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Abstract. Visually grounded human-robot interaction is recognized
to be an essential ingredient of socially intelligent robots, and the
integration of vision and language increasingly attracts attention of
researchers in diverse fields. However, most systems lack the capa-
bility to adapt and expand themselves beyond the preprogrammed set
of communicative behaviors. Their linguistic capabilities are still far
from being satisfactory which make them unsuitable for real-world
applications. In this paper we will present a system in which a robotic
agent can learn a grounded language model by actively interacting
with a human user. The model is grounded in the sense that meaning
of the words is linked to a concrete sensorimotor experience of the
agent, and linguistic rules are automatically extracted from the inter-
action data. The system has been tested on the NAO humanoid robot
and it has been used to understand and generate appropriate natural
language descriptions of real objects. The system is also capable of
conducting a verbal interaction with a human partner in potentially
ambiguous situations.

1 Introduction

The aim of this work is to investigate the lexical acquisition problem,
namely how can a robot be bootstrapped into communication and
what are the necessary prerequisites for robots in order to learn a
language? In particular, the focus is set on grounded systems that
learn to generate and understand contextualized spoken descriptions
of objects in visual scenes. There are two basic problems the robots
need to solve as they acquire a language:

1. Identify the meaning of words grounded in perceptual data;
2. Infer a rudimentary grammar for further understanding and inter-

action.

The process of lexical acquisition in infants seems to be innately
driven by the principle of reference: words refer to objects, actions,
and attributes of the environment. Observational learning may be
used to deduce word meanings from cross-situational experiences. A
well-known problem in observational learning, is the Quine’s para-
dox: an infinite number of possible meanings can be inferred from
a finite set of utterance-context pairs. A likely solution to this prob-
lem is that all infants have certain biases which constrain the set of
possible meanings of words [3, 1]. For example, the whole object as-
sumption proposes that children will assume a novel label refers to
a whole object rather than its parts. The mutual exclusion assump-
tion proposes that they prefer to assign only one label to a concept.
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These assumptions are considered good strategies for bootstrapping
the inference process.

Present approach uses these assumptions to bootstrap the lexical
acquisition process. The robot must acquire the possible meanings
of words from their non-linguistic (perceptual) input, and determine
which co-occurrences are relevant from a multitude of potential co-
occurrences between words and entities in the environment while ac-
quiring syntactic rules. Initially, the system will acquire a minimal
grounded language model from the paired description-referent ex-
amples, without any prior semantic and syntactic information, except
the main referent of description utterance, from which the system
will be able to acquire novel concepts and more complex language
models (e.g., spatial clauses).

The ultimate goal of the proposed system is to take advantage of
acquired concepts and language model to engage in simple dialogue
with a human partner. All concepts underlying acquired language
model are used to initialize dynamic fluents as predicate calculus
terms and update robot’s knowledge base representing the state of
the world from sensor data. Language acquisition therefore proceed
in parallel with concept acquisition. Concepts acquired from lexi-
cal acquisition are used to initialize a logic representation of several
observable entity of world. For example, the meaning of the word
“red” is used to seed the logic representation of the “red” concept.
Concepts underlying acquired language model can be considered as
independent from language acquisition process and can be reused
for other cognitive tasks. Fig. 1 provides an overview of the learning
system.

The system has been tested on the NAO humanoid robot and it
has been used to understand and generate appropriate natural lan-
guage descriptions of real objects. The system is also capable of con-
ducting a verbal interaction with a human partner in potentially am-
biguous situations, e.g. when a human interlocutor refers to several
co-occurring entities (i.e. objects sharing identical perceptual prop-
erties) in the world.

