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Abstract— In this paper, we extend the notion of person by
person optimization to binary decision spaces. The novelty of
our approach is the adaptation to a dynamic team context
of notions borrowed from the pseudo-boolean optimization
field as completely local-global or unimodal functions and sub-
modularity. We also generalize the concept of pbp optimization
to the case where the Decision Makers (DMs) make decisions
sequentially in groups of m, we call it mbm optimization. The
main contribution are certain sufficient conditions, verifiable in
polynomial time, under which a pbp or an mbm optimization
algorithm leads to the team-optimum. We also show that there
exists a subclass of sub-modular team problems, recognizable
in polynomial time, for which the convergence is guaranteed if
the pbp algorithm is opportunely initialized.

I. INTRODUCTION

Most fundamental results in team theory concern linear

quadratic gaussian problems or, in general, problems with

continuous decision spaces, where the cost is somehow

convex in the strategies and the information structure is a

“nice” one (see, e.g., partial nested structures) [1], [2], [13].

In such particular cases, it is well known that a simple

solution idea consisting in a sequential optimization on the

part of the Decision Makers (DMs), called person by person

optimization (pbp), leads to the team-optimum [10], namely

the argument minimizing the team objective function.

In this paper, on the same line of [7], we restrict our

attention to boolean decision spaces. The novelty of our

approach is the adaptation to a dynamic team context of

notions borrowed from pseudo-boolean optimization [4],

as Completely Local-Global (CLG) functions, Completely

Unimodal (CU) functions (also known as acyclic unique sink

orientations and abstract objective functions [12]) and sub-

modular functions [5], [9].

Boolean decision spaces can be found in finite-alphabet

control and in particular on-off control problems [8],

impulsively-controlled systems (activate the impulse or not)

[6], or switching control (switches between active and pas-

sive modes) [14]. Boolean decisions are encountered in many

applications as inventory with set up costs (reordering or not

from a warehouse in order to meet a demand) [3], distributed

computer systems (processing or not the assigned task) [7],

in air-conditioning systems control, in economics and finance

(see, e.g., [4] and references therein).
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As first contribution, we generalize the concept of pbp

optimization to the case where the Decision Makers (DMs)

make decisions sequentially in groups of m, we call it mbm

optimization.

The main contribution of this paper consists in providing

certain sufficient conditions, verifiable in polynomial time,

for the optimality of such pbp (respectively mbm) opti-

mization algorithms. Then we can frame our results in the

literature on person by person algorithms in team theory,

which has drawn the attention of the control audience since

the ’70s (see, e.g., [10]).

As a further contribution, we have paid special attention

to problems with sub-modular team objective function (sub-

modular team problems). Though sub-modularity alone does

not guarantee the convergence of any pbp optimization

algorithm, we show that there exists a special class of sub-

modular team problems, recognizable in polynomial time,

for which the convergence is guaranteed when the algorithm

is opportunely initialized. This class is characterized by so-

called threshold strategies.

This paper is organized as follows. In Section II, we

introduce some notions from team theory [10] and pseudo-

boolean optimization [4]. In Section III, we introduce the

class of completely local-global functions and completely

unimodal functions [5], and [9]. In Section IV, we address

the mbm optimization. In Section V, we focus on sub-

modular team problems. In Section VI we provide numerical

examples. Finally, in Section VII, we discuss how to extend

the obtained results.

II. DEFINITIONS AND PROBLEM STATEMENT

Consider a set N of n DMs making decisions x from

a discrete hypercube B
n = {0, 1}n. Decisions are made in

order to optimize a common team objective function, J(x) :
B

n 7→ Z, where Z is the set of integer numbers.

Assumption 1: The team objective function J(x) is injec-

tive and has the following quadratic form

J(x) =
n∑

i=1

bixi +
n∑

i=1

n∑

j=1

aijxixj . (1)

with aij and bi integer (this causes J(x) assuming only

integer values).

The following definitions are slightly modified from [7].

