

, z
(i)
ki

a = z
(i)
1 , i = 1,2, . . . ,

z
(i)
1 b = z

(i+1)
2 , i = 1,2, . . . ,

and all the remaining products are zero.

Recall that, given elements y1, y2, . . . , yn of a non-associative algebra, their left-normed prod-
uct is defined inductively as y1 · · ·yn = (y1 · · ·yn−1)yn. From Definition 3.1 it easily follows that
only left-normed products of basis elements of A(K) may be non-zero. Moreover the only non-
zero products are of the type z

(i)
j f (a, b) for some left-normed monomial f (a, b). Because of the

multiplication table of A(K), any other arrangement of the parentheses in f (a, b) gives a zero
value, hence there is no lost of generality if we view f = f (a, b) as an associative monomial on
a and b and we shall tacitly do this in what follows.

Let us denote by dega f and degb f the degree of f on a and b, respectively. Notice that all
degrees are well defined only if we consider the elements f (a, b) as words in the alphabet {a, b}
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and do not compute their values in A(K). It is clear that given any z
(i)
j and z

(l)
k such that l > i or

l = i and k > j , there exists only one monomial f (a, b) on a and b with

z
(l)
k = z

(i)
j f (a, b). (8)

Some conclusions can be easily drawn about the cocharacter sequence of A(K).
Recall that given a set N ⊆ {1, . . . , n}, a multilinear polynomial g(x1, . . . , xn) ∈ Pn is alter-

nating on the set of indeterminates {xk | k ∈ N}, if

σg(x1, . . . , xn) = (sgnσ)g(x1, . . . , xn),

for all σ ∈ S(N), where S(N) is the symmetric group on the set N . The characteristic property
of alternating polynomials is that if we evaluate the above g in an algebra A, i.e., if we substitute
xi → ai ∈ A, i = 1, . . . , n, then g(a1, . . . , an) = 0 as soon as ai = aj for some i, j ∈ N .

Now let λ = (λ1, . . . , λt ) � n be a partition of n and let λ′ = (λ′
1, . . . , λ

′
r ) denote the conjugate

partition of λ. Denote by h(λ) the height of Dλ, i.e., h(λ) = λ′
1.

Let Tλ be a λ-tableau and let eTλ be the corresponding essential idempotent of FSn. Denote by
Nj , j = 1, . . . , r , the integers contained in the j th column of Tλ. Then {1, . . . , n} = N1 ∪· · ·∪Nr

is a disjoint union and

CTλ = S(N1) × · · · × S(Nr). (9)

Given a multilinear polynomial f = f (x1, . . . , xn) ∈ Pn, consider the polynomial g =
g(x1, . . . , xn) = eTλf (x1, . . . , xn). From (9) and the definition of C̄Tλ it follows that the poly-
nomial f ′ = C̄Tλf is alternating on any set {xk | k ∈ Ni}, 1 � i � r .

Next we evaluate the polynomial f ′ in the algebra A(K). We remark that since f ′ is a mul-
tilinear polynomial, it is enough to evaluate it into a linear basis of A(K). Suppose first that
N1 � 4. Note that

I = span
{
z
(i)
j

∣∣ 1 � j � ki, i � 1
}

is a two-sided ideal of A(K). Hence when evaluating f ′ in A(K), we have to replace two vari-
ables xi and xj , i, j ∈ N1 either with elements of I or both with a or both with b. In any case,
since I 2 = 0 and f ′ is alternating on {xk | k ∈ N1}, it follows that f ′ is an identity of A(K).
Hence g(x1, . . . , xn) = R̄Tλf

′(x1, . . . , xn) is also an identity of A(K). We have proved that if
h(λ) = N1 > 3, then eTλf is an identity of A(K). Similarly, if N1 = 3 and N2 = 3, i.e., λ3 > 1
in λ = (λ1, . . . , λt ), then also C̄Tλf ≡ 0, and so eTλf ≡ 0, in A(K).

Recall that if M is an Sn-module,

M = M1 ⊕ · · · ⊕ Mq,

with M1, . . . ,Mq irreducible Sn-modules and, say, χ(M1) = χλ, for some λ � n, then eTλM1 �= 0,
for any λ-tableau Tλ. Hence, by the complete reducibility of Sn-representations, the Sn-module
Pn can be decomposed into the sum of two Sn submodules

Pn = M ⊕ (
Pn ∩ Id

(
A(K)

))
.
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As it was shown above, eTλf is an identity of A(K) as soon as h(λ) > 3 or λ3 > 1. Hence M

does not contain irreducible Sn-submodules with character χλ where h(λ) > 3 or λ3 > 1. Since

Pn

(
A(K)

) = Pn

Pn ∩ Id(A(K))
∼= M,

we immediately obtain the following

Lemma 3.1.

χn

(
A(K)

) = m(n)χ(n) +
∑

λ=(λ1,λ2)�n

mλχλ +
∑

λ=(λ1,λ2,1)�n

mλχλ.

In order to investigate the asymptotics of the degrees of the irreducible Sn-characters we
introduce the real valued function

Φ(x) = 1

xx(1 − x)1−x

defined on the interval (0, 1
2 ].

The proof of the next lemma is based on standard arguments and is left to the reader.

Lemma 3.2. The function Φ(x) is continuous in the interval (0, 1
2 ], and Φ(a) < Φ(b) whenever

a < b. Moreover limx→0+ Φ(x) = 1 and Φ( 1
2 ) = 2.

Next we need to estimate the degrees of the irreducible Sn-characters χλ for the three types of
partitions: λ = (n) or (λ1, λ2) or (λ1, λ2,1). If λ = (n) then degχλ = 1. In case λ = (n − k, k),
by the hook formula (see Section 2), we obtain

degχλ = n!
k!(n − k)! · n − 2k + 1

n − k + 1

and, so,

1

n

(
n

k

)
� degχλ �

(
n

k

)
.

Now, by Stirling’s formula [19], for some 0 < θn < 1 we have

n! = √
2πn

nn

en
e

θn
12n .