2 Related works
There has been a huge interest in grounded language acquisition in
the past years. Probably, the earliest and the most influent work on
language analysis is Winograd’s SHRDLU [11] in which an artificial
agent connected to a simulated robotic arm is capable of understand-
ing questions on the world, execute given actions, and ask for help
in case of ambiguous dialogue. However, SHRDLU is based on a
purely symbolic representation of the world, and the artificial agent
has no cognition about the “real” meaning of a given sentence. It
is mostly based on a pure syntactic analyzer, and the semantics is
deeply hardwired into the system. Visual Translator system [6] (VI-
TRA) is a natural language generation system which is grounded



Figure 1. Model of grounded language acquisition: from word learning to simple language and dialogue

directly in perceptual input. From a sequence of digitized video
frames low-level sensory processes perform recognition and track-
ing of visible objects. Authors provide a geometrical reconstruction
of the perceived scene. Detailed domain knowledge is used to cate-
gorize spatial relations between objects, and dynamic events. Higher
level propositions are formed from these representations which are
mapped to natural language using a rule-based text planner. In con-
trast to other works, VITRA is not designed as a learning system.
Roy implemented a system, CELL [9] (Cross-channel Early Lexical
Learning), able to learn object names from a corpus of spontaneous
infant-directed speech, and to process single and two-word phrases
which referred to the colour and shape of objects. CELL seems to
be the first model of language acquisition which learns words and
their semantics from raw sensory input without any human-assisted
preparation of data. In DESCRIBER [8], the same authors address
the problem syntactic structure acquisition within a grounded learn-
ing framework. Learning algorithms acquire probabilistic structures
which encode the visual semantics of phrase structure, word classes,
and individual words. Using these structures, a planning algorithm
integrates syntactic, semantic, and contextual constraints to generate
natural and unambiguous descriptions of objects in novel scenes.
Another related approach is TWIG [4], a word learning system that
allows a robot to learn compositional meanings for new words that
are grounded in its sensors. TWIG allows a robot (1) to learn the
meanings of deictic pronouns, (2) to contrast new word definitions
with existing ones, thereby creating more complex definition, and (3)
to use word learned in an unsupervised manner for production, com-
prehension, or referent inference. The techniques that TWIG intro-
duces are extension inference and word definition tree. Its technique
are more generally applicable to other word categories, including
verbs, prepositions and nouns. In another related approach, authors
develop language acquisition system without knowledge of grammar
and vocabulary, which learns concrete noun concepts from user ut-
terances and paired images [10]. The system adopts a frequentist ap-
proach, in which utterances and images containing the same objects
are processed and the most probable noun is chosen as label.

Our work, while not making significant advances compared to the
systems at the state-of-the-art, puts more emphasis on a fundamental
problem in the language acquisition process, namely the selection of
the referent. Our goal is to create robust grounded language learning
algorithms, able to build operational knowledge even in absence of
important pragmatic information.

3 Model overview

Before going into details of the problems addressed in the present
work we provide operational definitions of several terms which are
used throughout this article. A semantic category (or semantic unit)
specifies a range of sensory inputs which can be grouped and asso-
ciated with a word/symbol. For example, a semantic category might
specify a portion of the colour spectrum. Such a semantic category
could be used to ground the semantics for a colour term such as “red”.
A semantic class specifies a set of semantic categories grounded in
the same sensory channel. For example, a semantic class could be
used to associate acquired colour terms (colour class). Finally, a lexi-
cal item encodes the association between a word and its correspond-
ing semantic category.

In the experimental setting each training sample is comprised of
an utterance and a visual context representing the semantics of the
word sequence. Utterances consist of phonetic transcripts of spoken
sequences recorded by the auditory sensor. Context consists of visual
sensory input which co-occurs with the utterance, and usually it con-
tains instances of multiple semantic class. A key assumption is that
any word in the utterance may refer to any semantic category inferred
from the co-occurring context.
All semantic categories are derived from visual sensory signals. Fea-
ture extractors computes visual features from the sensors (video).
Each extracted feature encodes relevant, non-redundant, information
from the visual sensory stream about observable proprieties of the
world (semantic class). Potential visual features include categories
of shape, colour, size, and spatial relation. The context is initially re-
stricted to a given referent (target) object, and any word may poten-
tially be paired with any semantic category which is derived from the
same utterance-context pair. A typical teaching scenario is depicted
in Fig. 1 (left).