Definition 1: (Team-optimum) A point x∗ is a team-

optimum if

x∗ = arg min
x∈Bn

J(x).



As the set B
n is finite, a team optimum x∗ always exists.

Furthermore, as J(x) is injective, the team optimum is

unique.

Definition 2: (pbp optimum) The point x∗ is a pbp opti-

mum if for any DM i the following condition holds

J(x∗
i , x

∗
−i) < J(xi, x

∗
−i), ∀xi 6= x∗

i (2)

where xi ∈ B is the decision of DM i and x−i =
(x1, . . . , xi−1, xi+1 . . . , xn)T ∈ B

n−1 is a vector collecting

decisions of all other DMs. From the above definitions we

have that a team-optimum always implies pbp optimality but

not vice versa.

Let S any subset of N with m elements. We indicate this

with S ⊆ N with |S| = m, where |V | means cardinality

of V . Let xS ∈ B
m be a vector collecting the decisions of

all the DMs belonging to S, namely, xS = (xi : i ∈ S).
Analogously, let x−S ∈ B

n−m be a vector collecting the

decisions of all the other DMs, x−S = (xi : i ∈ N \ S).
Definition 3: (mbm optimum) The point x∗ is an mbm

optimum if, for any subset S ⊆ N with |S| = m, the

following condition holds

J(x∗
S , x∗

−S) < J(xS , x∗
−S), ∀xS 6= x∗

S . (3)

All the results stated in the following hold true for any value

of the parameter m from 1 to n.

In agreement with [7] and [10], we define a pbp strategy

as follows.

Definition 4: (strict pbp strategy) A strategy µi : B
n−1 7→

B is pbp strict for DM i if, for any x−i ∈ B
n−1, we have

µi(x−i) = arg min
x̃i∈{0,1}

J(x̃i, x−i).

As J(x) is injective, the above equation has a unique

solution. Then, under a strict pbp strategy, a DM i changes

decision from zero to one or vice versa only if such a change

lets the team objective function decrease for fixed decisions

of all other DMs j 6= i.

Definition 5: (Strict mbm strategy) A strategy µS :
B

n−m 7→ B
m is mbm strict for DMs in S where S ⊆ N

with cardinality |S| = m if, for any x−S ∈ B
n−m, we have

µS(x−S) = arg min
x̃S∈Bm

J(x̃S , x−S).

The above definition has the following geometric interpre-

tation. For any x ∈ B
n and S ⊆ N , denote by ΠS(x) as the

the corresponding m-dimensional face {x̃ = (x̃S , x−S) ∈
B

n : x−S fixed} of hypercube B
n. Then, a strict mbm

strategy means that either (xS , x−S) is the optimal vertex

in ΠS(x) or the DMs in S coordinate their decisions to find

an optimal vertex in ΠS(x).
With the above definitions in mind, we call pbp opti-

mization algorithm, any algorithm that returns a sequence

of decisions x(0) → x(1) → . . . where, for each iteration t,

we denote by x(t) = {x1(t) . . . xn(t)} and xi(t) the vector

of decisions and the decision of DM i respectively. We also

require that each decision x(t) is obtained from x(t−1) by a

unilateral improvement on the part of a single DM i = σ(t),
i.e., x(t) = [µi(x−i(t − 1)), x−i(t − 1)], where σ : N 7→ N ,

is a periodic surjective function, with period n, that returns a

DM for each iteration t. For instance, σ(1) = 2, σ(2) = 5 . . .

means that at iteration 1, DM 2 plays the strict pbp strategy

for fixed decisions of all other DMs, and similarly for DM 5

at iteration 2. We define an mbm optimization algorithm in

a similar manner. Here, the function σ becomes σ : N 7→ Q,

with period |Q|, where Q is the set of all subsets S ⊆ N with

|S| = m, and the vector of decisions at iteration t becomes

x(t) = [µS(x−S(t − 1)), x−S(t − 1)].
We can now state the problem of interest.