Since k � n − k, write k = αn where 0 < α = k
n

� 1
2 . Then we have

(
n

k

)
=

√
2πn

2πk · 2π(n − k)

nnγn,k

kk(n − k)n−k
= γn,k√

2πα(1 − α)n
Φ(α)n

where
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γn,k = e
θn
12n

e
θk
12k · e

θn−k
12(n−k)

.

Notice that

γn,k√
2πα(1 − α)n

= γn,k√
2πk(1 − α)

� e
1
12√
π

<

√
e

π
< 1

and

γn,k√
2πα(1 − α)n

>
1

e
1
12

· 1

e
1
12

· 1√
2π n

4

>
1√
πn

.

Hence we have proved the following

Lemma 3.3. Let λ = (λ1, λ2) be a partition of n. Then

1√
πn3

Φ(α)n < degχλ < Φ(α)n,

where α = λ2
n

and Φ(α) = 1
αα(1−α)1−α .

A similar result can be proved about partitions of the type (λ1, λ2,1), but we shall reduce all
calculations for such partitions to the case of partitions with only two parts.

4. Complexity of infinite words and colength sequence

In this section we shall bound from above the colength sequence of the algebra A(K) for
some special types of sequences K associated to infinite words in the alphabet {0,1}.

We start with a non-difficult but important remark on the bound of the multiplicities in the
cocharacter of any PI-algebra. For every d � n, let W

(d)
n be the subspace of the free algebra

F {X} of homogeneous polynomials in x1, . . . , xd of degree n. Given any PI-algebra A, define

W(d)
n (A) = W

(d)
n

W
(d)
n ∩ Id(A)

.

Lemma 4.1. Let A be a PI-algebra with nth cocharacter χn(A) = ∑
λ�n mλχλ. Then, for every

λ � n with h(λ) � d , we have that mλ � dimW
(d)
n (A).

Proof. Let λ � n with h(λ) � d and for short, write λ = (λ1, . . . , λd) even if h(λ) < d . Recall
that χn(A) is the Sn-character of the module Pn(A) = Pn

Pn∩Id(A)
. Hence, since χλ participates in

χn(A) with multiplicity mλ, Pn(A) contains a submodule

M = M1 ⊕ · · · ⊕ Mq

with q = mλ, where for i = 1, . . . , q , each Mi has character χ(Mi) = χλ.
For i � 1, write x̄i = xi + Id(A) ∈ F {X}

Id(A)
. Now, let Tλ be the Young tableau of shape λ obtained

from the diagram Dλ by filling the boxes of the first row from left to right with the integers
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1, . . . , λ1, the second row with λ1 + 1, . . . , λ1 + λ2, and so on. It is well known (see Section 2)
that eTλMi �= 0, for all i = 1, . . . , q . Given 1 � i � n, let gi ∈ Mi be a multilinear polynomial
such that f̃i = f̃i (x̄1, . . . , x̄n) = eTλgi �= 0. By the structure of the essential idempotent eTλ , it
follows that f̃i is symmetric on each of the sets {x̄1, . . . , x̄λ1}, {x̄λ1+1, . . . , x̄λ1+λ2}, etc.

Let F {x1, . . . , xd} denote the free algebra on the set {x1, . . . , xd} and consider the homomor-
phism

ϕ :
F {X}
Id(A)

→ F {x1, . . . , xd}
F {x1, . . . , xd} ∩ Id(A)

such that

ϕ(x̄1) = · · · = ϕ(x̄λ1) = y1,

ϕ(x̄λ1+1) = · · · = ϕ(x̄λ1+λ2) = y2,

. . .

ϕ(x̄λ1+···+λd−1+1) = · · · = ϕ(x̄n) = yd

where for 1 � j � d , yj = xj + F {x1, . . . , xd} ∩ Id(A).

Clearly ϕ(M) ⊆ W
(d)
n (A). Denote f1 = ϕ(f̃1), . . . , fq = ϕ(f̃q). It is well known that

f̃1, . . . , f̃q are, up to non-zero scalars, the complete linearizations of f1, . . . , fq , respectively.
Since f̃1, . . . , f̃q /∈ Id(A), also f1, . . . , fq /∈ Id(A).

Suppose that the elements f1, . . . , fq are linearly dependent over F . Then the elements
f̃1, . . . , f̃q obtained by complete linearization of f1, . . . , fq respectively, are still linearly de-
pendent over F . But f̃1 ∈ M1, . . . , f̃q ∈ Mq , and this is a contradiction. Thus

mλ = q � dimϕ(M1 ⊕ · · · ⊕ Mq) � dimW(d)
n (A). �

At this stage, in order to bound the colength sequence of A(K), we need to specialize the
sequence K .

Let w = w1w2 . . . be an infinite (associative) word in the alphabet {0,1}. Given an integer
m � 2, let Km,w = {ki}i�1 be the sequence defined by

ki =
{

m, if wi = 0,

m + 1, if wi = 1

and write A(m,w) = A(Km,w).
Recall that, given an infinite word w in a finite alphabet, the complexity Compw of w is the

function Compw : N → N, where Compw(n) is the number of distinct subwords of w of length n

(see [12, Chapter 1]).

Lemma 4.2. For any m � 2 and for any word w, the algebra A = A(m,w) has nth colength
satisfying

ln(A) � 3(m + 1)n3 Compw(n).
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Proof. Consider the quotient algebra R = F {x1,x2,x3}
Id(A)

and denote by yi = xi + Id(A), i = 1,2,3,
the canonical generators of R. Recall that R = F(y1, y2, y3) is the relatively free algebra of the
variety generated by the algebra A.

Now, if χn(A) = ∑
λ�n mλχλ is the nth cocharacter of A, by Lemma 3.1, all partitions λ � n

with mλ �= 0 are of the type λ = (n), λ = (λ1, λ2) or λ = (λ1, λ2,1). In particular h(λ) � 3 and,
by Lemma 4.1, it follows that mλ � dimW

(3)
n (A), where in our notation, W(3)

n (A) is the subspace
of R of homogeneous polynomials of degree n in y1, y2, y3.