3.1 Learning how to ground words to perceptual
stimuli

Grounding can be considered as the process whereby internal rep-
resentations are connected to external percepts. This is based on the
principle that cognitive agents and robots learn to name entities, indi-
viduals and states in the external (and internal) world at the same time
as they interact with their environment and build sensorimotor repre-
sentations of it [5]. Our approach addresses two interrelated question
in lexical acquisition: how semantic categories can be learned and



Figure 2. Computational processes composing our model for language acquisition

how symbols/words can be associated with appropriate semantic cat-
egories. These problems are known as semantic categorization (or se-
mantic clustering) and word-to-meaning mappings respectively. No
a priori knowledge about innate semantic categories is assumed by
the model; instead, through repeated experience, appropriate cate-
gories must be learned from positive examples and the model must
associate linguistic units with appropriate semantic categories. This
process is depicted in Fig. 2.

Basic problem regarding semantic clustering is how to establish
the semantics of individual words since each word in an utterance
may potentially be associated with any subset of co-occurring visual
features. For the sake of simplicity, we can assume that each word
may be associated with only one of co-occurring semantic categories.
However, natural language usually does not provide exhaustive labels
of all referents in a scene. In other words, we cannot assume that
the absence of a word indicates the absence of the corresponding
property. As a consequence, appropriate categories must be learned
from the positive examples only.

Semantic clustering generates the possible meanings of words cap-
tured by the system. This first step is not concerned with associating
a word to a particular meaning, but it deals with the problem of find-
ing all the possible meanings given the training set. The meaning of
each word (i.e. its semantic category) is treated as a random variable
and modeled with a multivariate Gaussian distributions. For example,
the meaning of a word associated to the semantic class ’color’ can be
associated with a multivariate Gaussian distribution over a red-green-
blue colour space. Each semantic category is composed of two para-
metric distribution: the distribution of feature values conditioned on
the presence of word p(f j |w) (hypothetical semantic category) and
the distribution of feature values conditioned on the absence of word
p(f j |w) (background distribution). Only the visual features f which
occurred with the wordw are used to compute the unbiased estimates
of the word conditioned model. The remaining observations (i.e. vi-
sual context of examples in which the word is not present) are used
to estimate the background model. These distributions are estimated
for each semantic class Cj (shape, colour, size, spatial relation). This
process is represented in Fig. 2(B).

These densities represent a possible meaning of the word. A se-
mantic distortion metric is used to select appropriate semantic cate-
gory from several hypothetical ones. We use the distortion between

the word-conditioned and background distributions as a measure
of association between word and semantic categories. The Bhat-
tacharyya distance measures the similarity of two probability distri-
butions, and the optimal Bayes classification error between any two
classes can be bounded by the Bhattacharyya error, ε. In our case,
the Bhattacharyya error provides a measure of association between
words and individual semantic categories. A clustering algorithm es-
timates hypothetical semantic categories of words from co-occurring
contexts and associates each word with semantic categories that max-
imize the classification error outlined above 2. Categories below a
fixed threshold are discarded, and the word is associated to a special
ungrounded class. Ungrounded class gathers all the words that can
not be directly grounded in sensory input. In our model, no seman-
tic category (Gaussian density) is associated with these words. The
whole process, together with the definition of the involved quantities,
is depicted in the Fig. 2(B-C).

3.2 Grammar learning
Categories, such as adjective, verbs and nouns, form the basic units
for learning the rules of grammar including grammatical relations,
cases, and phrase structure configurations. Without syntactic cate-
gories a learner will be unable to acquire the rules of the language.
Bootstrapping theories provide strategies for deriving syntactic cate-
gories from perceptual data. For instance, semantic bootstrapping [7]
proposes that the language learner uses semantic categories to seed
syntactic categories. This theory assumes that the learner has already
acquired words and their semantics without the use of any syntax.

