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1. Introduction

Let R be a ring with an involution ∗ . Let R+ = {r ∈ R | r∗ = r} be the set of symmetric elements
of R under ∗ and R− = {r ∈ R | r∗ = −r} the set of skew symmetrics. A general question of interest
is which properties of R+ or R− can be lifted to R (see [10]). For example, a classical result of
Amitsur [1] states that if R+ (or R−) satisfies a polynomial identity, then so does R .

Group rings are naturally endowed with an involution; the one obtained as a linear extension
of the involution of G given by g �→ g−1. We shall refer to this as the classical involution. For this
particular involution, Giambruno and Sehgal [5] classified group algebras K G of groups with no 2-
elements such that (K G)+ is Lie nilpotent and G. Lee completed this work [12]. The implications of
commutativity of (K G)+ and (K G)− have also been investigated [2,3].

Recently, there has been a surge of activity in studying more general involutions of K G; namely,
the maps obtained from arbitrary involutions of G , extended linearly to K G . Properties of (K G)+ and
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(K G)− were considered in [4,11] and, recently, Gonçalves and Passman considered the existence of
bicyclic units u in the integral group rings such that the group 〈u, u∗〉 is free [8]. Marciniak and Sehgal
had proved that, with respect to the classical involution, 〈u, u∗〉 is always free if u �= 1 [14]. Also,
Gonçalves and Passman constructed free pairs of unitary units in group algebras [7]. Still another type
of involution has been of interest, the oriented involutions, which are linear extensions of involutions
of G , twisted by a homomorphism G → {±1}. The latter were introduced by Novikov [15], in the
context of K -theory.

Throughout this paper ∗ will denote an involution of K G obtained as a linear extension of an
involution of G . We prove the following.

Theorem A. Let G be a group with no 2-elements and K a field of characteristic p �= 2. Then, (K G)+ is Lie
n-Engel if and only if K G is Lie m-Engel.

Theorem B. Let G be a group with no 2-elements and K a field of characteristic p �= 2. Then, (K G)+ is Lie
nilpotent if and only if K G is Lie nilpotent.

2. Some basic facts and notations

We collect important facts for use in later sections and set up some notation. For a given prime
integer p, an element x ∈ G will be called a p-element if its order is a power of p. We write

P = {x ∈ G | x is a p-element},
Q = {

x ∈ G
∣∣ xq = 1, for some integer q, (2p,q) = 1

}
,

G+ = {
g ∈ G

∣∣ g∗ = g
}
.

The following are some basic results. We recall that a group G is said to be p-abelian if G ′ , the
commutator group of G , is a finite p-group.

Theorem 2.1. (See [19, Theorem V.6.1].) Let K be a field of characteristic p > 0. Then K G is Lie n-Engel if and
only if G is nilpotent and contains a normal p-abelian subgroup A such that G/A is a finite p-group.

Theorem 2.2. (See Passi, Passman and Sehgal [16].) The group algebra K G is Lie nilpotent if and only if G is
nilpotent and p-abelian.

Theorem 2.3. (See Giambruno and Sehgal [5].) Assume char(K ) �= 2 and that G contains no 2-elements. If,
with respect to the classical involution, (K G)+ is Lie nilpotent then K G is Lie nilpotent.

Lemma 2.4. For any semiprime ring with involution R which is Lie n-Engel, with 2R = R, we have
[R+, R+] = 0 and R satisfies St4 , the standard identity in four variables.

Proof. We first remark that R+ , being Lie n-Engel, satisfies a polynomial identity. Hence by a result
of Amitsur [1], R is a PI-ring i.e., satisfies an ordinary polynomial identity.

Consider a prime ideal P of R . If P∗ �= P , then S = (P + P∗)/P is a nonzero ideal of R/P and
a + a∗ + P = a∗ + P , for any a ∈ P . Since R+ is Lie n-Engel, for any a,b ∈ P , [a∗ + P ,b∗ + P , . . . ,

b∗ + P ] = [a + a∗,b + b∗, . . . ,b + b∗] + P = P . Hence the prime ring S is Lie n-Engel. Since S is also a
prime PI-ring, by Posner’s theorem [6, Theorem 1.11.13] its central localization A = S ⊗Z F is a finite
dimensional simple algebra over F , where Z �= 0 is the center of S and F is the field of fractions
of Z . Moreover S and A satisfy the same polynomial identities, hence also A is Lie n-Engel. If we now
apply Wedderburn theorem and then tensor with a splitting field F of A, we obtain m × m matrices
over F being still Lie n-Engel. A direct inspection shows that m = 1 in this case. Hence A, and so S is
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commutative. Recalling that S is an ideal of the prime ring R/P we also get that R/P is commutative
and, so, [R, R] ⊆ P .

In case P∗ = P , the ring R̄ = R/P is a prime PI-ring with induced involution. Moreover since
2R = R , char R̄ �= 2 and the symmetric elements of R̄ are Lie n-Engel. By Posner’s theorem the cen-
tral localization A of R̄ is a finite dimensional simple algebra with induced involution and A+ is
Lie n-Engel. After tensoring with the algebraic closure F of the center of A, we obtain Mm(F ),
the algebra of m × m matrices over F with induced involution. Moreover Mm(F )+ is Lie n-Engel.
By [6, Theorem 3.6.8] we may assume that the involution on Mm(F ) is either the transpose or the
symplectic involution and a direct inspection on Mm(F ) shows that the Lie n-Engel property forces
[Mm(F )+, Mm(F )+] = 0 and m � 2. It follows that R̄ satisfies St4 and [R̄+, R̄+] = 0.

