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Abstract. Ultrasonic Guided Waves (UGWs) are a useful tool in those structural health monitoring 

applications that can benefit from built-in transduction, moderately large inspection ranges and high 

sensitivity to small flaws. This paper describes two methods, based on linear and nonlinear 

acoustics for structural damage detection based on UGWs. The linear method combine the 

advantages of UGW inspection with the outcomes of the Discrete Wavelet Transform (DWT) that is 

used for extracting defect-sensitive features that can be combined to perform a multivariate 

diagnosis of damage. In particular, the DWT is exploited to generate a set of relevant wavelet 

coefficients to construct a uni-dimensional or multi-dimensional damage index that, in turn is fed to 

an outlier algorithm to detect anomalous structural states. The nonlinear acoustics method exploits 

the circumstance that a cracked medium exhibits high acoustic nonlinearity which is manifested as 

harmonics in the power spectrum of the received signal. Experimental results also indicate that the 

harmonic components increase non-linearly in magnitude with increasing amplitude of the input 

signal. The proposed nonlinear technique identifies the presence of cracks by looking at the 

harmonics and their nonlinear relationship to the input amplitude. The general framework presented 

in this paper is applied to the detection of fatigue cracks in an I-shaped steel beam. The probing 

hardware consists of Lead Zirconate Titanate (PZT) materials used for both ultrasound generation 

and detection at chosen frequency. The effectiveness of the proposed methods for the structural 

diagnosis of defects that are small compared to the waveguide cross-sectional area is discussed.  

Introduction 

Steel structures are ubiquitous in mechanical, industrial and civil engineering systems. Failure of 

these structures is often attributed to fatigue or fracture cracks that can develop for instance at the 

flange-web junction of a bridge girder, in a railway track, or in the sub-structures of a power 

generation plant. In most cases cracks cannot be avoided, thus there is a need for non-destructive 

inspection (NDI) or structural health monitoring (SHM) technique aimed at detecting structural 

deficiencies at early stage of deterioration.  

NDI techniques such as acoustic emission [1], eddy current [2], ambient-vibration based [3], and 

impedance-based methods [4] were proposed for the detection of cracks in steel structures. Recently 

methods based on ultrasonic guided waves (UGWs) gained popularity owing to the capability of 

inspecting moderately large areas at once from a single probe attached or embedded in the structure 

and of possessing high sensitivity to small flaws [5-7]. UGWs and particularly Lamb waves were 

successfully used to monitor the propagation of fatigue cracks in metallic structures [8-10].  
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In the last few years the necessity for improvements in the field of signal conditioning, feature 

extraction, and defect classification became evident in order to enhance the detection, sizing, 

location, and classification of the monitoring scheme.  

This paper describes two methods based on linear and nonlinear acoustics for structural damage 

detection based on ultrasonic guided waves (UGWs). The linear method combines the advantages of 

UGW inspection with the outcomes of the Discrete Wavelet Transform (DWT). In particular, the 

DWT is exploited to generate a set of relevant wavelet coefficients to construct a uni-dimensional or 

multi-dimensional damage index that is fed to an outlier algorithm [11] to detect anomalous 

structural states. The nonlinear acoustics method instead correlates defects with the presence of 

additional frequency components in the output signal. The approach exploits the circumstance that a 

cracked medium exhibits high acoustic nonlinearity which is manifested as harmonics in the power 

spectrum of the received signal [12-13]. The generation of super-harmonics due to cracks is often 

attributed to the phenomenon of crack opening and closing caused by traveling acoustic waves [14].  

The general framework presented in this paper is applied to the detection of fatigue cracks in a 

W6x15 steel beam. The probing hardware consists of wafer piezoelectric transducers (PZTs) made 

of Lead Zirconate Titanate materials used for both ultrasound generation and detection at chosen 

frequency. These PZTs are suitable in SHM application as they are intrinsically easy to attach to the 

structure surface or to embed in the structure.  

Experimental setup 

The experiment was performed on a 2.74 m long W6 x 15 (SI: W150 x 22.5) steel beam. The 

dimensions of the steel specimen are shown in Figure 1. Two notches were cut into the bottom 

(tension) flange near the center of the beam-span as shown in Figure 1b. These notches served as 

fatigue crack initiators, and also helped to increase the stress at this section in order to accelerate the 

development of fatigue cracks. The notches were designed to have a theoretical fatigue life on the 

order of 40,000 cycles at an applied stress range of 190 MPa.  

Three PSI-5A4E type PZT wafer transducers (1.0 cm × 1.0 cm × 0.0508 cm) were mounted on the 

bottom flange of the beam. One transducer acted as a transmitter and was placed in between the two 

sensors which were located 500 mm apart (Figure 2). The crack initiator fell between the transmitter 

and sensor S1. The suite of instrumentation was completed by four electrical resistance crack gages 

placed to monitor the onset and growth of the fatigue cracks. These gages were placed at the notch 

root on both sides of the flange (Figure 2).  