Basic syntactic categories will be acquired directly through words’
meaning, and the words associated with similar perceptual categories
will be included in same syntactic category. The grammar is mod-
eled as a Markovian chain. We collect word statistics from utterance
training corpus encoding: (1) the word transition probability, (2) the
probability of beginning an utterance with a word and (3) the proba-
bility of ending an utterance with a word. Lexical items generated in
the previous phase can be used to cluster words into groups that de-
pend on the associated meaning. We use these groups, and associated

2 We force the clustering algorithm to associate only one semantic category,
without considering multi-class meanings (semantic categories that depend
on several classes of perception)



probabilities, to construct a more general representation of syntactic
constraints in terms of a finite state automaton (FSA) based on se-
mantic classes. These FSA are used as the basis for a deterministic
parser which identifies object phrases embedded in complex utter-
ances.

3.3 Learning complex spatial concepts
However, complex adjectives, such as “above” and “below”, cannot
be learned in the same fashion. Instead, we need to take the order
of words into account. Treating sentences as unordered set of words
tends to lose syntactic contents and its semantic implications. We
need to exploit the word ordering constraints and semantic bootstrap-
ping assumption to acquire spatial terms and explore weak general-
ization mechanisms.

To learn the meaning of spatial terms, we need to find all the ob-
jects to which the phrase refers. We consider only those phrases de-
scribing spatial relationships between two objects (i.e., “the rectan-
gle above the red circle”). A deterministic parser based on previ-
ously acquired FSA, identifies object phrases embedded in complex
utterances. We must decide which of two phrases refers to the orig-
inal target object, and which of the remaining objects in the scene
should be linked to the other phrase. We have defined a fitting func-
tion which measures the similarity of an utterance to an object based
on Mahalanobis distance, which will be explained later. Once the fo-
cal objects of the sentence has been determined, we can calculate
the features that describe the spatial relationship between these. We
must also encode the order of the phrases to learn the difference be-
tween spatial terms (i.e., difference between “above” and “below”)
and to calculate correctly the spatial features. The parser replace the
object phrases with (ungrounded) labels to facilitate the task. The
only information that really matters in our case, is which of the two
sentences refers to the target object. Finally, the learning process that
associate a meaning to the word describing a spatial feature contin-
ues as previously described. New lexical items are simply added to
the vocabulary of model, and the learned FSAs are merged into a
single syntactic model.

3.4 Understanding and generating descriptions
Having learned the probabilistic grounded language model, the task
of understanding an utterance can be casted in terms of classical
operations on probabilistic graphical models. Thanks to the Maha-
lanobis distance, we can measure the degree of association (”seman-
tic distance”) between a visual feature and a semantic category pre-
viously acquired. For example, we consider the case of a sentence
like “the red rectangle”. The acquired lexical items allow the parser
to assign a semantic category (and hence a Gaussian density) to each
word of the sentence. Given the visual features of an object f , we
can calculate the degree of association between sentence (of length
T ) and object’s visual features as:

T∑
i=1

√
(f − µi)Σ

−1
i (f − µi)

The object of the scene that minimizes this measure is selected as
a possible referent of the sentence. The same procedure can be used
for understanding spatial clauses. The deterministic parser guides the
extraction of spatial features which depends on the order of object
phrases. The referent of the sentence is searched among all possible
pairs of objects.