Since ln(A) = ∑
λ�n mλ and the number of partitions λ = (λ1, λ2, λ3) � n with λ3 � 1 does

not exceed n2, we obtain that ln(A) � n2(dimW
(3)
n (A)). Therefore, in order to prove the lemma,

it is enough to show that

dimW(3)
n (A) � 3(m + 1)nCompw(n). (10)

Fix n and make the following auxiliary construction. Let F 〈a, b〉 be the free associative alge-
bra in the elements a and b. Let M be the free right F 〈a, b〉-module on the set X = {x1, x2, x3}.
We make M into a F 〈a, b〉-bimodule by requiring that F 〈a, b〉M = 0. Hence any element of M

can be written as a linear combination of elements xif (a, b) where f (a, b) is a monomial with
coefficient 1, i.e., a word in the alphabet {a, b}.

Recall that a monomial of the type (((xi1xi2)xi3) · · ·xin) = xi1 · · ·xin is called left normed.
Now, since (x1x2)(x3x4) ≡ 0 is an identity of A, one can choose a basis of R consisting of left
normed monomials in y1, y2, y3. Hence

{
yi1 · · ·yik | k � 1, i1, . . . , ik ∈ {1,2,3}}

generate R as a vector space.
Let now σ :R → A be the evaluation map such that

σ(yi) =
∑
s,j

λijsz
(s)
j + αia + βib.

Then, by the multiplication table of A we obtain

σ(yi1 · · ·yik ) =
(∑

s,j

λi1jsz
(s)
j

)
(αi2a + βi2b) · · · (αik a + βikb).

It follows that σ can be considered as the composition of two linear maps

R
ψ−→ M

ϕ−→ A

where ψ and ϕ are defined on generators by the rule

ψ(yi1 · · ·yik ) = xi1(αi2a + βi2b) · · · (αik a + βikb)

and

ϕ
(
xif (a, b)

) =
( ∑

λijsz
(s)
j

)
f (a, b).
s,j
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Actually ϕ is a homomorphism of F 〈a, b〉-modules.
Denote by I the intersection of the kernels of all such maps ϕ :M → A. Let also M(n) denote

the space generated by all elements of the form xif (a, b), i = 1,2,3, where f is a monomial of
degree n − 1. Clearly,

dimW(3)
n (A) � dim

M(n)

I ∩ M(n)
. (11)

Hence in order to complete the proof, we only need to show that the codimension of I ∩ M(n) in
M(n) does not exceed 3(m + 1)nCompw(n).

For k = 1,2,3, let Mk be the F 〈a, b〉-submodule of M generated by xk and let Ik = I ∩
M(n) ∩ Mk .

For k = 1, if ϕij :M → A denotes the linear map such that ϕij (x1) = z
(i)
j , then

I1 =
⋂
i,j

Kerϕij .

We next bound the codimension of the kernel of any fixed map ϕij . Later we shall compare the
kernels of different maps.

Let x1f (a, b) /∈ Kerϕij for some monomial f = f (a, b). Then from the multiplication table
of A it follows that

f = ai0bai1b . . . bair+1

with 0 � i0, ir+1 � m and i1, . . . , ir ∈ {m − 1,m}. More precisely, the structure of f is closely
related to the subword w(i + 1, r + 1) = wi+1wi+2 . . .wi+r+1 of w = w1w2 . . . in the following
way. Since we must have

z
(i)
j ai0 = z

(i)
1 , z

(i)
1 b = z

(i+1)
2 , z

(i+1)
2 ai1 = z

(i+1)
1 , . . . ,

define the word f̃ on {0,1} by the rule f̃ = f̃1f̃2 . . . f̃r where

f̃s =
{

0, if is = m − 1,

1, if is = m.

Then ϕij (x1f (a, b)) �= 0 if and only if

(1) f̃ = w(i + 1, r),

(2) i0 = 0 in case j = 1 and j + i0 = m + wi otherwise,
(3) ir+1 � m − 1 + wi+r+1.

In this case it can be checked that ϕij (x1f (a, b)) = zi+r+1
2+ir+1

.
Notice that distinct monomials of the type x1f (a, b) with ϕij (x1f (a, b)) �= 0 are automat-

ically linearly independent modulo I1. Moreover Kerϕij = Kerϕlj as soon as w(i, r + 1) =
w(l, r + 1). Recalling that the number of distinct subwords of w of length r is Compw(r), we
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obtain that the number of subspaces Kerϕij , for fixed r , is at most (m+ 1)Compw(r + 2). Since
1 � r + 2 � n and Comp is a monotone increasing function, this implies that

dim
M1 ∩ M(n)

I1
� n(m + 1)Compw(n).

Similarly, the codimension of Ik in Mk ∩ M(n) (k = 2,3), is also bounded by n(m + 1)×
Compw(n). Thus, since M = M1 ⊕ M2 ⊕ M3,

dimW(3)
n (A) � dim

M(n)

I ∩ M(n)
� 3(m + 1)nCompw(n)

and the proof of the lemma is complete. �

5. Sturmian or periodic words and real exponential growth < 2

In this section we shall further specialize the algebra A(m,w) by choosing the word w in a
suitable way.

Recall that an infinite word w = w1w2 · · · in the alphabet {0,1} is periodic with period T if
wi = wi+T for i = 1,2, . . . . It is easy to see that for any such word Compw(n) � T . Moreover,
it is known that Compw(n) � n + 1 for any aperiodic word and an infinite word w is called a
Sturmian word if Compw(n) = n + 1 for all n � 1 (see [12]).

For a finite word x, the height h(x) of x is the number of letters 1 appearing in x. Also, if
|x| denotes the length of the word x, the slope of x is defined as π(x) = h(x)

|x| . In some cases this
definition can be extended to infinite words in the following way. Let w be some infinite word
and let w(1, n) denote its prefix subword of length n. If the limit

π(w) = lim
n→∞

h(w(1, n))

n

exists then π(w) is called the slope of w. It is easy to give examples of infinite words for which
the slope is not defined. Nevertheless for periodic words and Sturmian words the slope is well
defined. In the next proposition we give the basic properties of these words that we shall need in
the sequel.