The outcome of the above is that St4(r1, . . . , r4) ∈ ⋂
P , for all r1, . . . , r4 in R , and [R+, R+] ⊂ ⋂

P
where the intersection runs over all prime ideals of R . Since R is semiprime,

⋂
P = 0 and the proof

is complete. �
We remind the reader that a group G is called LC if it is not commutative and for every pair of

elements g,h ∈ G we have that gh = hg if and only if either g or h or gh is central in G . The LC
groups with a unique nonidentity commutator are precisely those groups G with center Z(G) such
that G/Z(G) ∼= C2 × C2, a direct product of two cyclic groups of order 2 (see [9, Proposition III.3.6]).

We shall need the following.

Theorem 2.5. (See Jespers and Ruiz [11].) Let K be a field of characteristic different from 2. Then (K G)+ is
commutative if and only if G is either abelian or an LC group with a unique nonidentity commutator, which is
of order 2.

The next lemma has also been proved by G. Lee [13] in a different manner.

Lemma 2.6. Let K be a field of characteristic p > 2, G a finite group and J the Jacobson radical of K G. Suppose
that K G/ J is isomorphic to a direct sum of simple algebras of dimension at most four over their center. Then
P is a subgroup.

Proof. First we observe that if we extend the base field K to its algebraic closure K̄ , then K̄ G/ J̄
still satisfies the hypothesis. Actually K̄ G/ J̄ is isomorphic to a direct sum of copies of K̄ and 2 × 2
matrices over K̄ . Hence we may assume that K is algebraically closed.

Next we claim that the hypothesis is inherited by subgroups and homomorphic images of G .
In fact, by the Amitsur–Levitski theorem, K G/ J satisfies St4, the standard identity of degree four.
Moreover, as K G is a finite dimensional algebra, J is nilpotent, say J k = 0. But then St k

4 is a poly-
nomial identity of K G . Let now H be a subgroup of G . As a subalgebra of K G , K H and also
K H/ J (K H) still satisfies the polynomial identity. Now, K H/ J (K H), being semisimple decomposes
as K H/ J (K H) = Mn1 (K ) ⊕ · · · ⊕ Mnt (K ) and each Mni (K ) satisfies St k

4 . Being a prime algebra, it fol-
lows that each Mni (K ) satisfies St4. By the Amitsur–Levitski theorem this implies that ni � 2. Hence
K H/ J (K H) has the desired decomposition. A similar proof holds for homomorphic images of G .

Let g,h ∈ G be p-elements and let H be the subgroup they generate. Our aim is to show that gh
is a p-element. Since the hypothesis is inherited by subgroups, without loss of generality we may
assume that G = H .

In case every irreducible representation of G is of degree one, i.e., K G/ J is isomorphic to copies
of K , then K G/ J is commutative. Hence �(G, G ′) ⊆ J where �(G, G ′) is the kernel of the natural
projection K G → K (G/G ′). Since J is nilpotent, �(G ′) is nilpotent and, so, G ′ is a p-group. This says
that the p-elements of G form a subgroup and gh is a p-element, as desired.

Therefore we may assume that G = 〈g,h〉 has at least one irreducible representation of degree
two. Under these hypotheses we shall reach a contradiction.
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Let V be a 2-dimensional vector space over K on which G acts irreducibly. By taking the quotient
with the kernel T of the corresponding representation, we may also assume that G acts faithfully
on V (notice that G/T still satisfies the hypotheses of the lemma). Define the subspaces

V g = {
v ∈ V

∣∣ (g − 1)v = 0
}

and Vh = {
v ∈ V

∣∣ (h − 1)v = 0
}
.

Thus g − 1 ∈ End(V ) is such that Im(g − 1) = (g − 1)V and ker(g − 1) = V g . This says that
dim V − dim V g = dim(g − 1)V . Now, since g pn = 1, for some n, (g − 1)pn = 0; since dim V = 2,
we get (g − 1)2 = 0 and, so, (g − 1)2 V = 0. It follows that (g − 1)V ⊆ V g and by the above,
2 − dim V g � dim V g . Thus dim V g � 1. Similarly dim Vh � 1.

Suppose that V g ∩ Vh �= 0. Since (g − 1)V g = 0, g acts trivially on V g and, so on V g ∩ Vh . Simi-
larly also h acts trivially on V g ∩ Vh . This implies that G = 〈g,h〉 acts trivially on V g ∩ Vh and this
contradicts the fact that G acts faithfully on V . Thus V g ∩ Vh = 0 and V = V g ⊕ Vh .

Notice that g − 1 : Vh → V g maps Vh into V g . Also, if v ∈ ker(g − 1), then (h − 1)v = 0 and
(g − 1)v = 0 implies that v ∈ V g ∩ Vh = 0. Thus g − 1 is an isomorphism. Similarly h − 1 : V g → Vh is
an isomorphism.

Choose v ∈ Vh , v �= 0. Then (g − 1)v ∈ V g and is nonzero. This says that {(g − 1)v, v} is a basis

of V . In this basis g and h have matrices Ag = ( 1 1
0 1

)
and Ah = ( 1 0

α 1

)
, respectively, where α ∈ K is

nonzero.
Now, the matrices Ag and Ah generate the group SL(2,q), for some q a power of p. It follows

that the hypotheses of the lemma hold for SL(2,q) and also for its subgroup SL(2, p). But it is known
that SL(2, p) has irreducible representations of degree 1,2, . . . , p and this is a contradiction since
char K > 2. �
Lemma 2.7. Let G be a finite group, K a field of characteristic p > 2 and ∗ an involution on G. If (K G)+ is Lie
n-Engel then P is a subgroup.