One way to facilitate the understanding of descriptions and to de-
crease the computational burden is to use logical terms to represent
the state of the world (i.e., knowledge about the properties and spatial
relationships of objects), and then use query in a logic programming
language for inferring the reference object. When the parser begins
to analyze an utterance, it queries the system for the state of the world
described in the form of a list of all atomic sentences that can be pro-
duced from available sensors at the time of query. For each object in
the scene, some logical terms are generated through the acquired lex-
ical items. In particular, the system generates a logical term for each
visual feature extracted from a object by selecting the lexical item
that minimizes the Mahalanobis distance for each semantic class.
Deterministic parser has been modified to generate logical query to
be submitted to the system. Some examples of possible queries are:
“red(X)”, “rect(X), above(X,Y), red(Y)”, etc.

The generation of the description of an object is quite simple. We
can generate a description as the most likely path of words (in the
main FSA) that produces a given observation. Given a set of visual
features extracted from an object we generate a description of object
through a modified Viterbi-like algorithm. We seek the sequence of
words that minimizes the fitting function for that object, and follows
the syntactic rules implicitly encoded in the FSA. We need a method
to determine the length of a description. The generation algorithm
include a stop criterion based on the acquired ending probability.

4 Dialogue and ambiguities

Another problem we have addressed is how to resolve the ambigui-
ties contained in a description through simple verbal interactions. For
example, suppose that the robot hears the statement ”Grasp the small
blue object!” while facing a scene containing several objects having
the same perceptual features.
In order to fulfill the task, the robot must disambiguate the context
and select one of the referred objects. The process of ambiguity res-
olution is based on a context-specific human-robot dialogue through
specific questions directly related to the properties and spatial rela-
tionships of the objects in the observed scene. We have considered
only those ambiguities related to perceptual quality shared between
objects of the scene. The robot must be able to detect ambiguous
statements and select the less ambiguous question to be asked in or-
der to succesfully conduct a dialogue. For instance, if all red objects
have different shapes, the robot can easily resolve the ambiguities by
asking for the shape of a specific object, i.e. ”Are you referring to
a rectangle?”. However, if all items have the same shape, the robot
must solve the ambiguity by using relative spatial terms between ob-
jects that are usually less informative than the concrete shape-based
questions. For example, many objects may share particular spatial
relationships with other objects making the question partially am-
biguous. In addition, the landmark object may be indistinguishable
from the target one making the phrase even more ambiguous.

Possible ambiguities can be removed through a simple dialogue
based on yes/no questions. Disambiguation tree reconstruct the
robot’s decision process in choosing a question to disambiguate a
context. They are essentially decision trees: the possible target ob-
jects are stored in the leaves, a disambiguation strategy is given by
the path from the root to the object’s leaf. The interior nodes can
be questions about referent’s proprieties itself, or relations to other
objects. When the robot finds a reference ambiguity, it builds a dis-
ambiguation tree that resolves it. Fig. 3 shows an example of disam-
biguation tree. Path to the left after question indicate that the pred-
icate is satisfied (yes answer), while the right branch indicates that



Figure 3. Disambiguation tree represents the underlying decision process
of choosing a question able to disambiguate a visual context

it is not (no answer). Each question consists of attempting to satisfy
a logical predicate, and appropriate subtree is explored. This process
continues until a leaf is reached and alle the ambiguities are resolved.

Disambiguation trees are constructed using the output of an am-
biguous query (logic queries with more than one possible outcome).
The construction method minimizes an entropy-based disambigua-
tion measure. At each decision node, the algorithm chooses a pos-
sible question and splits the available objects into two groups. This
process then occurs recursively until all objects are selected. Clearly,
the algorithm must decide which of these question is most informa-
tive. We have used a entropy-based disambiguation measure, charac-
terizing the average amount of uncertainty in a single question. This
measure is computed as:

N0

N1
H(X0) +

N1

N0
H(X1) +

∑
i

Ci(X
k)

The first two members of the equation measures the uncertainty re-
lated to possible questions in the children nodes (future scenarios).
We have calculated the uncertainty linked to the set of possible ques-
tions Q in a node, as the entropy calculated on a random variable
X generated by this set. The algorithm selects one of the possible
questions associated with the current node (represented by Xk) and
split the set of objects into two groups. For each group generates all
the possible questions Qi (i = {0, 1}) that have not been previously
selected in other high level decision node. The discrete random vari-
able Xi encodes the information related to each question in set Qi.
We can compute a probalility mass function p(Xi) as follows:

p(Xi = j) =
< j >∑

k
p(Xi = k)

where the counter operator < ... > return the number of the objects
that respond positively to that question. Ni represents the number
of the objects of each group. We weight the first two terms by their
ratio to ensure that the tree is well-balanced compared to the classical
decision tree learning algorithms [2].