Problem 1: Find conditions under which any pbp (respec-

tively mbm) optimization algorithm converges to the team-

optimum.

Throughout the paper, convergence means “from any

generic x(0)”, unless specified differently.

Remark 1: Any strict pbp (respectively mbm) optimiza-

tion algorithm converges to a pbp (mbm) optimum in a finite

number of iterations. Actually, the set B
n is finite and at each

iteration t of the algorithm the value of objective function

J(x(t)) decreases.

There is a vast literature on functions f(x) : B
n 7→ Z that

map from a discrete hypercube B
n to the ordered field Z

of integer numbers. They are usually referred to as pseudo-

boolean functions [4].

In the following, we recall some notions and optimality

conditions in the context of pseudo-boolean optimization

that we use to prepare and motivate the results of the next

sections.

Let us now associate to a binary vector x ∈ B
n its

neighborhood Nr(x) of radius r, defined as Nr(x) =
{y : ρH(x, y) ≤ r}, where ρH(x, y) denotes the Hamming

distance of the vectors x and y, defined as the number of

components in which these two vectors differ. According to

this definition, the neighborhood of radius n of each x ∈ B
n

is equal to B
n, that is Nn(x) = B

n.

A vector x is a local minimum of a pseudo-boolean f(.)
if f(y) ≥ f(x) for all neighboring vectors y ∈ N1(x). It is

a global minimum if f(y) ≥ f(x) for all vectors y ∈ B
n.

Local minima can be determined by means of local search

algorithms. In particular, [5] defines as a single switch algo-

rithm any algorithm that at each iteration proceeds to a better

neighbor of the current iterate, by changing one coordinate at

a time, until a local optimum is found. Similarly, they define

as a multiple switch algorithm of order m any algorithm that

at each iteration proceeds to a next better iterate that differs

from the current vertex in at most m coordinates.

Remark 2: The following correspondences hold:

i) The team objective function J(x) is a pseudo-boolean

function.

ii) Any pbp (respectively mbm) optimum is a local opti-

mum in a neighborhood of radius one (respectively m).

iii) The team-optimum is a global optimum.

iv) Strict pbp (respectively mbm) strategies are single

(respectively multiple) switch algorithms.

There is a large variety of techniques applied in the litera-

ture for solving problems that can be modelled by quadratic

pseudo-Boolean functions optimization. As this last problem

is NP-hard, many of the published algorithms are implicitly

enumerative. However, specialized optimization algorithms



have been developed for increasing or decreasing pseudo-

Boolean functions.

We can associate to a pseudo-boolean function its first

order ith derivative

∂f

∂xi

(x) = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) +

− f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

which will be used later on. If f(.) is injective, ∂f
∂xi

(x) 6= 0
for all x ∈ B

n, for all i ∈ N . Let us finally introduce the

following operation.

Definition 6: Given a function f : B
n 7→ R, for any subset

S ⊆ N , define restriction of f into S, RSf(x) : B
n 7→ R the

function obtained from f by considering the only monomials

and binomials including DMs in S and setting the values of

the variables in S equal to 1

RSf(x) =
∑

i∈S

bi +
∑

i,j∈S

aij +
∑

k 6∈S

∑

i∈S

aikxk.

The above definition has the following geometric interpre-

tation. Consider the face ΠS(x) : {x = (xS , x−S) ∈ B
n :

x−S fixed} of B
n and extract two points x = (1, x−S) and

x = (0, x−S) from it. Note that, for fixed x−S , in x all

DMs i ∈ S set xi = 1 while in x all DMs i ∈ S set xi = 0.

Then, the restriction is the difference J(x) − J(x) of the

team objective function computed on the two points. Also,

note that for a singleton, S = {i}, then RSf(x) = ∂f
∂xi

(x).

III. PERSON BY PERSON OPTIMIZATION

In this section, we present sufficient conditions, verifiable

in polynomial time, for the convergence of any pbp algorithm

to the team-optimum.