Proof. Let J be the Jacobson radical of K G . Then R = K G/ J is a semisimple algebra with induced
involution and R+ is Lie n-Engel. By Lemma 2.4 R satisfies St4. Hence if we write K G/ J as a sum
of simple algebras Ai , each Ai satisfies St4. Since any simple algebra of dimension m2 over its center
does not satisfy any identity of degree less than 2m, we deduce that R is isomorphic to a direct sum
of simple algebras of dimension at most four over their center. Therefore the group G satisfies the
hypotheses of the previous lemma and P is a subgroup. �
Lemma 2.8. Let K be a field of characteristic p > 0. If (K G)+ is Lie n-Engel, then for every symmetric element g
of G, g pn

is central.

Proof. Let g ∈ G+ . If x ∈ G+ then [x, g, . . . , g] = 0 implies xg pn = g pn
x. So assume that x �= x∗ . Then

[x + x∗, g pn ] = 0 and

(
x + x∗)g pn = g pn (

x + x∗).

Hence, either xg pn = g pn
x or xg pn = g pn

x∗ .
Suppose xg pn = g pn

x∗ . Then xg pn ∈ G+ and by the first part (xg pn
)g pn = g pn

(xg pn
). Then, we can

cancel g pn
on the right and obtain again that xg pn = g pn

x, as desired. �
Lemma 2.9. Assume A is an abelian group with no 2-elements and let ∗ : A → A be an automorphism of
order 2. Then

A2 ⊂ A1 × A2,

where A1 = {a ∈ A | a∗ = a} and A2 = {a ∈ A | a∗ = a−1}.
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Proof. Given b = a2 ∈ A2, write

b = (
aa∗)(a

(
a∗)−1)

.

This gives the required decomposition. �
Corollary 2.10. If A is an abelian torsion group with no 2-elements and ∗ : A → A is an automorphism of
order 2 then

A = A1 × A2,

where A1 = {a ∈ A | a∗ = a} and A2 = {a ∈ A | a∗ = a−1}.

Lemma 2.11. Let G be any group, K a field of characteristic p > 2 and ∗ an involution on G. Let A be a torsion
abelian normal subgroup of G, without elements of order 2, and let x ∈ G \ A be an element such that x∗ = x−1c
with c ∈ A. Then, there exists a symmetric element b ∈ A such that (xb)∗ = (xb)−1 .

Proof. Write A = A1 × A2, with A1 = {a ∈ A | a∗ = a} and A2 = {a ∈ A | a∗ = a−1} as in Corollary 2.10.
Notice that xx∗ = c is in A and is symmetric, so actually c ∈ A1. Also x−1cx ∈ A1.

As A1 has no elements of order 2, we can find b ∈ A1 such that b2 = x−1c−1x. This means that
b−1x−1 = bx−1c and thus (xb)−1 = bx−1c = (xb)∗ , as desired. �
Theorem 2.12. Let G be a finite group of odd order, K a field of characteristic p > 2 and ∗ an involution on G.
If (K G)+ is Lie n-Engel, then K G is Lie nilpotent.

Proof. By Lemma 2.7, P is a subgroup of G . Since (|G/P |, |P |) = 1 by the theorem of Schur–
Zassenhaus we can write G = P � X with X a p′-group. Since (K G)+ is Lie n-Engel, by Lemma 2.4
and Theorem 2.5 X is abelian. It follows that G is a p-abelian group and by Theorem 2.2, in order to
complete the proof it is enough to show that G is nilpotent. Now, since P is nilpotent, it is actually
enough to prove that G/P ′ is nilpotent.

If P ′ �= 1 we are done, by induction. Hence, we may assume that P ′ = 1 and, thus, that P is abelian.
Suppose that there exists an invariant subgroup H = H∗ �= 1 contained in ζ , the center of G . Since
(K (G/H))+ and (K H)+ are both n-Engel, by induction we get that G/H and H are nilpotent. Hence,
G is nilpotent and we are done. Therefore, without loss of generality, we may assume that G contains
no central element z �= 1, as 〈z, z∗〉 would then give a central subgroup invariant under ∗ .

Since |X∗| = |X |, it follows that X∗ is another complement to P so, by Schur–Zassenhaus, X∗ is
conjugate to X ; i.e. X∗ = X y for some y ∈ P . For an element x ∈ X , let x1 ∈ X be such that

x∗ = y−1x1 y.

Then xx∗ = xy−1x1 y = xx1(x1, y) and (x1, y) ∈ P . It follows that (xx∗)pn = (xx1)
pn

d for some ele-
ment d ∈ P . Thus, by Lemma 2.8, [(xx1)

pn
, P ] = 0. Hence xx1 ∈ ζ . This implies xx1 = 1; i.e. x1 = x−1.

Thus, x∗ = y−1x−1 y, for all x ∈ X . So, we can write x∗ = x−1xy−1x−1 y = x−1c with c ∈ P .
We shall prove that, for any fixed element x ∈ X , we have that (x, P ) = 1. As P is of odd order, by

Lemma 2.9, we have P = A1 × A2 where A1 = {a ∈ P | a∗ = a} and A2 = {a ∈ P | a∗ = a−1}.
By Lemma 2.11 there exists an element b ∈ A1 such that (xb)∗ = (xb)−1.
Since (xb, P ) = 1 implies (x, P ) = 1, we may assume hereafter, that x∗ = x−1. Since (K G)+ is Lie

n-Engel, [a + a∗, (x + x−1)pn ] = 0 for all a ∈ P . Hence [a + a∗, xpn + (x−1)pn ] = 0. Notice that xpn =
(x−1)pn

(mod P ) implies x2pn = 1 (mod P ) and thus also x = 1 (mod P ). So, x and x−1 belong
to different cosets of P in G , and we get that [a + a∗, xpn ] = 0. Since x is a p′-element, we get
[a + a∗, x] = 0. If xa �= ax we must have a∗x = xa and ax = xa∗ . From this we have xax−1 = a∗ and
xa∗x−1 = a. Combining, we conclude that x2 commutes with a. Thus xa = ax for all a ∈ P .