Proposition 5.1. (See [12, Section 2.2].) Let w be a Sturmian or periodic word. Then there exists
a constant C such that

(1) |h(x) − h(y)| � C, for any finite subwords x, y of w with |x| = |y|;
(2) the slope π(w) of w exists;
(3) for any non-empty subword u of w,

∣∣π(u) − π(w)
∣∣ � C

|u| ;

(4) for any real number α ∈ (0,1) there exists a word w with π(w) = α and w is Sturmian or
periodic according as α is irrational or rational, respectively.

In case w is Sturmian we can take C = 1, and if w is periodic of period T , then π(w) = h(w(1,T )) .

T
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Our aim is to prove that in case w is a periodic or a Sturmian word, then for the algebra
A = A(m,w), limn→∞ n

√
cn(A) exists and any real number in the interval (1,2) can be realized

in this way. We start by bounding from below the nth codimensions of such algebra.

Lemma 5.1. Let w be a Sturmian or periodic word with slope π(w) = α, let A = A(m,w) and
let β = 1

m+α
. Then, given any ε > 0 there exists N = N(ε) such that for all n � N , the (n + 1)th

codimension of A satisfies

cn+1(A) � 1

2m+1
√

πn3
Φ(β − ε)n.

Proof. Let w(1, j) = w1 · · ·wj be the prefix subword of w of length j . Suppose first that there
exists r such that n = mr +π(w1 · · ·wr)r where π(w1 · · ·wr) is the slope of the word w1 · · ·wr .
Hence π(w1 · · ·wr)r = w1 + · · · + wr . If we set i1 = m − 1 + w2, . . . , ir = m − 1 + wr+1, then
clearly

z
(1)
1 bai1bai2 · · ·bair = z

(r+1)
1 �= 0. (12)

Consider the partition λ = (λ1, λ2,1) � n + 1 such that λ1 = i1 + · · · + ir , λ2 = r and let

Tλ =
j1 + 1 j2 + 1 · · · jr + 1 ∗ · · · ∗

j1 j2 · · · jr

1

be a Young tableau such that j1, . . . , jr are the positions of b in the monomial on the left-hand
side of (12), i.e., j1 = 2, j2 = i1 + 3, j3 = i1 + i2 + 4, and the remaining boxes on the first row of
Tλ are filled up with the remaining integers in {1, . . . , n + 1}. Let eTλ be the essential idempotent
corresponding to the tableau Tλ. Then the evaluation

ϕ(x1) = z
(1)
1 , ϕ(xj1) = · · · = ϕ(xjr ) = b, and

ϕ(xj ) = a if j /∈ {j1, . . . , jr ,1},

maps eTλ(x1 · · ·xn+1), where x1 · · ·xn+1 is a left-normed monomial, to r!(n − r)!z(r+1)
1 . Hence

eTλ(x1 · · ·xn+1) is not an identity of A and this says that χλ participates with multiplicity mλ �= 0
in the decomposition of χn+1(A). Therefore cn+1(A) � degχλ.

Let μ = (λ1, λ2) � n. Since degχλ � degχμ, by Lemma 3.3 we obtain

cn+1(A) � degχμ >
1√
πn3

Φ(γ )n

where

γ = λ2 = r = r = 1
.

n n mr + π(w1 · · ·wr)r m + π(w1 · · ·wr)
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Clearly if w is a periodic word, limr→∞ π(w1 · · ·wr) = α. Moreover the same conclusion holds
for Sturmian words by Proposition 5.1. Hence, given ε > 0, there exists N = N(ε) such that

γ = 1

m + π(w1 · · ·wr)
� 1

m + α
− ε = β − ε

as soon as n = mr + π(w1 · · ·wr)r � N . Hence

cn+1(A) >
1√
πn3

Φ(β − ε)n (13)

and we are done in this case.
If n cannot be written as mr + π(w1 · · ·wr)r then one can find r such that

n0 = mr + π(w1 · · ·wr)r < n < m(r + 1) + π(w1 · · ·wr+1)(r + 1).

In this case, since n0 < n and π(w1 · · ·wr+1)(r + 1) − π(w1 · · ·wr)r � 1 we obtain n − n0 <

m + 1. By the first part of the proof, the codimension cn0+1(A) satisfies (13). Moreover, by the
structure of the algebra A, if a multilinear polynomial p(x1, . . . , xi) of degree i is not an identity
of A then p(x1, . . . , xi)xi+1 �≡ 0 on A. This implies that ci+1(A) � ci(A) for all i. Hence by (13)
we have

cn+1(A) � cn0+1(A) >
1√
πn3

0

Φ(β − ε)n0 .

Now, n0 < n implies 1√
πn3

0

> 1√
πn3

and since Φ(β − ε) < 2,

Φ(β − ε)n0 > Φ(β − ε)n−m−1 > 2−m−1Φ(β − ε)n.

Thus cn+1(A) � 1
2m+1

√
πn3

Φ(β − ε)n as wished. �
In the next lemma we get some information on the nth cocharacter of A(m,w). Roughly

speaking we shall prove that all characters χλ whose diagram λ has long second row, do not
participate in χn(A(m,w)). This fact will be exploited in the next lemma in order to get an upper
bound for cn(A(m,w)).

Lemma 5.2. Let w be a Sturmian or periodic word with slope α, let A = A(m,w) and let
β = 1

m+α
. Given any ε > 0 there exists N = N(ε) such that for all n � N and for all λ � (n+1),

the character χλ appears with zero multiplicity in χn+1(A) whenever λ2
n

> β + ε.