To produce the cracks, the beam was loaded in simple mid-span loading over a span length of 2.74 

m. The midspan load was cycled from 4.5 kN to 40.5 kN resulting in a load range of 36 kN. Cycling 

was carried out at a rate of 1 Hz. The 36 kN applied load corresponds to a tensile stress range of 190 

MPa at the notch root of the tension flange. Figure 3 shows the history of crack propagation in both 

west and east flanges of the steel beam.  

Figure 1 – Dimensions of the steel W6x15 (SI: W150 x 22.5) section: (a) Beam span and cross section. 

(b) Elevation and plan views of the flange in the tension side. 

(a)  (b)  
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Linear approach 

A National Instruments PXI
®
 unit running under LabVIEW

®
 was employed for signal excitation, 

detection and acquisition. Five-cycle 10 Volts peak-to-peak (Ppk) 225 kHz toneburst modulated 

with a Hanning window was excited. The first symmetric S0 and the first anti-symmetric A0 mode 

were excited. The acquired waveforms were corrupted 19 times with white Gaussian noise in order 

to increase the statistical population. Thus 260 time histories were available. Each time waveform 

was windowed in order to separate the S0 from the A0 mode. Ultrasonic signals were processed 

through the DWT, which decomposes the original time-domain signal by computing its correlation 

with a short-duration wave called the mother wavelet that is flexible in time and in frequency. The 

decomposition phase transforms the function into wavelet coefficients following hierarchical steps 

(levels) of different time and frequency resolution. Each level contains the signal information both 

in the time and the frequency domain over a certain frequency bandwidth. De-noising of the original 

signal can be achieved if only a few wavelet coefficients, representative of the signal, of one or 

more levels are retained and the remaining coefficients, related to noise, are discarded. The 

Daubechies mother wavelet of order 40 (db40) was considered and the eight largest wavelet 

coefficient moduli from the decomposition level associated were retained. Several UGW-based 

statistical features were extracted from the unprocessed waveform (time domain) and the wavelet 

coefficient vector (joint time-frequency domain). The index is defined as the ratio between a certain 

feature FS2 calculated from the signal detected by sensor S2, over the same feature FS1 extracted 

from sensor S1. As the notch is located in the section of the beam between the actuator and the 

sensor S1 the value of D.I. is expected to increase compared to its normal, defect-free value 

(nominally one).  

The damage indices were then considered for outlier analysis. An outlier is a datum that appears 

inconsistent with a set of data, the baseline that describes the normal condition of the structure 

under investigation. In the analysis of one-dimensional elements, the detection of outliers is based 

on the determination of the discordancy between the one-dimensional datum and the baseline. One 

of the most common discordancy tests is based on the deviation statistics, z, defined as: 

x x
z







                                                                            (1) 

where x is the potential outlier, and x and   are the mean and the standard deviation of the 
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baseline, respectively. The value of z is then compared to a threshold value to determine whether 

the datum is an outlier (falling above the threshold) or not. The baseline was computed from the 

first 60 (=3 acquisitions x (1 original +19 corrupted)) time histories that, according to Fig. 3, were 

representative of the pristine structure at load cycles 0, 1250, and 2500, respectively. Once the 

values of  x  and  of the baseline distribution were determined, the threshold value was taken as 

the upper value of 3, equal to 99.73% of the Gaussian confidence limit.  

Figure 4 shows the discordancy values as a function of the sample number. The damage index 

computed from three statistical features extracted from the wavelet coefficient vector were 

considered. These features are the root mean square (RMS), the Ppk, and the K factor. Figs. 8a and 

8b refer to the propagation of the A0 and S0, respectively. Clear steps are visible almost at every 20 

sample numbers corresponding to the progressive increase of the crack. In the samples range 61-80 

twenty outliers were detected. These data are associated to the acquisition at 5,000 cycles. 

According to Fig. 3 the beam was still in its pristine conditions. Thus, these outliers are classified as 

false positives. The remaining 180 samples properly indicate damaged conditions of the structure. 

By observing Fig. 8 the damage index from each feature possesses a different sensitivity to the 

presence of damage. Qualitatively the discordancy increases with increasing defect size, however, it 

can be seen that the sensitivity to damage (represented by the rate of change of the discordancy plot) 

is larger for the K-factor-based damage index applied to the S0 mode (Fig. 8b) and the RMS-based 

damage index applied to the A0 mode (Fig. 8d). Sometime the damage index cannot be used to 

discriminate between two adjacent acquisitions. This is due to the fact that the difference in size 

between such defects is so small and lies in a few wavelet coefficients of lower amplitude that do 

not affect the extreme values.  