This says that X is a normal subgroup of G , so G = P × X and G is nilpotent. �
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The following is an easy but useful observation.

Lemma 2.13. Let K be any field of characteristic different from 2 and G any group. For any element c ∈ G not
of even order, the element 1 + c ∈ K G is not a zero divisor.

Proof. We first remark that if 1 + c is a zero divisor in K G , then it is also a zero divisor in K 〈c〉. If
o(c) = ∞ then K 〈c〉 contains no zero divisors. So, assume that o(c) = pkq with (p,q) = 1, where p =
char(K ) > 2. Then cpk

has order q, (q,2) = 1 so, in each component of the Wedderburn decomposition
of K 〈c〉 it maps to a root of unity different from −1. Consequently, 1 + cpk

is a unit in K 〈c〉. Thus
(1 + c)pk = 1 + cpk

is a unit and so 1 + c is also a unit. A similar argument holds if char(K ) = 0. �
Remark 2.14. Let G be a finite group and K a field of characteristic p > 2 such that (K G)+ is Lie
n-Engel. Then it follows from Lemma 2.7 that P is a subgroup, so Lemma 2.4 gives that (K G/P )+ is
commutative and then Theorem 2.5 shows that G/P is either abelian or an LC group with a unique
nonidentity commutator, which is an element of order 2.

We shall need the following generalization of Theorem 2.12 where we do not require that |G| is
odd.

Lemma 2.15. Let G be a finite group and K of characteristic p > 2 such that (K G)+ is Lie n-Engel. If G/P is
abelian, then G is nilpotent.

Proof. Notice that, if |G| is odd, we already know, from Theorems 2.12 and 2.2 that G is nilpotent.
We shall give a proof for arbitrary finite groups G , by induction on |G|.

If G has a central element z �= 1, as before we have that 〈z, z∗〉 is a central subgroup invariant
under ∗ so, by induction, G/〈z, z∗〉 is nilpotent and we are done. We show that this is always the case
by proving that, if ζ = 1 then G = 1.

Since G/P is abelian, it can be written in the form G/P = (M/P ) × (N/P ) where M/P is of odd
order and N/P is a 2-group. Clearly, M is invariant under ∗ , so (K M)+ is Lie n-Engel and M is
nilpotent. Thus, we can write M = P × Q , with (|Q |, p) = 1.

We claim that the elements of Q also commute with 2-elements. In fact, take q ∈ Q and let t be
a 2-element. Then (q, t) ∈ Q and, since G/P is commutative, G ′ ⊂ P so actually (q, t) ∈ Q ∩ P = 1, as
desired. This shows that Q is central, so Q = 1. Consequently, we can write G = P � T , where T is a
2-group.

Pick x ∈ T such that x2 = 1 (and thus, also (x∗)2 = 1). Then (xx∗)pn ∈ ζ so (xx∗)pn = 1 and xx∗ ∈ P .
Consequently, x∗ = xc for some element c ∈ P and, x = x∗∗ = c∗xc, c∗ = xc−1x−1. As c = xx∗ is sym-
metric, we have cx = xc−1. We compute

0 = [
c,

(
x + x∗)pn ] = [

c,
(
x(1 + c)

)pn ]
,

thus c(x(1 + c))pn = (x(1 + c))pn
c. As

(
x(1 + c)

)pn = xpn
(1 + c)

(
1 + c−1)(1 + c) · · · (1 + c−1)(1 + c),

we get

(
cxpn − xpn

c
)
(1 + c)

(
1 + c−1)(1 + c) · · · (1 + c−1)(1 + c) = 0

and Lemma 2.13 shows that xpn
c = cxpn

, so also xc = cx. Hence c2 = 1 so c = 1 and x∗ = x is symmet-
ric. By Lemma 2.8, xpn ∈ ζ so xpn = 1 and, as x2 = 1 we get x = 1. This shows that G = P is abelian
and G = 1 �
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3. (K G)+ Lie n-Engel

In this section, we shall assume throughout that char(K ) = p > 2 and that G has no 2-elements.
We shall also assume that (K G)+ is Lie n-Engel. This implies that K G satisfies a ∗-polynomial identity,
so it also satisfies a polynomial identity by a theorem of Amitsur [1]. It then follows from a theorem
of Passman [17, p. 197] that G has a normal p-abelian subgroup A of finite index. We can assume
A is ∗ invariant by replacing it by A ∩ A∗; i.e. we have the following.

Remark 3.1. If K G+ is Lie n-Engel, then there exists a normal subgroup A of G , which is ∗-invariant
and such that G/A is finite and A′ is a finite p-group.

Proposition 3.2. P is a subgroup and G/P is abelian.

Proof. We wish to prove that if x, y ∈ P then xy ∈ P . We can assume, without loss of generality,
that G = 〈x, y, x∗, y∗〉. Since G is finitely generated and A is of finite index in G , we have that
A is also finitely generated. Since A′ is invariant under ∗ , we may factor by A′ and assume that
A is abelian. Then, we have A = F × T , where F is finitely generated free abelian and T is finite. We
write |T | = pms, with (p, s) = 1.