Definition 7: (CLG-functions [9]) An injective function

f : B
n 7→ Z is Completely Local-Global (CLG) if in B

n

there is a unique local minimum.

Lemma 1: Any pbp optimization algorithm guarantees

convergence to the team-optimum x∗ if and only if J(x)
is a CLG-function.

Proof: (sufficiency) If J(.) is a CLG-function then there

is a unique pbp optimum which is also team-optimum. Any

pbp optimization algorithm guarantees convergence to it.

(necessity) If J(.) is not a CLG-function then there is a

second pbp optimum x̄ which is not team-optimum. Any

pbp optimization algorithm starting at x̄ cannot deviate from

it and therefore does not reach the global optimum.

The class of CLG-functions includes the class of com-

pletely unimodal functions.

Definition 8: (CU-functions) An injective function f :
B

n 7→ Z is Completely Unimodal (CU) if f has a unique

local minimum on every face of B
n.

From the above lemma we can derive the following

corollary.

Corollary 1: Any pbp optimization algorithm converges

to the team-optimum x∗ if J(x) is a CU-function.

To the best of author’s knowledge, recognizing CU-

functions or CLG-functions is, in general, a difficult task.

Actually, it involves an exponential number of conditions as

shown next. Furthermore, even if f is a CLG or CU-function,

strict pbp strategies may converge in exponential time.

To see why completely unimodality involves an exponen-

tial number of conditions consider that for existing two local

minima on a 2-face containing xi and xj , it must hold

∂f(x)

∂xi

∣
∣
∣
∣
xj=0

·
∂f(x)

∂xi

∣
∣
∣
∣
xj=1

< 0 (4)

∂f(x)

∂xj

∣
∣
∣
∣
xi=0

·
∂f(x)

∂xj

∣
∣
∣
∣
xi=1

< 0. (5)

Then for f to be CU it is necessary that, on each 2-face

and for all x, the above conditions are not satisfied, which

implies an exponential number of verifications.
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Fig. 1. Unit 3-dimensional cubes: oriented arcs indicate decreasing
directions for J(x) when (a) J(x) is CLG-function or (b) J(x) is CU-
function. Solutions x = (0, 0, 0) and x = (1, 1, 0) (point A and B in (a))
are two local minima for the 2-face x1-x2 with x3 = 0. In both cases, the
global minimum is x = (1, 0, 1) (point C).

Example 1: Consider the set B
3 = {0, 1}3 and the team

objective function J(x) : B
3 7→ Z, taking on the values

displayed in Fig. 1.a. The explicit expression of the function

J according to the formula (1) is

J(x) = 4x2
1 + 4x2

2 − 8x1x2 + 2x2
︸ ︷︷ ︸

J (x1,x2)

−10x3−10x1x3+3x2x3,

where we denote by J (x1, x2) the function obtained consid-

ering the only terms in x1 and x2. In Fig. 1.a, the oriented

arcs indicate the decreasing directions for the team objective

function J(x). Function J(x) is a CLG-function as it has a

unique local (global) minimum in B
3 which is x = (1, 0, 1)

(point C in the figure). However note that J (x1, x2) is not a

CLG-function as it has two local minima in B
2. For instance,

see the 2-face x1-x2 with x3 = 0 which has two local minima

in x = (0, 0, 0) and x = (1, 1, 0) (point A and B). We

complete the example by considering a different function

Ĵ(x) : B
3 7→ Z, taking on the values displayed in Fig. 1.b.

The explicit expression is

Ĵ(x) = x2
1 + 4x2

2 − 5x1x2 + 2x2
︸ ︷︷ ︸

Ĵ (x1,x2)

−10x3 −10x1x3 +3x2x3,

where again Ĵ (x1, x2) is obtained considering the only terms

in x1 and x2. In Fig. 1.b, the unique global minimum is

again x = (1, 0, 1) (point C in the figure) but differently

from before function J(x) is a CU-function in B
3 as it has

a unique local minimum on each 2-face. In correspondence



to such a situation we also have that Ĵ (x1, x2) is a CLG-

function on B
2 as it has a unique local minimum in B

2 (see

the 2-face x1-x2 with x3 = 0 which has a local minimum

in x = (0, 0, 0) (point A)).

