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Abstract
According to E. Grosholz, there is a phenomenon called ‘productive
ambiguity’ which plays a very important rôle in mathematics, and the
sciences, because it is instrumental to the resolution of many open
questions. The main task of this paper is that of assessing Grosholz’s
claim with regard to mathematics.

E. Grosholz in her book, Representation and Productive Ambiguity in
Mathematics, claims that productive ambiguity plays a very important rôle
in mathematics and the sciences, because it allows the interaction of different
modes of representation, interaction which, in some cases, brings about the
resolution of open questions. But, what does Grosholz mean by ‘productive
ambiguity’?

From the discussion of the case-studies examined in her book, it turns
out that productive ambiguity consists in the possibility of interpreting in
different ways the well-formed formulae belonging to the language of a math-
ematical theory T .1

In actual fact, it seems that, for Grosholz, productive ambiguity is more
pervasive than that, because it extends also to some of the diagrams used
in the proofs of theorems of T .2

∗The work on this article was generously sponsored by a Visiting Fellowship in the
Sydney Centre for the Foundations of Science, and by a research grant (known as ‘ex
60%’) from the University of Palermo.

1[Grosholz, 2007], ch.3 §. 3.4, p. 76:

In algebraic geometry, a polynomial equation (set = 0) with n variables
refers equally to an infinite set of n-tuples of real numbers, to a geometric
curve or surface C, and further to another infinite set, all the polynomials
whose values are identically zero on C, an ideal in the larger ring of such
polynomials. The controlled and precise ambiguity of the equation is the
instrument that allows resources of number theory and of geometry to be
combined in the service of problem-solving.

2Such an extension is evident in Grosholz’s case-study of Galileo’s demonstration of
projectile motion. See [Grosholz, 2007], §1.1, pp. 5-16.

1



With regard to the problem of the ambiguity of diagrams used in math-
ematical proofs, we must observe that, according to Grosholz, this depends
on a certain diagram D having, in a given context, both an iconic and a
symbolic mode of representation.

For Grosholz, the iconic mode of representation of a diagram D consists
in the fact that D pictures what it represents; whereas the symbolic mode
of representation of a diagram D consists in representing an entity without
picturing it.

An example of such an ambiguous rôle of a diagram is provided by the
triangle we draw in the well known argument aimed at showing that in
Euclidean geometry the sum of the internal angles of a triangle is 180◦.

Indeed, in this case:3

The proof requires the triangle [we draw] both to be an icon of
a particular triangle, and to represent symbolically . . . all other
. . . triangles.

It is important to notice that, according to Grosholz, the coexistence of
both an iconic and a symbolic mode of representation is not strict monopoly
of diagrams, but it also affects mathematical notation (language) in general.4

In evaluating Grosholz’s ideas about productive ambiguity, it seems to
me that, first, there are formidable obstacles in the way of her attempt to
generalize to the entire language of mathematical theories the presence of
both an iconic and a symbolic mode of representation. One such obstacle
appears as soon as we ask what is the iconic mode of representation of the
symbol ‘∅’.

To see this consider the following argument. If a set PA is a picture of a
set A, there has to be an isomorphism, Ψ, between A and PA. For PA needs

3[Grosholz, 2007], §6.1, p. 163.
4[Grosholz, 2007], ch.10, §10.2, p. 262:

A natural number is either the unit or a multiplicity of units in one num-
ber. The representation of such a unified multiplicity is more iconic when
the representation itself involves multiplicity: ////// is more iconic than
‘6’ or ‘six’, because ////// exhibits the multiplicity of the number 6—its
multiplicity can be ‘read off’ the representation.

[Grosholz, 2007], Ch. 10, §10.2, pp. 265–6:

Philosophers of mathematics have not clearly recognized this role [of nota-
tion in creating models and precipitating nomological machines] because they
have been so fixed on symbolic representation and so inattentive to iconic
representation, and the iconic (and indexical) aspects of symbolic represen-
tations. This has also led them to posit an artificial disjunction between
syntax, semantics, and pragmatics. Iconic representations need not be pic-
tures of things with shape, though of course they often are; they may also
be representations that exhibit the orderliness that makes something what
it is.
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to preserve the form, and the cardinality of A.
From this it follows that a set A is a picture of itself—take the trivial

isomorphism induced by the identity map on A—and that, if by ‘proper
picture (image) of A’ we mean a picture I of A such that I 6= A, we have
that A is an improper picture of itself.

Clearly, given a set A, we can have different pictures of A, because what
I have called ‘form’ of a set A is related to the features of A, and different
types of isomorphism preserve different features of A.

However, independently of which are the features of A that remain in-
variant under a given isomorphism Ψ between A and PA, what must, in any
case, obtain is the existence of a bi-univocal correspondence between A and
PA. This implies that if A = ∅ then also PA = ∅.