Set A1 = A pms = F pms and consider G/A1. Then G/A1 is of finite order, say p�t with (p, t) = 1.
Now (xy)p�

is an element of order dividing t (mod A1) and by Lemma 2.7 it is a p-element, so
(xy)p� = 1 (mod A1).

A similar argument shows that, for any positive integer r such that (r, p) = 1, replacing A1 by Ar
1

we get that (xy)p� = 1 (mod Ar
1). Hence (xy)p� ∈ ⋂

r Ar
1 = 1. Consequently, we have (xy)p� = 1, as

claimed.
Since (K G/P )+ is Lie n-Engel, it follows from Lemma 2.4 that (K G/P )+ is commutative. By Theo-

rem 2.5 then G/P is either abelian or an LC group with a unique nonidentity commutator, which is
an element of order 2. Since G/P has no 2 elements, it follows that it is abelian. �
Corollary 3.3. T = {x ∈ G | o(x) is finite} is a subgroup and T = P × Q where Q is central in G.

Proof. By Proposition 3.2, G/P is abelian and, thus, T is a subgroup of G . By using Remark 3.1 we
see that T is locally finite.

Hence, by the finite case, it follows that T = P × Q . Further, for x ∈ G we have that (x, Q ) ⊂ P ∩ Q
as Q � G and G/P is abelian. Hence (x, Q ) = 1, as claimed. �
Proposition 3.4. Suppose that there exists a normal subgroup A of G, invariant under ∗ , such that A is abelian
and G/A is of odd order. Let x ∈ G be an element whose order, modulo A is q �= 2, relatively prime to p. Then
(x, A) = 1.

Proof. We know, from Proposition 3.2 that G/P is abelian, so G ′ ⊂ P . Take a ∈ A; we want to show
that (x,a) = 1. Thus, we can assume that G = 〈x,a, x∗,a∗〉 is finitely generated. In this case, A is a
normal subgroup of finite index in a finitely generated group, so it is finitely generated and we can
write

A = F × T , where F is torsion free and T is finite.

Suppose |T | = pm�, with (2p, �) = 1 and set A1 = A pm� = F pm� . Since xq ∈ A we see that xqpm� ∈ A1
so the order of xpm

, modulo A1, divides q�. As G/A1 has no 2-elements, Corollary 3.3 shows that
(xpm

,a) = 1 (mod A1). Also, as xq ∈ A, we have (xq�,a) = 1.
Thus, (x,a) = 1 (mod A1) and, since G ′ ⊆ P , (x,a) = 1 (mod P ∩ A1). Since (P ∩ A1) =

(P ∩ F pm�) = 1, the proposition is proved. �
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Proposition 3.5. Assume that there exists a normal subgroup A of G, invariant under ∗ , such that G/A and A′
are both finite p-groups and A′ is abelian. Then G acts as a finite p-group of automorphisms on A′ .

Proof. As A′ is finite, normal, G does act as a finite group of automorphisms, by conjugation. We
need to show that every element x ∈ G acts as a p-element. Since G/A is a finite p-group, we may
assume that x ∈ A. It will suffice to show that

(
xp′

, A′) = 1 implies (x, A′) = 1 for any prime p �= p′. (1)

It should be mentioned that it follows from Theorems 2.12 and 2.2 that if G is finite then
G is nilpotent and thus the proposition is true in this case.

If (xp′
, A′) = 1 then ((x∗)p′

, A′) = 1 and thus also ((xx∗)p′
, A′) = 1. We know, by Lemma 2.8 that

(xx∗)pn
is central. This implies that (xx∗, A′) = 1.

We shall handle separately the cases when p′ �= 2 and when p′ = 2.
(a) Let p′ = q �= 2.
Define B = {y ∈ A | (yq, A′) = 1}.
It is easy to see that B is a ∗-invariant normal subgroup containing x and x∗ and clearly B/A′

is abelian. By Lemma 2.9, for any x ∈ B we can write x2 = x1x2 where x∗
1 = x1 (mod A′) and x∗

2 =
x−1

2 (mod A′). We shall prove separately that (x1, A′) = 1 and (x2, A′) = 1.
Since, x∗

1 = x1c, with c ∈ A′ , the group H = 〈x1, A′〉 is ∗-invariant. Set ζ = ζ(H). The group H/ζ is
finite as xq

1 ∈ ζ . Thus, in this factor group we get (x1, A′) = 1 and therefore, for any a ∈ A′ we have

x−1
1 ax1 = az, with z ∈ ζ . Consequently, a = x−q

1 axq
1 = azq , so zq = 1 and thus also z = 1. It follows that

(x1, A′) = 1.
Now, consider x∗

2 = x−1
2 c, with c ∈ A′ . Then, by Lemma 2.11, we can modify x2 by an element of A′

and assume that x∗
2 = x−1

2 . From the hypothesis, for any a ∈ A′ we have

0 = [(
x2 + x−1

2

)pn

,a + a∗] = [
xpn

2 + x−pn

2 ,a + a∗].

If xpn

2 A′ = x−pn

2 A′ then 〈x2, A′〉 is a finite, ∗-invariant group, and we are done. So, let xpn

2 A′ �=
x−pn

2 A′ . Consequently

[
xpn

2 ,a + a∗] = 0.

Hence, either xpn

2 a = axpn

2 and, thus x2a = ax2 (as xq
2a = axq

2), or xpn

2 a = a∗xpn

2 and xpn

2 a∗ = axpn

2

which implies (x2pn

2 ,a) = 1. Since also (xq
2, A′) = 1 we conclude that (x2, A′) = 1.