A special case of completely unimodality is when f(.) is

monotonic along any single direction, which corresponds to

being both left hand side of (4) and (5) positive. Now, f(.)
is monotonic along any single direction, when for all i =
1 . . . , n, one of the following mutually exclusive conditions

holds true

max
x∈Bn

∂J(x)

∂xi

< 0 (6)

min
x∈Bn

∂J(x)

∂xi

> 0. (7)

We can specialize Corollary 1 to such a particular case.

Lemma 2: (Sufficient conditions) If the team objective

function J(x) is such that, for all i ∈ N , one between (6)

or (7) hold, then

1) the team optimum is

x∗
i =

{

1 if maxx∈Bn
∂J(x)
∂xi

< 0

0 if minx∈Bn
∂J(x)
∂xi

> 0

2) the team optimum x∗ is also the unique pbp optimum,

3) any pbp optimization algorithm converges to the team

optimum x∗ in at most n iterations.

Proof: Item 3 is straightforward from item 2. To prove

item 1 and 2 consider that if max ∂J(x)
∂xi

< 0, then
∂J(x)
∂xi

< 0

for all x. Analogously, if min ∂J(x)
∂xi

> 0 then
∂J(x)
∂xi

> 0 for

all x.

Let us finally observe that verifying whether (6) or (7)

holds is easy (polynomial in n), as we just have to find the

maxima, respectively the minima, of the n functions
∂J(x)
∂xi

linear in x ∈ B
n.

IV. GENERALIZATION TO mBm OPTIMIZATION

Let us now generalize the results established in the

preceding section to the case where DMs make decisions

sequentially in groups of m.

Theorem 1: (Sufficient conditions) Let x∗ = 1 be an (m−
1)b(m − 1) optimum, if the team objective function J(.) is

such that for all S ⊆ N with |S| = m it holds

max
x∈Bn

RSJ(x) < 0 (8)

then

1) x∗ is the team-optimum

2) x∗ is also the unique mbm optimum,

3) any mbm optimization algorithm converges to the

team-optimum x∗.

Proof: Item 3 is straightforward from item 2. To prove

item 1 and 2, let us assume by contradiction that there exists

a team optimum value x∗ 6= 1. Let V = {i : x∗
i = 0}. The

cardinality of V cannot be greater than or equal to m. Indeed

consider S ⊆ V with |S| = m, since RSJ(x∗) < 0 implies

J(x◦) < J(x∗), where x◦ ∈ B
n differs from x∗ only for

the components in S, i.e., x◦
i = 0 if i ∈ V \ S, x◦

i = 1
otherwise. Then x∗ should be within an Hamming distance

strictly less than m from 1, but this situation cannot occur

since 1 by definition is optimum within its neighborhood of

radius m − 1.

Example 2: Consider the team objective function J(x) =
x1 +x2 − 3x3 − 5x1x2 +x1x3 +x2x3. The solution x∗ = 1

is a pbp optimum as, for all i, bi +
∑

k 6=i aik < 0. Since for

all S, with |S| = 2 condition (8) holds (for i = 1 and j = 2,

we have b1 + b2 +a12 +maxx∈Bn(a13 +a23)x3 = −1), then

x∗ = 1 is also team-optimum.

Remark 3: In the above lemma, the assumption x∗ = 1

is without loss of generality. Actually, if the team problem

has a unique team optimum x∗ 6= 1 then the following

transformation can be applied to the decision space such that

the new team optimum is x̂∗ = 1:

x̂i =

{
xi if x∗

i = 1
1 − xi it x∗

i = 0.
(9)

Let us finally observe that verifying whether (8) holds is,

for fixed m, polynomial in n although exponential in m,

as we just have to find the maxima of the
(

n
m

)
functions

RSJ(x) linear in x ∈ B
n.