From these considerations we have that the empty set is the only picture
of itself and that, therefore, there cannot be proper pictures (images) of it.

If we, now, consider that the empty set is not given in space-time, it fol-
lows that mental images (which are entities given in space-time) can neither
be the empty set nor, for what I have argued above, can be proper pictures
of it.

A moment’s reflection on what has been argued so far makes us realize
that, since we can neither produce mental images of the empty set nor can
be acquainted with it—because the empty set is not given in space-time—
the only access we have to the empty set is through definitions such as
∅ = {x | x 6= x}, and set theory.

But, if this is the case, it is legitimate to ask what is the iconic mode
of representation of the symbol ‘∅’, of the diagram representing von Neu-
mann’s Universe, i.e., the cumulative hierarchy of sets (Figure 1), and of any
diagram, and well-formed formula, of the mathematics we can do in ZFC.
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Figure 1: The von Neumann Universe V =
⋃
α∈On Vα

Secondly, I find puzzling Grosholz’s attribution of ambiguity to the dia-
grams used in certain mathematical proofs. The reason for this is that, since
ambiguity is a phenomenon affecting the attribution of meaning to expres-
sions belonging to a given language, and the diagrams we use in mathemat-
ical proofs—very much like photographs and portraits—are meaningless, it
follows that such diagrams cannot be ambiguous.

Indeed, as in the case of maps, their importance entirely resides on the
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fact that, through representing in a perspicuous manner only certain relevant
features of . . . , diagrams greatly increase the surveyability of such features
which, for instance, happen to be conducive to the resolution of an open
question we are interested in.

Thirdly, it is important to notice that no hint is given by Grosholz to ex-
plain the correlation between the purely linguistic nature of the phenomenon
of ambiguity, and its mathematical productivity which manifests itself in
terms of solutions found to open questions.

Trying to address the criticism above saying that linguistic and diagram-
matic ambiguity make possible the interaction of different mathematical
theories is unsatisfactory. For, such a reply does not explain why the in-
teraction between different mathematical theories should be mathematically
productive.

On the other hand, if we put to one side the concept of productive ambi-
guity, and consider mathematics to be a science of patterns, the productive
interaction of two different mathematical theories T1 and T2 can be explained
very easily.

For, if mathematical theories T1 and T2 generate different representations
of the same object(s), they capture different aspects of the same thing(s),
which, consequently, are not only compossible, but are also (probably) re-
lated to one another in the same object(s).

From this it comes as no surprise that the information about these ob-
ject(s) obtained in T2 (or T1) might be conducive to the solution of an open
question relating to them, open question formulated within T1 (or T2); and
to the production of Gestalt switches (not ambiguities) between the way the
object(s) is (are) represented within T1 and the way the object(s) is (are)
represented within T2. A particularly clear, and conclusive, example of this
phenomenon is the following.

For the Pythagorean mathematicians the number field consisted only
of the positive integers, and of ratios of positive integers. Moreover, the
positive integers were represented by them as configurations of points: they
had triangular, square, etc. numbers.

When they discovered that there is no pair of positive integers m and
n such that m

n =
√

2, one of the puzzles that came to occupy their minds
was what to make of equations like x =

√
2. And since they did not have

irrational numbers, the problem of solving such an equation seemed to be
out of reach of their algebra (T1).

However, with the introduction of a new system of representation—
geometric algebra (T2)—which, if m,n ∈ Q+, represents: m and n as lengths
of line segments; m + n as the length of the line segment obtained by con-
catenating along a straight line two line segments of length respectively m
and n; m × n as the area of a rectangle whose sides measure respectively
m and n in length; etc. it was possible to individuate—by a construction
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with ruler and compass, and the exploitation of some theorems of Euclidean
geometry—the line segment of length x such that (α) x2 = m× n, for any
two line segments of length m and n (see Figure 2).
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Figure 2:

But, now, if we put m = 1 and n = 2 in (α), it becomes apparent that,
within geometric algebra, it is possible to solve the equation x =

√
2.

Of course, a by-product of, and not a condition for, the introduction
of T2 alongside T1 is that we have at least two kinds of Gestalt switches
connected with the dawning of mathematical patterns.

The first type of Gestalt switch is related to the representation of Z+,
and is expressed, for example, by the observation that the number one is
represented in one system (T1) by • and in the other (T2) by a line segment
of unit length —.

The second type of Gestalt switch consists in that, whereas for the Py-
thagorean mathematician, the procedure whereby we produce the diagram
above is simply a way of constructing, by ruler and compass, a circle with
a diameter measuring m + n in length, etc.; for the geometrical algebraist,
instead, the very same procedure is an algorithm which allows us to find the
solution of, in particular, the equation x =

√
2.
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