For any x ∈ B , we have shown that (x2, A′) = 1. Since also (xq, A′) = 1, we can conclude again that
(x, A′) = 1, proving (a).

Now, let us prove case (b) when p′ = 2. Using Corollary 2.10, we can write A′ = B1 × B2 where
bx

1 = b1 and bx
2 = b−1

2 for all b1 ∈ B1, b2 ∈ B2. We claim that B2 = 1. In fact, take b ∈ B2. We have

xx∗b = bxx∗ = xb−1x∗.

Thus

x∗b
(
x∗)−1 = b−1, x−1b∗x = (

b∗)−1
.

This implies that b∗ ∈ B2 and x∗b∗(x∗)−1 = (b∗)−1. As (K G)+ is Lie n-Engel, we have

[
bb∗,

(
x + x∗)pn ] = 0 and so bb∗(x + x∗)pn = (

x + x∗)pn

bb∗.



898 A. Giambruno et al. / Journal of Algebra 321 (2009) 890–902
Since x and x∗ both invert b and b∗ and because p is odd, we get

(
x + x∗)pn (

bb∗)−1 = (
x + x∗)pn

bb∗.

Since x + x∗ is not a zero divisor by Lemma 2.13, we have (bb∗)−1 = bb∗ and, as G contains no
2-elements, we conclude that bb∗ = 1, thus b∗ = b−1.

We need still another calculation:

xb + (xb)∗ = xb + b∗x∗ = xb + b−1x∗ = xb + x∗b = (
x + x∗)b.

Thus [(x + x∗)b, (x + x∗)pn ] = 0. Consequently

(
x + x∗)b

(
x + x∗)pn = (

x + x∗)pn+1

b

and

(
x + x∗)pn+1

b−1 = (
x + x∗)pn+1

b.

As above, b2 = 1 and also b = 1. This proves (1) and the proposition. �
Lemma 3.6. Assume that there exists a normal subgroup A of G, invariant under ∗ , such that A is abelian and
G/A is a finite p-group. Then, A pn

is central.

Proof. Take x ∈ G , a ∈ A. Then

0 = [
x + x∗,

(
a + a∗)pn ] = [

x + x∗,b + b∗],

where b = apn
. If xA �= x∗ A, then [x,b + b∗] = 0. Otherwise, x∗ = xc, with c ∈ A so x + x∗ = x(1 + c)

and [x(1 + c),b + b∗] = 0. Since 1 + c is not a zero divisor, we obtain again that [x,b + b∗] = 0.
We claim that xb = bx. If not, xb = b∗x and xb∗ = bx. Thus xbx−1 = b∗ , xb∗x−1 = b and x2bx−2 = b.

We have that (x2,b) = 1. Also xpk ∈ A, for some integer k; therefore (x,b) = 1. This proves our state-
ment. �
Lemma 3.7. Assume that there exists a normal subgroup A of G, invariant under ∗ , such that A is abelian and
G/A is finite. If there exists an element x ∈ G such that x2 ∈ A and xA = x∗ A, then (x, A) = 1.

Proof. Consider A1 = {a ∈ A | ax = a} and A2 = {a ∈ A | ax = a−1}. From the hypothesis, we have that
x∗ = xc, with c ∈ A. For an element a ∈ A1 we compute xa∗x−1 = x∗a∗(x−1)∗ = (ax)∗ = a∗ , which
shows that A1 is ∗-invariant. We set Ḡ = G/A1.

Since Lemma 2.9 shows that A2 ⊂ A1 × A2 we have Ā2 ⊂ A2 and thus āx̄ = ā−1, for all a ∈ A2.
We claim that Ā2 = 1. Take a ∈ A2. As Lemma 2.9 also applies to ∗ , we shall consider separately

the cases when a∗ = a and a∗ = a−1.
If a∗ = a we have that [a, (x + x∗)pn ] = 0 and so a(x + x∗)pn = (x + x∗)pn

a. This implies (x +
x∗)pn

a−1 = (x + x∗)pn
a and, as Lemma 2.13 shows that (x + x∗) is not a zero divisor, we get a2 = 1,

and thus also a = 1, as desired.
If a∗ = a−1, then xa + (xa)∗ = xa +a∗x∗ = xa + x∗(a∗)−1 = xa + x∗a = (x + x∗)a. Then, by hypothesis,

[(x + x∗)a, (x + x∗)pn ] = 0. Therefore,

(
x + x∗)pn+1

a = (
x + x∗)a

(
x + x∗)pn

.

Since a(x + x∗) = (x + x∗)a−1 we get (x + x∗)pn+1
a = (x + x∗)pn+1

a−1.
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Again, (x + x∗) is not a zero divisor, by Lemma 2.13, so a = a−1 which implies a = 1.
This proves our claim. Hence, we see that A2 ⊂ A1 so (x,a2) = 1 for all a ∈ A; since A is abelian,

this implies that (x,a)2 = 1 and since G contains no 2-elements, we get (x,a) = 1 for all a ∈ A. �
Proof of Theorem A. By Remark 3.1, if char(K ) = p > 2, G has no 2-elements and (K G)+ is Lie n-
Engel, then G contains a normal p-abelian subgroup A of finite index which is ∗-invariant. Choose A
maximal among the groups with these properties. We shall show that G/A is a finite p-group.

First we note that, as A′ is a finite p-group, we may factor by A′ and assume that A is abelian. Set
H = G/A and let P denote the p-Sylow subgroup of H . By Remark 2.14, H/P is either abelian or an
LC group with a unique nonidentity commutator of order 2.