V. SUB-MODULAR TEAM PROBLEMS

In the past sections we have provided conditions for the

convergence from any initial state x(0). Now, we show

that we can recognize in polynomial time a special class

of sub-modular team problems, which do not meet the

aforementioned conditions and for which the convergence

is guaranteed at least when the pbp algorithm is opportunely

initialized. This class is characterized by so-called threshold

strategies.

Let us call sub-modular team problems, all team problems

with sub-modular team objective function. From [4], we

remind from that i) a pseudo-Boolean function f(.) is sub-

modular if f(v) + f(w) ≤ f(vw) + f(v ∨w) ii) a quadratic

pseudo-Boolean function f(.) is submodular iff its quadratic

terms are nonpositive. However, from the following example,

it is apparent that sub-modularity alone does not guarantee

the convergence of any pbp optimization algorithm.

Example 3: Consider the sub-modular team objective

function J(x) = x1 + x2 − 3x1x2 and take x(0) = (0, 0).
The team optimum is (1, 1) but observe that at iteration 1, no

DM alone benefits from changing its decision from 0 to 1.

Hence the pbp optimization algorithm starts and terminates

in (0, 0).
We can generalize the above reasoning to show that sub-

modularity alone does not guarantee the convergence of any

mbm optimization algorithm. On this purpose, note that if

the team objective function is sub-modular, then condition

(8) reduces to
∑

i∈S

bi +
∑

i,j∈S

aij < 0, for all S, with |S| = m. (10)

We derive the above result by reminding that all quadratic

terms are nonpositive and therefore maxx

∑

k 6=i,j(aik +
ajk)xk ≤ 0 with the equality verified in x = 0.



Example 4: Consider the sub-modular team objective

function J(x) = 2x1 +2x2 +2x3 − 3x1x2 − 3x1x3 − 3x2x3

and take x(0) = (0, 0). The team optimum is again (1, 1)
but observe that at iteration 1, no pairs i and j of DMs alone

benefits from changing their decisions from 0 to 1. Note that

condition (10) for m = 2 becomes bi+bj +aij < 0 and there

is no pair i and j that satisfies such a condition. Hence the

mbm optimization algorithm starts and terminates in (0, 0).

A. A Special Class with Threshold Strategies

Threshold strategy means that a DM i chooses xi = 1
if and only if at least other li DMs do the same. The

following simple example shows that when players (DMs)

have threshold strategies the team objective function is sub-

modular. The team objective function is as in (1). We say

that player i has a threshold strategy with threshold li = k,

if its strict pbp strategy is

µi(x−i) =

{
1 if ‖x−i‖1 ≥ k

0 otherwise.
(11)

Lemma 3: If all players have threshold strategies then the

team objective function J(x) must be sub-modular.

Proof: Observe that player i has a threshold strategy

with li = k. Denote by S(k) the set of all subsets of N ,

which do not contain DM i and have cardinality less than

k. Now, for a generic subset S ∈ S(k), take x−i such that

xj = 1 for all j ∈ S and xj = 0 for all j ∈ N \ (S
⋃
{i})

and observe that from (11) it must hold that µi(x−i) = 0.

But this means that the following condition holds true

bi +
∑

j∈S

aij ≥ 0 for all S ∈ S(k). (12)

Repeat the same reasoning considering a generic subset S ⊆
N \ S(k), and take x−i such that xj = 1 for all j ∈ S with

j 6= i and xj = 0 for all j ∈ N \S. Observe that from (11) it

must hold that µi(x−i) = 1 which implies that the following

condition hold true

bi +
∑

j∈S

aij < 0 for all S ⊆ N \ S(k). (13)

Now, consider two sets S1 ∈ S(k) with |S1| = k − 1 and

S2 = S1 ∪ {j} ∈ N \ S(k). Observe that S2 has cardinality

|S2| = k as it is obtained from S1 by adding a single DM j.