The last term measures the uncertainty related to the question se-
lected, depending on the encoding of the question in natural lan-
guage (i.e. the number of words used) and its contextual ambiguity
(i.e. ambiguity in the understanding of the sentence by a listener).
The greedy algorithm selects the question that minimizes this mea-
sure based on entropy. The trees generated by the disambiguation
algorithm, are well-balanced. Fig. 4(b) shows an example of disam-
biguation tree generated by the algorithm. In this example, the first
selected question is the term “blue(X)”. The question “Is blue?” al-
lows the system to divide the objects of the scene into two groups:
blue objects and not blue objects. The construction method consider
future scenarios, and hence possible question and ambiguities in fu-
ture contexts, to select appropriate question. The method does not

select the questions that have an immediate and obvious answer (i.e.
“trapezium(X)”), but more general questions that allow us to isolate
and partially resolve the perceptual ambiguity and reduce the num-
ber of questions to ask. The subsequent scenarios, as mentioned, are
those with a lesser degree of ambiguity.

5 Experiments
We have performed two set of related experiments in order to test
the proposed model. One set involves a quantitative evaluation of
the model in the task of describing a scene. Another set is mostly
qualitative and involves an experiment on the NAO robotic platform.
Both experiments will be described in the following

Table 1. Results of an evaluation of human and machine generated
descriptions.

Participants Generated by human Generated by system
A 87,3 % 80,5 %
B 85,5 % 79,8 %
C 88,3 % 81,3 %

Media 87,1 % 80,5 %

Table 2. Results of an evaluation of machine understanding capabilities.

Participants Training corpus Testing corpus
A 90,9 % 87,3 %
B 88,7 % 85,5 %
C 91,1 % 88,3 %

System 86,2 % 78,9 %

5.1 Object description: quantitative results
The description task consists of generating phrases which best de-
scribe target objects and must be context sensitive since often depend
on the other objects in the observed scene. The variation of objects
is limited to shape, color, size and position. Each training example
is comprised of an utterance and a context representing the seman-
tics of the word sequence. Utterances consist of phonetic transcripts
of spoken sequences recorded by the auditory sensor. Context con-
sists of visual sensory input which co-occurs with the utterance, and
usually it contains instances of multiple semantic categories. The ex-
perimental setting consists of a set of objects of different shape and
color placed on a table. The camera is placed above the table and it
ensures a comprehensive view of the scene.

A training corpus from two participants unfamiliar with the project
has been collected. Participant were asked to generate two different
utterances related to the observed scene such that a listener could
later select the same target from the identical scene with the target
unmarked. Simple utterances contain reference to exactly one object
(target object), whereas complex utterances describe two or more ob-
jects and their spatial relations. The reference object of a spatial rela-
tion was selected by participants during the data collection task. The
training corpus was composed of 356 utterances of which 196 are
simple and 160 complex.