We shall first handle the case when H/P is abelian. Then, by Corollary 3.3, H = P × Q × T where
T is a 2-group, |Q | = q is odd and relatively prime to p and both Q and T are abelian. Thus, there
exists a subgroup L such that A � L � G , L/A ∼= Q , G/L ∼= P × T and L is ∗-invariant.

For any x ∈ L we have that (xq, A) = 1 and, by Proposition 3.4, also (x, A) = 1. Thus, A is central
in L and the index of L over its center is a divisor of q. It follows, by Schur’s theorem [19, Theo-
rem I.4.2] that |L′| is a divisor of q. Also L′ ⊂ G ′ , so L′ is a p-group; thus L′ = 1 and L is abelian,
which implies L = A; hence Q = 1.

Now we have H = P × T so we can find a subgroup N such that A � N � G , G/N ∼= P and
N/A ∼= T .

Let N1 = {b ∈ N | b2 ∈ A}. Take x ∈ N1, x �= 1. Then x2 = 1 (mod A), (x∗)2 = 1 (mod A) and, as
N/A is abelian, also (xx∗)2 = 1 (mod A). Moreover, by Lemma 2.8, (xx∗)pn

is central. It follows that
(xx∗, A) = 1. Then 〈xx∗, A〉 is abelian and, as A ⊂ 〈xx∗, A〉, from the maximality of A we get xx∗ ∈ A.

Thus x∗ A = x−1 A = xA. Then, by Lemma 3.7, (x, A) = 1 and again, from the maximality of A, it
follows that x ∈ A. We conclude that N1 = 1, so also N = 1 and H = P , as desired.

Now we consider the remaining case, namely when H/P is LC with a unique nonidentity com-
mutator, which is of order 2. Let M be the subgroup of G containing A such that M/A = P , the
p-Sylow subgroup of G/A = H . Let z ∈ G be an element such that zM is the unique commutator of
order 2 in G/M . Then, z∗ = z (mod M). Consider L = 〈M, z〉. By the abelian case z ∈ A. Hence, we
have A � M � G with G/M abelian. Again from the previous case, it follows that G/A is a p-group.

To complete the proof of necessity, after Theorem 2.1, we need to prove that G is nilpotent. Since
A′ is a finite p-group it is nilpotent, so it will suffice to prove that G/A′′ is nilpotent. Hence, we may
assume that A′ is an abelian finite p-group.

It follows from Proposition 3.5 that G acts as a finite p-groups of automorphisms on A′ . Hence,
by [19, Lemma V.4.1], we have that A′ ⊂ ζr(G), for some positive integer r. Thus, we can assume that
A′ = 1 and that A is abelian.

By Lemma 3.6, A pn
is central, so we may factor by A pn

and assume that A is of bounded p-power
exponent. As G/A is a finite p-group, G acts as a finite p-group of automorphisms on A, so we can
use again [19, Lemma V.4.1] to obtain that A ⊂ ζs(G) for some positive integer s. Since G/A is a finite
p-group, it is nilpotent, and hence G is nilpotent, as desired.

The case when char(K ) = 0 is easy to see. The hypothesis implies that (Z/pZ)G is Lie n-Engel, for
any prime integer p, so G ′ is a p-group. Since p is arbitrary, it follows that G ′ = 1.

The converse is trivial. �
4. Lie nilpotency

In this section, we shall prove our second main result, namely that if G is a group with no 2-
elements, K is a field of characteristic p �= 2, (K G)+ is Lie nilpotent, then K G is Lie nilpotent.

Since Lie nilpotency implies n-Engel, for some positive integer n, we can apply Theorem A. Thus,
we can assume that p > 2 and we know that G is nilpotent and that it contains a p-abelian, nor-
mal, subgroup A, which is invariant under ∗ , such that G/A is a finite p-group. Hence, according
to Theorem 2.2, we are left only to prove that G ′ is a finite p-group and we already know, from
Proposition 3.2 that G ′ is a p-group.

We shall now prove a crucial special case of Theorem B.
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Theorem 4.1. Let G be a group with no 2-elements and K a field of characteristic p > 2, such that (K G)+ is Lie
nilpotent. Suppose that G contains a normal subgroup A, invariant under ∗ , such that G/A is a cyclic p-group.
Then G ′ is a finite p-group.

Proof. Since the theorem is clearly true for finite groups, we shall assume that A is infinite.
Let x ∈ G be such that G/A = 〈xA〉. It suffices to prove that the group (x, A) ⊂ A is finite.

Since G contains no 2-elements, it will be enough to prove that (x, A2) is finite. We recall that,
by Lemma 2.9, we have A2 ⊂ A1 × A2, where A1 = {a ∈ A | a∗ = a} and A2 = {a ∈ A | a∗ = a−1}.

Our first aim is to reduce to the case when A2 = 1.
So, let A2 �= 1. If A2 ∩ ζ is infinite then, by the arguments in [5, p. 4257], K G is Lie nilpotent and

G ′ is finite. Thus, we may assume that A2 ∩ ζ is finite. Since A is bounded modulo the center by
Lemma 3.6, we conclude that A2 is bounded. Write

B = (x, A2) = {
(x,a2)

∣∣ a2 ∈ A2
}
.

As 1 = (x,apm

2 ) = (x,a2)
pm

, we see that B is a group of bounded p-exponent. Suppose B is infinite.
Then, by [18, Theorem 4.3.5], B = ∏

i Bi , an infinite direct product of cyclic groups. For an arbitrary
positive integer s, we are going to produce elements ai ∈ A2 such that, after a possible renumbering
of the indices, (x,ai) ∈ Bi , 1 � i � s, so that

e = [
x + x∗,a1 + a∗

1,a2 + a∗
2, . . . ,as + a∗

s

] �= 0.