We complete the proof by observing that for (12) and (13)

to be valid it must be aij < 0 for all i and j. Then J(.)
has all quadratic terms negative which proves that J(.) is

sub-modular.

This special class of sub-modular team problems is in-

teresting as i) threshold structures can be recognized in

polynomial time and ii) any pbp optimization algorithm

initialized at x(0) = 1 converges to the team-optimum x∗,

in general different from 1, as established in the following

theorem.

Theorem 2: There exists a polynomial algorithm that ver-

ifies conditions (12) and (13) in O(n2 log n). In case of

positive answer, any pbp optimization algorithm initialized

at x(0) = 1 converges to the team-optimum.

Proof: (Complexity) Given a DM i, consider all DMs

except i in the order σ(1), . . . , σ(n) with aiσ(1) ≤ . . . ≤
aiσ(n). We remind here that the ordering process has a

complexity O(n log n). Now, conditions (12) and (13) are

verified if and only if bi + aiσ(1) + . . . + aiσ(k−1) ≥ 0 and

bi + aiσ(n−k) + . . . + aiσ(n) < 0. We can limit ourselves to

verify the latter two conditions for any possible value of the

threshold li from 1 to n. Such a procedure is carried out via a

dicotomic search and has a complexity of O(log n). Then, for

fixed i the total complexity is O(n log n)+O(log n), and as

O(n log n) dominates (is always greater than) O(log n) the

total complexity simply reduces to the cost of the ordering

process O(n log n). We conclude our proof by noticing that

the ordering process must be repeated n times (one for all

DM i) and therefore the resulting complexity is O(n2 log n).
(Convergence of pbp) Assume DMs ordered by increasing

thresholds, i.e., l1 ≤ . . . ≤ ln. Starting at x(0) = 1 any pbp

optimization algorithm converges to the pbp optimum nearest

to 1 (in terms of Hamming distance), call it x̂. In other words

x̂ = arg min{‖x − 1‖ : x is pbp-opt.}. We must show that

x̂ is also the team-optimum. To prove this fact corresponds

to proving that, if there exists a second pbp optimum, call it

x̃, it must hold

J(x̂) − J(x̃) = RSJ(x̃) =

=
∑

i∈S

bi +
∑

i,j∈S

aij +
∑

r 6∈S

∑

i∈S

airx̃r ≤ 0,

where S is the set of components which are zero in x̃ and

one in x̂. Now note that
∑

i,j∈S aij +
∑

r 6∈S

∑

i∈S airx̃r =
∑

i∈S

∑n

r=1 airx̂r and therefore we can rewrite the above

inequality as

J(x̂)−J(x̃) =
∑

i∈S

(bi +
n∑

r=1

airx̂r) =
∑

i∈S

(bi +
∑

r∈S̄

air) ≤ 0,

(14)

where we denote by S̄ the set of components which are one

in x̂. Then we need to prove the validity of (14). Now, note

that if DMs are ordered by increasing thresholds, it must

hold x̃ ≤ x̂ component-wise. Hence, as x̂ is a pbp optimum

then each i ∈ S has threshold li < ‖x̂− 0‖ = ‖x̂‖ which in

turns implies that
∑

i∈S(bi +
∑

r∈S̄ air) ≤ 0 and therefore

(14) hold true.

VI. NUMERICAL EXAMPLE

In this first example we simulate a pbp optimization and

show that the algorithm converges to the team optimum.

Consider the following team objective function

J(x) = −x1 + x2 + x3 + x4 + 5x5 − 2x1x2 + 4x1x3 +

+ 2x1x4 − 4x1x5 − 6x2x3 − 2x2x4 − 7x4x5

By direct verification, it can be proved that the above

function is a CLG-function as it has a unique local minimum

in (1, 1, 1, 1, 1). Similarly, we can see that it is not a CU-

function as, for instance, on the 2-face x1-x3 with x2 = x4 =
x5 = 0, conditions (4)-(5) are both verified. The function is

not submodular because of the presence of positive quadratic

terms.