Proof. Let g = g(a, b) be an associative monomial on a and b, and suppose that z
(i)
j g(a, b) �= 0

in A for some i, j . Then, as in Lemma 4.2,

g = ai0bai1b · · ·bair+1
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with 0 � i0, ir+1 � m and i1, . . . , ir ∈ {m − 1,m}. Moreover, i1 + · · · + ir = (m − 1)r +
rπ(wi+1 · · ·wi+r ) where π(wi+1 · · ·wi+r ) is the slope of the subword wi+1 · · ·wi+r of w. By
Proposition 5.1,

∣∣π(w1 · · ·wr) − π(wi+1 . . .wi+r )
∣∣ � C

r
, α − π(w1 · · ·wr) � C

r

and, so, rπ(wi+1 · · ·wi+r ) � rπ(w1 · · ·wr) − C � αr − 2C. It follows that

degg = n = i0 + ir+1 + i1 + · · · + ir + r + 1

� mr + rπ(wi+1 · · ·wi+r ) + 1 � (m + α)r − (2C − 1).

Hence we obtain

degb g

degg
= r + 1

n
� r + 1

(m + α)r − (2C − 1)

= 1

m + α − m+α+2C−1
r+1

<
1

m + α − C1
n

, (14)

where C1 = 6m(m + α + 2C − 1) and the last inequality in (14) follows from the relations

i1 + · · · + ir � (m − 1)r + r = mr

and

n = i0 + ir+1 + i1 + · · · + ir + r + 1 � i0 + ir+1 + (m + 1)r + 1 � 3m + 2mr � 6m(r + 1).

Let now λ be a partition of n + 1 such that λ2
n

> β + ε. Given a multilinear polynomial
f = f (x1, . . . , xn+1) and a Young tableau Tλ, consider the value of f ′ = eTλf under any eval-
uation ϕ : {x1, . . . , xn+1} → {a, b, z

(i)
j }. Recall that eTλ = R̄TλC̄Tλ and the polynomial C̄Tλf is

alternating on λ2 disjoint subsets of variables of order λ′
1, . . . , λ

′
t � 2, respectively. Therefore the

same property holds for the polynomial σC̄Tλf , for any σ ∈ Sn. Hence f ′ is a linear combina-
tion of polynomials of the type f ′′(x1, . . . , xn+1) where f ′′ is alternating on λ2 disjoint subsets of
variables each of order at least two (see Section 3). It follows that, in order to get a non-zero value
of f ′, we need to replace one of the xk’s with z

(i)
j and at least λ2 − 1 of the xk’s with b. In this

case ϕ(f ′) will be a sum of monomials of type z
(i)
j g(a, b) with degg = n and degb g � λ2 − 1.

But then

degb g

degg
= degb g

n
� λ2 − 1

n
� β + ε − 1

n
= 1

m + α
+ ε − 1

n
. (15)

Clearly, the inequality (15) contradicts (14), provided n is large enough. Thus eTλf ≡ 0 is an
identity of A for any multilinear polynomial f and this says that mλ = 0 in χn+1(A). �
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Lemma 5.3. Let w be a Sturmian or periodic word with slope α and let A = A(m,w). If β =
1

m+α
, then asymptotically

cn+1(A) � 3(m + 1)(n + 2)5(Φ(β) + ν
)n

,

for any ν > 0.

Proof. Let ν > 0 be an arbitrary real number. Since Φ(x) is a continuous function (see
Lemma 3.2) there exists ε > 0 such that |Φ(x) − Φ(β)| < ν as soon as |x − β| < ε. By
Lemma 5.2 there exists N such that χλ has zero multiplicity in χn+1(A) for all λ � (n + 1),
as soon as n � N and λ2

n
> β + ε.

Consider λ � (n + 1) with mλ �= 0. Then λ2
n

= α � β + ε. If λ3 = 0 then by Lemma 3.3,

degχλ � Φ(α)n+1 �
(
Φ(β) + ν

)n+1
.

If λ3 �= 0 then λ3 = 1, and by the hook formula (see Section 2), we obtain

degχλ = (degχμ)
λ2(λ1 + 1)(n + 1)

(λ2 + 1)(λ1 + 2)
< (n + 1)degχμ,

where μ = (λ1, λ2) � n. Hence by Lemma 3.3,

degχλ < (n + 1)Φ(α)n

where α = λ2
n

. It follows that in any case

degχλ < (n + 1)
(
Φ(β) + ν

)n
, (16)

for all λ � (n + 1) such that mλ �= 0. Now, from (16) and Lemma 4.2, we obtain

cn+1(A) =
∑
λ�n

mλ degχλ < ln+1(A)(n + 1)
(
Φ(β) + ν

)n

� 3(m + 1)(n + 1)4(n + 2)
(
Φ(β) + ν

)n

� 3(m + 1)(n + 2)5(Φ(β) + ν
)n

. �
Recall that by Definition 2.2, the PI-exponent of an algebra A is exp(A) = limn→∞ n

√
cn(A)

in case such limit exists.
Putting together Lemmas 5.1 and 5.3 it is clear that for the algebras A(m,w) the PI-exponent

exists and equals Φ(β). We record this in the following.

Theorem 5.1. Let w be an infinite Sturmian or periodic word with slope α, 0 < α < 1. If m � 2
then for the algebra A = A(m,w) the PI-exponent exists and exp(A) = Φ(β) where β = 1

m+α
.

Recalling that the function Φ : R → R defined by Φ(x) = 1
xx(1−x)1−x is continuous and

Φ((0, 1 )) = (1,2), we immediately obtain.
2
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Corollary 5.1. For any real number d , 1 < d < 2, there exists an algebra A such that
exp(A) = d .

All algebras A(m,w) constructed above are infinite dimensional. In case the word w is pe-
riodic we can actually construct a finite dimensional algebra B such that Id(B) = Id(A(m,w))

(and exp(B) = exp(A(m,w))). The construction is the following. Recall that given an infinite
word on {0,1} and m � 2, the sequence Km,w = {ki}i�1 is defined by

ki =
{

m, if wi = 0,

m + 1, if wi = 1.