Participants were asked to select the object which best fit the
description generated by the system. All participants evaluated the
same sets of images. Responses were evaluated by comparing the se-
lected object for each image (the target object described by the sys-
tem) to the actual target object which was selected by participant as



(a) A sample image from training corpus (b) A disambiguation tree inferred from the scene

Figure 4. Disambiguation trees are used to resolve the ambiguities contained in a description through simple yes/no questions; (a) an example of ambiguous
context and (b) the corresponding well-balanced disambiguation tree constructed by minimizing an entropy-based measure - each node represents a question to

ask in order to conduct a dialogue

the referent of the description. The collected data was used to mea-
sure the accuracy of the system-generated description (showed in Ta-
ble 1). Participants were also asked to select a landmark object and to
generate a detailed description of the target object in the scene. Re-
sponses were evaluated by comparing the selected objects for each
image to the actual target object and landmark object which were se-
lected by the system. Table 2 shows the result of evaluation of system
understanding capabilities.

The system was able to describe scenes not encountered during the
training phase, and to exhibit sequences of words which have never
occurred in the training data. The results presented in this section
demonstrate the effectiveness of the learning algorithms to acquire
and apply grounded structures for the visual description task.

5.2 Human-robot interaction: qualitative results
As previously mentioned, the system has been tested on the NAO
robotic platform. NAO is a humanoid robot equipped with Force Sen-
sitive Resistors (FSR) located on the feet, sonars, bumpers, tactile
sensors, an IR emitter/receiver, a stereo camera and a pair of micro-
phones. The robot has a number of built-in machine vision modules
used in the experimental setup. In addition, we have implemented
a set of perceptual and motor schema for basic behaviors such as
pointing and grasping.

All concepts underlying acquired language model are used to
initialize dynamic fluents as predicate calculus terms and update
robot’s knowledge base representing the state of the world from
sensor data. Only the actions of the robot can modify the values of
the fluent associated with the objects. For this reason, the knowledge
base is updated after every action of the robot. Obviously there are
several logic terms that are constant over time (e.g. color). We have
tested the capabilities of the robot to understand the descriptions
provided by the users and to conduct a dialogue in case of ambi-
guities. The robot was given concrete instructions, such as “Point
the green object!”, or “Grasp the object to the left of the yellow
circle!”3. The previously described disambiguation trees were used
to clarify eventual ambiguities induced by the dialogue. An example
of dialogue is shown below, while the robots actions are depicted in
Fig. 5:

3 In the present model, the meaning of verbs “to point” and “to grasp” is
hand-coded, and it is not learned by the system. Future releases will address
the problem of grounding dynamic terms through the same computational
framework.

Human: ”NAO, grasp the object on the left to the blue one!”
Robot: Points the yellow rectangle.
Robot: ”Is that the yellow rectangle I am pointing at?”
Human: ”No!”
Robot: Points the blue circle.
Robot: ”Is that the blue circle I am pointing at?”
Human: ”Yes! That’s right!”
Robot: Grasps the blue circle.

A set of external observers were judging the goodness of the sys-
tem with respect to the following factors:

• Naturalness of the robot’s linguistic and motor behavior;
• Differences between the expected and observed behavior.

About ten people were involved in a full-day evaluation session.
The overall score was positive in about 80% of collected forms.

6 Conclusions and future works

In this paper we have presented a computational model for the ac-
quisition of a grounded language model to be used in human-robot
interaction. The system learns the meaning of the words and their
grammatical usage while understanding or generating a sentence. A
related computational model constructs a disambiguation tree in or-
der to help the robot conducting a dialogue in real-world settings.

While the system has been tested using english language, the gen-
erality of our computational model makes it an ideal candidate for
learning grounded models of other natural languages, provided that
every concept is linked with exactly one meaning and that Markov
models can be used to represent its (simplified) grammar.

However, a set of important questions still remain to be solved.
As presented, the system learns “simple” concepts involving a single
perceptual channel. Ongoing work is focused on learning complex
concepts from the interaction data. The same computational frame-
work will be employed recursively in order to assign meanings to
words by hierarchically describing complex concepts as composed
of simpler ones in a Bayesian network. Another issue is related to
the process of learning and understanding verbs as words that usually
involve an observable action. The work presented here represents the
first steps in this direction.



Figure 5. An example of human-robot interaction via the learned language model
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