Nonlinear approach 

Sinusoidal acoustic waves at a chosen frequency and at five different amplitudes were applied 

(one amplitude at a time) to one of the PZT-patches (henceforth called transmitter) and the response 

was measured at another PZT-patch (henceforth called sensor). In Fig. 5, PZT-A serves as the 

transmitter and PZT-B as the sensor for the Western tension flange. A similar set of transducers 

were used for the Eastern tension flange. The frequency of excitation was chosen to be one of the 

resonant frequencies of the transducer-structure system. This ensured high amplitude of the 

travelling acoustic waves which would aid in the process of crack opening and closing and hence in 

the production of second harmonic due to crack. For each amplitude of excitation, the magnitude of 

the second harmonic of the exciting frequency was extracted from the Fast Fourier Transform (FFT) 

of the time-signal measured at the sensor. The measurements were performed after every few 
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Figure 4 - Discordancy test for the features damage index root mean square, peak-to-peak, and K-factor from the 

wavelet coefficient vector calculated for (a) A0 mode at 225 kHz, (b) S0 mode at 225 kHz.       RMS (continuous 

line). Peat-to-peak (dashed line). K-factor (dotted line). 
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thousands cycles of the midspan loading (after 0, 5K, 10K, 12K, 14K, 18K, 22K and 24K cycles to 

be precise) when the loading was paused with a static load of 22 kN sitting on the beam. 

The resonant frequency of the transducer-structure system was measured once at the onset of 

loading and once after 12K cycles when the crack already existed. Fig. 9 shows the amplitude 

spectrum of the transducer-structure system when a Gaussian white noise input was given to the 

transmitter. The forwarding signals were measured twenty times and averaged in the frequency 

domain to diminish noise effects. It can be observed from Fig. 9 that the resonant frequency of the 

cracked system did not vary significantly from the resonant frequency of the undamaged system. 

The driving frequency for all subsequent experiments was therefore chosen to be 350.5 kHz for the 

set of transducers on the Western flange and 356 kHz for those on the Eastern flange. The amplitude 

spectrum was not measured again due to time constraints. 

  
Figure 5 - Amplitude spectrum of the transducer-structure system when a Gaussian white noise input was given to the 

transmitter (a) Western tension flange (b) Eastern tension flange 

Once the resonant frequency of the system was identified, a sinusoidal signal with a  1 peak-to-

peak voltage and driving frequency equal to the resonant frequency of the system was generated 

using the AWG and applied to the transmitter. FFT of the response measured at the sensor was 

taken, and the absolute value of the FFT at the second-harmonic of the driving frequency was noted. 

The forwarding signals were again measured twenty times and averaged in the frequency domain. 

The above procedure was then repeated with the peak-to-peak excitation voltage varying from  4V 

to  40V with an incremental step of  9V. 

  
Figure 6 - Variation of (a) first harmonic (350.5 kHz) and (b) second harmonic (701 kHz) amplitudes in the signal 

measured at the sensor with increasing excitation voltage. Results are shown after given number of cycles of mid-span 

loading; Crack initiated around 8790 cycles. (Results from Western tension flange) 

Fig. 6 shows the results from the Western tension flange. Fig. 6a suggests an increased acoustic 

nonlinearity at approximately ten thousand cycles when the first harmonic amplitude varies 

nonlinearly with the excitation voltage. The presence of the second harmonic is also significant 

around ten thousand cycles (Fig. 6b). These observations combined with observations from the 

crack gages (Fig. 3) imply that the PZT-based active sensing system could identify the damage near 

its inception. The nonlinearity effects became prominent at the inception of the crack but its 

manifestation decreased steadily with increasing length of the crack and became indiscernible after 

fourteen thousand cycles. 

Similar results were observed for the Eastern flange (Fig. 7). However, in this case the nonlinear 

effects became prominent at around twenty thousand cycles whereas the crack initiated after about 

(a) (b) 

(a) (b) 
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ten thousand cycles. In conclusion it may be said that cracks in the tested specimen were 

successfully identified at some point of their propagation using the principles of nonlinear acoustics. 

However, it is not clear at what stage of crack propagation the harmonics would be most visible. 

  
Figure 7 - Variation of (a) first harmonic (356 kHz) and (b) second harmonic (712 kHz) amplitudes in the signal 

measured at the sensor with increasing excitation voltage. Results are shown after given number of cycles of midspan-

loading; Crack initiated around 9500 cycles. (Results from Eastern tension flange) 

Conclusions 

This paper presents an automated crack detection technique for metallic waveguides using agile 

PZT transducers. Specifically, the study focused on the detection of the onset and propagation of 

fatigue crack induced on a steel structural beam. The technique is based on the propagation of linear 

and nonlinear ultrasonic guided waves. In the linear approach time waveforms were processed using 

discrete wavelet transform and univariate outlier analysis to detect anomalous conditions of the 

structure and in particular the presence of fatigue cracks. In the nonlinear approach preeminent 

harmonics in the response signal from cracked specimens were observed as the input power of the 

driving PZT-wafer increased. The harmonic amplitudes also showed nonlinear variation with the 

increasing excitation voltage in cracked specimens. The proposed technique identifies the presence 

of cracks by looking at two features: harmonics and their nonlinear relationship to the input 

amplitude. The structural health monitoring paradigm presented in this paper is applicable to many 

structural components having waveguide geometry (e.g. plates, rods, pipes) which lend themselves 

to guided ultrasonic wave propagation. Depending on the specific application, the ultrasonic 

configuration (whether pulse-echo or pitch-catch), the discrete wavelet transform decomposition 

levels, as well as the features considered in the computation of the damage index may change. 
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