Definition 5.1. Let K = Km,w = {ki}i�1 be a sequence such that m � 2 and w is an infinite
periodic word of period T . Then B(K) is the algebra over F with basis

{a, b} ∪ Z1 ∪ Z2 ∪ · · · ∪ ZT

where

Zi = {
z
(i)
j

∣∣ 1 � j � ki

}
, i = 1,2, . . . , T ,

and multiplication table given by

z
(i)
2 a = z

(i)
3 , . . . , z

(i)
ki−1a = z

(i)
ki

, z
(i)
ki

a = z
(i)
1 , i = 1,2, . . . ,

z
(i)
1 b = z

(i+1)
2 , i = 1,2, . . . , (T − 1)

and

z
(T )
1 b = z

(1)
2 .

All the remaining products are zero.

Proposition 5.2. The algebras A(K) and B(K) satisfy the same identities.

Proof. In order to distinguish between the elements of the basis of A(K) and those of the basis
of B(K), we rename the elements a, b, z

(i)
j of B(K) as ā, b̄, z̄

(i)
j , respectively.

Let T be the period of w. It is easy to see that the linear map ϕ :A(K) → B(K) defined by

ϕ(a) = ā, ϕ(b) = b̄, ϕ
(
z
(i)
j

) = z̄
(i′)
j

where 1 � i′ � T and i ≡ i′ (modT ), is an epimorphism of algebras. Hence B(K) satisfies all
the identities of A(K).

Conversely, let f = f (x1, . . . , xn) ≡ 0 be an identity of B(K). Since charF = 0, it is
enough to prove that f is an identity of A(K) in case f is multilinear. Consider the algebra
B̄ = B(K) ⊗F F [t], where F [t] is the polynomial ring in the indeterminate t . Then clearly B̄

still satisfies f ≡ 0. If we let

Ā = span
{
ā ⊗ 1, b̄ ⊗ t, z̄

(i) ⊗ t i−1+lT
∣∣ l � 0, 1 � i � T , 1 � j � ki

}
,
j
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then it is readily seen that Ā is actually a subalgebra of B̄ . Moreover the map ϕ : Ā → A(K) such
that

ϕ(ā ⊗ 1) = a, ϕ(b̄ ⊗ t) = b, ϕ
(
z̄
(i)
j ⊗ t i−1+lT

) = zi+lT
j ,

extends to an isomorphism of algebras. Since A(K) is isomorphic to a subalgebra of B̄ , it must
satisfy the identity f ≡ 0, and the proof is complete. �

Note that if w is an infinite periodic word, then its slope α is a rational number. Conversely,
any positive rational number can be realized as the slope of an infinite periodic word.

The following result is an obvious consequence of Proposition 5.2 and Theorem 5.1.

Corollary 5.2. For any rational number β,0 < β � 1
2 , there exists a finite dimensional algebra

B such that exp(B) = Φ(β).

6. Gluing PI-algebras

We next wish to extend Theorem 5.1 and Corollary 5.1 to all real numbers > 1, i.e., we want
to construct, for any real number α > 1 an algebra A such that exp(A) = α. We shall accomplish
this by constructing an appropriate algebra B and then by gluing, in an appropriate way, B to
one of the algebras A(m,w) constructed in the previous section.

Given any positive integer d we define a non-associative algebra B = B(d) as follows: B has
basis {u1, . . . , ud, s1, . . . , sd} with multiplication table given by

s1u1 = u2, . . . , sd−1ud−1 = ud, sdud = u1,

and all other products are zero.
Now given a sequence of integers K = {ki}i�1 let A(K) be the algebra given in Definition 1.

Starting with A(K) and B , we next define an algebra A(K,d) which will contain both A(K) and
B as subalgebras.

Definition 6.1. Let W be the vector space spanned by the set {w(t)
ij | 1 � i � d, j � 1, t � 1}

and let A(K,d) be the algebra which is the vector space direct sum of A(K), B and W ,

A(K,d) = A(K) ⊕ B ⊕ W.

The multiplication in A(K,d) is induced by the multiplication in A(K),B and usz
i
j = w

(i)
sj ,

1 � s � d, 1 � j � ki, i � 1, and all other products are zero.

We start by studying the identities of B = B(d).

Lemma 6.1. The algebra B satisfies the right-normed identity

y1
(
x1 · · · (xd−1(y2xd)

)
. . .

) ≡ y2
(
x1 · · · (xd−1(y1xd)

)
. . .

)
(17)

and the left-normed identity x1x2x3 ≡ 0.
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Proof. The second statement is obvious. Now take an evaluation xi �→ x̄i ∈ B , i = 1, . . . , d ,
yj �→ ȳj ∈ B , j = 1,2, and let v1 = ȳ1(x̄1 · · · (x̄d−1(ȳ2x̄d )) . . .) and v2 = ȳ2(x̄1 · · ·
(x̄d−1(ȳ1x̄d )) . . .). We will show that v1 = v2 and, since we are dealing with multilinear polyno-
mials, we may restrict ourselves to substitutions into elements of a basis. If v1 = 0 and v2 = 0
then v1 = v2. Suppose one of the monomials, say v1 is non-zero. Then x̄d = ui for some
1 � i � d and ȳ2 = si , x̄d−1 = si+1, x̄d−2 = si+2, . . . , x̄1 = si−1 where all the indices of the
sj ’s are reduced modulo d. Also ȳ1 = si and v1 = ui+1. But then ȳ1 = ȳ2 and v2 = ui+1 follows.
Therefore we are done. �

It is clear that modulo the identity (17) any right-normed monomial of degree n + 1 can be
written in the following form:

xin

(
xin−1

(· · · (xi1xj )
))

(18)

where

i1 � id+1 � i2d+1 � · · · ,
i2 � id+2 � i2d+2 � · · · ,

...

Write n = qd + r = (q + 1)r + q(d − r), with 0 � r < d . Consider the following decomposition
of {1,2, . . . , n}:

{1,2, . . . , n} = I1 ∪ · · · ∪ Id

where

I1 = {i1, id+1, i2d+1, . . . , iqd+1},
I2 = {i2, id+2, i2d+2, . . . , iqd+2},

...