TABLE I

SEQUENCE OF DMS’ DECISIONS: BLOCKS ON THE LEFT, MIDDLE AND RIGHT DESCRIBE THE FIRST, SECOND AND THIRD ROUND OF OPTIMIZATION.

DM xi x J(x) DM xi x J(x) DM xi x J(x)

1 1∗ (1,0,0,0,0) -1 1 0∗ (0,1,1,0,0) -4 1 1∗ (1,1,1,1,1) -7

2 1∗ (1,1,0,0,0) -2 2 1 (0,1,1,0,0) -4 2 1 (1,1,1,1,1) -7

3 1∗ (1,1,1,0,0) -3 3 1 (0,1,1,0,0) -4 3 1 (1,1,1,1,1) -7

4 0 (1,1,1,0,0) -3 4 1∗ (0,1,1,1,0) -5 4 1 (1,1,1,1,1) -7

5 0 (1,1,1,0,0) -3 5 1∗ (0,1,1,1,1) -6 5 1 (1,1,1,1,1) -7

TABLE II

SEQUENCE OF DECISIONS: FIRST AND SECOND ROUND OF PBP OPTIMIZATION (LEFT AND MIDDLE BLOCKS), 2B2 OPTIMIZATION (RIGHT BLOCK).

DM xi x J(x) DM xi x J(x) DM xi x J(x)

1 0 (0,0,0,0,0) 0 1 0 (0,0,1,0,0) -3 1-2 1∗ − 1∗ (1,1,0,0,0) -3

2 0 (0,0,0,0,0) 0 2 0 (0,0,1,0,0) -3 3-4 1∗ − 1∗ (1,1,1,1,0) -11

3 1∗ (0,0,1,0,0) -3 3 1 (0,0,1,0,0) -3 5-1 1∗ − 1 (1,1,1,1,1) -23

4 0 (0,0,1,0,0) -3 4 0 (0,0,1,0,0) -3 2-3 1-1 (1,1,1,1,1) -23

5 0 (0,0,1,0,0) -3 5 0 (0,0,1,0,0) -3 4-5 1-1 (1,1,1,1,1) -23

Start from the decision vector x = 0 and assume that the

DMs make their decision in the following order: DM 1, DM

2, . . ., DM 5. Table I reports the sequence of DMs’ decisions

(decisions are starred when they change with respect to

the previous round). Blocks on the left describe the first

and second round of optimization while block on the right

describes the third round of optimization.

If we consider only the vectors x that change from a

decision to another one we obtain the sequence

σ = (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0), (0, 1, 1, 0, 0),

(0, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1).

In this second example we simulate the pbp and the 2b2

optimization for the following team objective function and

show that only in the second case we converge to the team

optimum:

J(x) = x1 + x2 − 3x3 + x4 + x5 − 5x1x2 + x1x3 + x2x3 +

−4x1x4 − 4x1x5 − 4x2x4 − 4x2x5 − 5x4x5.

First observe that the solution x∗ = 1 is a pbp optimum

as, for all i, bi +
∑

k 6=i aik < 0. Furthermore, since for all

S, with |S| = 2 condition (8) holds, then x∗ = 1 is also

team-optimum. The pbp optimization is carried out as in the

previous example and decisions are reported in Table II (left

blocks describe the first and second round). Convergence is

on x = (0, 0, 1, 0, 0) 6= x∗. Differently, the 2b2 optimization

converges to x∗ as evident from the sequence of decisions

listed in the right block.

VII. CONCLUDING REMARKS

In future works, we wish to extend the obtained results

to consensus problems. Actually, consensus problems have

been recently reinterpreted as special potential games [11].

For these games there exist algorithms, very similar in spirit

to pbp algorithms and called best response path algorithm,

that guarantee the distributed convergence to Nash equilibria.

A second line of research aims at providing a parallel

between mbm and self organizing/Kohonen maps, since both

are optimization methods that can be applied to boolean

spaces with decreasing goal functions that in each iteration

modify a subset of decision variables.
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