This will be a contradiction proving B is finite. Notice that

e = [
x,a1 + a∗

1,a2 + a∗
2, . . . ,as + a∗

s

] + [
x∗,a1 + a∗

1,a2 + a∗
2, . . . ,as + a∗

s

]

vanishes if and only if each of the two summands vanishes as can be seen by considering the two
cases xA = x∗ A and xA �= x∗ A. It will therefore suffice to find a1,a2, . . . ,as so that

[
x,a1 + a∗

1,a2 + a∗
2, . . . ,as + a∗

s

] �= 0.

For s = 1 we pick a1 ∈ A2 such that 1 �= (x,a1) ∈ B1. Then, it can be checked directly that [x,a1 +
a∗

1] �= 0.
Let us suppose that we already have a1, . . . ,as−1 as stated. Let N be the normal closure of

〈a1, . . . ,as−1〉. Then N is a finite abelian group as A2 is of bounded exponent and every element
has a finite number of conjugates. Remember that, as (x,ab) = (x,a)(x,b), every element of B is a
commutator. Thus there exists an index s so that Bs ∩ N = 1. Choose as ∈ A2 so that 1 �= (x,as) ∈ Bs .
Then also (x,a2

s ) = (x,as)
2 �= 1 and so a2

s /∈ N.

We know already, by induction that

[
x,a1 + a∗

1,a2 + a∗
2, . . . ,as−1 + a∗

s−1

] = xα �= 0, α ∈ K N.

Therefore

e = [
x,a1 + a∗

1,a2 + a∗
2, . . . ,as + a∗

s

]

= [
x,as + a−1

s

]
α = x

(
as + a−1

s − ax
s − a−x

s

)
α.

We claim that as N is not equal to a−1
s N , ax

s N or a−x
s N . In the first case a2

s ∈ N and in the second
(x,as) ∈ N , both contradictions. If as N = a−x

s N , then x−1a−1
s x = as (mod N), so x−2asx2 = as (mod N).

Also a p-power of x commutes with as , consequently (x,as) ∈ N , again a contradiction. Thus xasα �= 0
as α �= 0, and e �= 0 as desired.
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We have proved that B = (x, A2) is finite. Let B̄ be the finite group which is the normal and
∗ closure of B . Then (K G/B̄)+ is Lie nilpotent. Also, the image of A2 in G/B̄ is central. Thus, A2 can
be assumed to be finite modulo B̄ (otherwise (G/B̄)′ is finite and so is G ′). Consequently, A2 is finite.
Factoring by the normal and ∗ closure of A2 we can assume that A is infinite and that A = A1; i.e.
a∗ = a for all a ∈ A as we wanted.

Since G is nilpotent, by induction on its class of nilpotency, we can assume that (G/ζ )′ is finite.
Thus G ′ζ/ζ ∼= G ′/ζ ∩ G ′ is finite. If ζ ∩ G ′ is finite, we are done. Suppose B = (A, x) ∩ ζ is infinite. We
shall show that this leads to a contradiction, completing the proof.

Again B is of bounded exponent, as 1 = (apm
, x) = (a, x)pm

and we can write B = ∏
i Bi , an infinite

direct product of cyclic groups.
We observe

[
x + x∗,a

] = [x,a] + [
x∗,a

] = xa
(
1 − (a, x)

) + x∗a
(
1 − (

a, x∗)).

Let us choose ai ∈ A such that 1 �= (ai, x) ∈ Bi . Then

[
x + x∗,a1, . . . ,as

] = xa1 · · ·as
(
1 − (a1, x)

) · · · (1 − (as, x)
) + x∗a1 · · ·as

(
1 − (

a1, x∗)) · · · (1 − (
as, x∗)).

This expression is not zero for any s, as can be seen by considering the two cases xA = x∗ A or
xA �= x∗ A. This contradiction proves the theorem. �
Proof of Theorem B. Since (K G)+ is Lie nilpotent, it is also Lie n-Engel, for some positive integer n.
Thus, by Theorem A, also K G is Lie n-Engel and, by Theorem 2.1, G is nilpotent and there exists a
normal subgroup A of G such that both G/A and A′ are finite p-groups. By replacing A by A ∩ A∗ ,
we can assume that A is normal and ∗-invariant.

We wish to prove that G ′ is finite. It is a p-group, as P is a subgroup and G/P is abelian by
Proposition 3.2.

By induction on the class of nilpotency of G we may assume that G is metabelian. Therefore,
G/A is metabelian.

If G/A is cyclic, we are done by Theorem 4.1. Let us first assume that G/A is abelian. Then G/A =
G1/A × G2/A where g∗

1 = g1 (mod A) and g∗
2 = g−1

2 (mod A), for all g1 ∈ G1, g2 ∈ G2. Then (g1, A)

is finite and so (G1, A) is finite. Similarly, (G2, A) is finite. Thus (G, A) is finite. Factoring by (G, A)

we conclude that A is central and G , being central by finite, has a finite derived group.
Let us now consider the general case, namely, assume there exists a normal subgroup L of G

containing A such that both G/L and L/A are abelian and L can be assumed ∗-invariant. Then, by the
abelian case, L′ is finite. Factoring by L′ , we may assume that L is abelian, and we are done by the
special case. Again, the converse is trivial. �
5. Note added in proof

The classification in Theorems A and B has now been completed for all groups by G. Lee, E. Spinelli
and S.K. Sehgal in “Lie properties of symmetric elements in group rings II” which is to appear in the
Journal of Pure and Applied Algebra.
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