Id = {id , i2d , . . . , iqd}.
and |I1| = · · · = |Ir | = q + 1, |Ir+1| = · · · = |Id | = q. Denote by mj(I1, . . . , Id) the monomial
(18).

The interesting property of the monomials mj(I1, . . . , Id) is given in the next lemma.

Lemma 6.2. The monomials mj(I1, . . . , Id) are linearly independent modulo Id(B), the T -ideal
of identities of B .

Proof. Clearly any evaluation φ :X → B , such that φ(xj ) = u1, φ(xi) = sk maps mj(I1, . . . , Id)

to a non-zero value and all other monomials mj ′(I ′
1, . . . , I

′
d) with {j ′, I ′

1, . . . , I
′
d} �= {j, I1, . . . , Id}

to zero, as soon as i ∈ Ik. In fact in this case φ(mj (I1, . . . , Id)) = · · · (s1(sd · · · (s1u1))) �= 0. �
We next compute the nth codimension of B.
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Lemma 6.3. Let n = qd + r, 0 � r < d . Then

(1) cn+1(B) = (n + 1)
(

n
k1,...,kd

)
where

(
n

k1,...,kd

) = n!
k1!···kd ! is the generalized binomial coefficient

and k1 = · · · = kr = q + 1, kr+1 = · · · = kd = q;
(2) for any multilinear polynomial f (x1, . . . , xn+1) not vanishing on B there exists an evalua-

tion φf : X → B such that φf (f ) = uk, for some 1 � k � d. Moreover for any multilinear
polynomial f ′ in x1, . . . , xn+1, φf (f ′) = λ(f ′)uk , for some λ(f ′) ∈ F .

Proof. By Lemma 6.1 any multilinear polynomial is a linear combination of right-normed mono-
mials of type mj(I1, . . . , Id) and, by Lemma 6.2 these monomials are linearly independent
modulo Id(B). Since the number of such monomials is (n + 1)

(
n

k1,...,kd

)
, the first part of the

lemma is proved.
In order to prove (2), as in the proof of Lemma 6.2, notice that any evaluation φ(xj ) = u1,

φ(xi) = sk for all i ∈ Ik, k = 1, . . . , d, maps any monomial of the given type, except
mj(I1, . . . , Id), to zero. The latter monomial is mapped to some uk, 1 � k � d . Clearly, any
linear combination of basic monomials evaluates to λ · uk , for some scalar λ. �

Next we want to estimate the codimensions of the algebra A(K,d). Fix n and consider the
space Pn of multilinear polynomials in x1, . . . , xn. Denote for short any right-normed product
y1(· · · (ym−1ym) · · ·) by [y1 · · ·ym−1ym].

In the next lemma we find a set of generators of Pn(A(K,d)).

Lemma 6.4. Let A(K,d) be the algebra defined above. Then

Pn =
⊕

I⊆{1,...,n}
VI

(
mod Id

(
A(K,d)

))

where VI is the subspace spanned by all monomials of the type

[xi1 · · ·xik ](xj1 · · ·xjn−k
) (19)

with {i1, . . . , ik} = I and {j1, . . . , jn−k} = {1, . . . , n} \ I .

Proof. It is readily checked that the algebra A(K) satisfies the identity [x1x2x3] ≡ 0 and the
algebra B + W satisfies the identity x1x2x3 ≡ 0. It follows that all monomials except the ones in
(19) are identities of A(K,d). Hence

Pn =
∑

I⊆{1,...,n}
VI

(
mod Id

(
A(K,d)

))
.

Suppose that

f =
∑

I⊆{i1,...,ik}
fI ∈ Id

(
A(K,d)

)
,

where fI ∈ VI . Fix a subset I and show that fI is also an identity of A(K,d). Let φ : X →
A(K,d) be any evaluation such that φ(xi) is some element in a fixed basis of A(K,d), for all
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i = 1, . . . , n. If φ(xj ) /∈ B + W for at least one j ∈ I , then φ(VI ) = 0 and φ(fI ) = 0. On the
other hand, if φ(xj ) ∈ B + W for all j ∈ I then, by the above, φ(VI ′) = 0 for all I ′ �= I. Hence
also in this case φ(fI ) = φ(f ) = 0.

It follows that modulo Id(A(K,d)) the sum
∑

I VI is direct and the proof is complete. �
Lemma 6.5. Let I ⊆ {1, . . . , n}, |I | = k, and let ck(B) and cn−k(A(K)) be the codimensions of
B and A(K), respectively. Then

dimVI = ck(B) · cn−k

(
A(K)

)
.

Proof. Write p = ck(B), q = cn−k(A(K)) and suppose for short that I = {1, . . . , k}. By
Lemma 6.2 all monomials mj(J1, . . . , Jd), J1 ∪ · · · ∪ Jd = {1, . . . , k}, 1 � j � k, form a basis
of Pk modulo Id(B). Rename these monomials as m′

1, . . . ,m
′
p and fix some multilinear polyno-

mials m′′
1, . . . ,m

′′
q in xk+1, . . . , xn linearly independent modulo Id(A(K)). Then VI is spanned

modulo Id(A(K,d)), by all products m′
i · m′′

j , 1 � i � p, 1 � j � q . Let us check that all these
products are linearly independent modulo Id(A(K,d)).

Suppose ∑
i,j

λijm
′
im

′′
j = h(x1, . . . , xn) = h

is an identity of A(K,d) and let one of the λij ’s, say λ11 be non-zero. We can write h as

h = f1m
′′
1 + · · · + fqm′′

q

where

fj = fj (x1, . . . , xk) =
∑

i

λijm
′
i

and f1 is not an identity of B. By Lemma 6.3 there exists an evaluation φ : {x1, . . . , xk} → B

such that φ(f1) = ui and φ(fj ) = γjui for all j = 2, . . . , n. Since h is an identity of A(K,d),

then

uiψ
(
m′′

1

) + γ2uiψ
(
m′′

2

) + · · · + γquiψ
(
m′′

q

) = 0

for any evaluation ψ : {xk+1, . . . , xn} → A(K). Thus

uiψ
(
m′′

1 + γ2m
′′
2 + · · · + γqm′′

q

) = 0. (20)

Since the polynomials m′′
1, . . . ,m

′′
q are linearly independent modulo Id(A(K)), the polynomial

f ′(xk+1, . . . , xn) = m′′
1 + γ2m

′′
2 + · · · + γqm′′

q is not an identity of A(K). Hence there exists a
non-zero evaluation of f ′ in A(K). If n − k � 2 then any non-zero value of f ′ is of the form∑

r,j

αrj z
(r)
j .

If n− k = 1 then f ′(xn) = αxn, for some α ∈ F , and clearly z
(1)
1 is one of the values of f ′. In all

cases (20) takes the form
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ui

( ∑
r,j

αrj z
(r)
j

)
=

∑
r,j

αrjw
(r)
ij = 0,

a contradiction, since one of the αrj ’s is non-zero.
We have proved that the elements m′

im
′′
j are linearly independent and span VI modulo

Id(A(K,d)). Hence dimVI = pq = ck(B)cn−k(A(K)) and the proof of the lemma is com-
plete. �
7. Algebras with real exponential growth > 1

We start with an easy technical lemma.

Lemma 7.1. Let αn,βn, γn, n = 1,2, . . . , be three sequences of real numbers such that

(1) there exist constants C1, . . . ,C4, d1, . . . , d4, q2, q4 > 0 and q1, q3 < 0, such that

C1n
q1dn

1 � αn � C2n
q2dn

2 ,

C3n
q3dn

3 � βn � C4n
q4dn

4 ,

for all n � 1;
(2) γn = ∑n

k=0

(
n
k

)
αkβn−k .

Then

C1C3n
q1+q3(d1 + d3)

n � γn � C2C4n
q2+q4(d2 + d4)

n.

Proof. Clearly,

γn �
n∑

k=0

(
n

k

)
C2C4k

q2(n − k)q4dk
2dn−k

4

� C2C4n
q2+q4

n∑
k=0

(
n

k

)
dk

2dn−k
4 = C2C4n

q2+q4(d2 + d4)
n.

The lower bound is computed similarly. �
In order to apply Lemma 7.1 we need to bound the codimensions of B.

Lemma 7.2. For any ε > 0 there exists N such that for all n > N , the nth codimension of
B = B(d) satisfies the inequalities

(
1

6e

)d 1

nd
dn < cn(B) < 6nd(d + ε)n.
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Proof. Write n = qd + r, with 0 � r < d. By Lemma 6.3, since k1 = · · · = kr = q + 1 and
kr+1 = · · · = kd = q , we obtain

cn(B) = n

(
n − 1

k1, . . . , kd

)
= n

(n − 1)!
((q + 1)!)r (q!)d−r

= n!
((q + 1)!)r (q!)d−r

.

Using Stirling’s formula we obtain

nn

en
< n! < 6n

nn

en
,

qqd

eqd
< (q!)d < (6q)d

qqd

eqd
.

Hence, since qd = n − r ,

cn(B) < 6n

(
n

q

)n

· qr

er
< 6nr+1

(
d + rd

n − r

)n

.

For n large enough we get rd
n−k

< ε, and cn(B) < 6nd(d + ε)n as required. Similarly,

cn(B) >

(
1

6q

)d(
n

q

)n
qr

er
>

(
1

6ne

)d(
n

q

)n

�
(

1

6e

)d 1

nd
dn

and the proof of the lemma is complete. �
Combining all previous results we can now prove the main theorem of this section. Recall that

if Km,w is the sequence defined by the integer m � 2 and by the periodic or Sturmian word w,
then the algebra A(Km,w) = A(m,w) satisfies the conclusion of Corollary 5.1.

Theorem 7.1. Let m � 2 and let w be a periodic or Sturmian word. Then the PI-exponent of the
algebra A(Km,w, d) exists and exp(A(Km,w, d)) = d + δ where δ = exp(A(Km,w)).

Proof. Let α be the slope of w, 0 < α < 1 and let β = 1
m+α

. If δ = Φ(β) then by Lemmas 5.1
and 5.3 we have that asymptotically

C1n
q1(δ − ε)n � cn

(
A(m,w)

)
� C2n

q2(δ + ε)n

for any ε > 0. Also by Lemma 7.2, C3n
q3dn � cn(B) � C4n

q4(d +ε)n for some constants Ci, qi ,
i = 1, . . . ,4.

Since by Lemmas 6.4 and 6.5,

cn

(
A(Km,w), d

) =
n∑

k=0

(
n

k

)
ck(B)cn−k

(
A(Km,w)

)
,

we can apply Lemma 7.1 and obtain that

Cnq(d + δ − ε)n � cn

(
A(Km,w), d

)
� C′nq ′

(d + δ + 2ε)n,

for some constants C,C′, q, q ′ and for any ε > 0.
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This readily implies that exp(A(Km,w)) = limn→∞ n
√

cn(A(Km,w), d) = d + δ and the proof
is complete. �

As an immediate consequence of Theorems 5.1 and 7.1 we obtain.

Corollary 7.1. For any real number t � 1 there exists an algebra R such that exp(R) = t .

Another consequence of the previous theorem together with Corollary 5.2 is the following.

Corollary 7.2. For any 1 � α < β there exists a finite dimensional algebra R such that α <

exp(B) < β .

Recall that the PI-exponent of any finite dimensional associative or Lie algebra always exists
and is an integer [5,22]. In [8] we showed that for general non-associative finite dimensional
algebra A either cn(A) is polynomially bounded or asymptotically cn(A) � δn where δ is an
explicit function of dimA. At the light of Corollary 7.2 and recalling the results about associative
and Lie algebras it is worth asking if the PI-exponent exists for any finite dimensional algebra.
Also, is the set of all possible values of exp(A), dimA < ∞, countable?
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