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Abstract—We propose a novel approach that, given a linear
saturated feedback control policy, asks for the objective func-
tion that makes robust optimal such a policy. The approach is
specialized to a linear network flow system with unknown but
bounded demand and politopic bounds on controlled flows. All
results are derived via the Hamilton-Jacobi-Isaacs and viscosity
theory.
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I. INTRODUCTION

Consider the problem of driving a continuous time state

z(t) € R™ within a target setl = {£ € R™ : [£| <
€} in a finite time T > 0 with ¢ > 0 a-priori chosen
and keeping the state withif from time 7' on. Such a
problem is shortly referred to as thestabilizability problem
of z(t). Define u(t) € IR™ the controlled flow vector,
w(t) € IR™ an Unknown But Bounded (UBB3xogenous
input (disturbance/demand) with< m, and letD € R™*™
a given matrix,id = {gy € R™ : v~ < p < u*} and
W={neR":w <n<w'} betwo hyper-boxes with
assignedu™, v~, wt andw~. Also, lets be a binary state
such thato(t) = 0 if 2(t) € 7 ando(t) = 1 if 2(t) € 7.
The robust counterpart of the problem takes on the form

min max J(C,u(.),w(.)) = / e (1), u(t)dt (1)
(2)

2(t) = u(t) — Dw(t), 2(0) =¢ forallt>0
2(t)e T forallt>T, (3)
by

where we denote byy = {u : [0,+oc[— U} and

W ={w:

in (1) is a function ofz andw and its structure depends on
o as follows

PEORTO) qo-oenen)

{ 9(2(t), u(t))
9(z(t),u(t)) i o=1(z(t) € T)
(4)

whereg(.) andg(.) have to be designed as explained below.
In a previous work [2], it has been shown that under certain

conditions on the matrixD (recalled below), the following

(linear) saturated control policy drives the statavithin 7

u(t) = satp,- ,+)(—kz(t)) ==
= (sat[u7,u+](—kzl(t)), ...,sat[uf,u+](—kz,L(t))) € R",

(5)
with & > 0 and where
67 If 57, > 67
sat[a,ﬁ] (51) = gia if o < gi < ﬁa
a, iIf & <a.

Then, we deduce that the saturated control policy returns an
admissible solution for problem (1)-(3). In the light of this
consideration, we focus on the following problem.

Problem 1: We wish to design the integrang (.) of the
objective function (1) in (4) such that the saturated control
turns optimal for the min-max problem (1)-(3).

A. Literature and main results

In this work, we add new results concerning the optimality
of the saturated control policy [2]. Saturated controls repre-
sent the simplest form of a piece-wise linear control [6].

[0, +oo[— W} the sets of measurable controlspodeling the demand as unknown but bounded variable is

and demands respectively. From a game theoretic standpaifiiine with [3], [5], [10] though the “unknown but bounded”

we will consider two players, player 1 playingand player
2 playingw. The statez(t) has initial value{ and integrates
the discrepancy between the controlled fle) and Dw(t)
as described in (2). Controls(t) and demandw(t) are

approach has a long history in control [4]. The conservative
approach of Section V reminds the Soyster decomposi-
tion [12], used in robust linear programming. Also, the
notion of feedbackin control, present in this work, reminds

bounded within hyperboxes by their definitions. Conditiorthe notion of recourse used in robust optimization [7].
(3) guarantees the reachability of the target set from time Similarly to the dual mode controlin [11] we provide a

on. Among all controls satisfying the above conditions (call isolution approach which decomposes the problem into two
admissible controls or solution), we wish to find the one thagubproblems, within and without a predefined neighborhood
minimizes the objective function (1) under the worst demanaf the origin. All results are derived via the Hamilton-
The objective function is defined on an infinite horizon withjacobi-Bellman and Hamilton-Jacobi-Isaacs equations and

discount factor~*(?)* depending orr. The reason for such the related viscosity solutions theory (see Bardi-Capuzzo
a dependency om will be clearer later on. The integrand Dolcetta [1] as a general reference).
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Under general hypotheses (on the regularity(nf and
F(z,v(z), Vu(z)) =0 in Q, some "compatibility conditions” for the exit-cosp), the
where Q@ C IR™, is open,F : O x R x R™ — R is value funct!on is chgractgrlzed as the unique bounded uni-
formly continuous viscosity solution of the boundary value

gohtguijsﬁf\ \SILS;? S:clr?;ts o;gtlogvce):;lsea ;or;trl]r;u?grs feli/r;(;sonproblem for the Hamilton-Jacobi-Bellman equation (note that

differentiable functiony : © — TR, the following holds if §2is IR™, then there are not boundary conditions).
Now, we consider a differential game with state equation

i) xis local max forv — ¢ = F(z,v(z), Vo(z)) < 0; )

ii) xis local min forv — ¢ = F(x,v(z), Vp(x)) > 0. y'(t) = fly(®),a(t), (1)), y(0) =,

The idea is hence to substitute the derivatives,oivhich and cost functional
usually do not exist, with the derivatives of the test function too
©, and to require that the equation is "semi-verified” in J(z,a,p) :/ e Uy(t), aft), B(t))dt,
the point of maximum forv — ¢ and (oppositely) "semi- 0
verified” in the point of minimum forv — ¢. If a function
satisfies i) only (for every test functions) then it is called 4
subsolution, whereas it is called a supersolution in the other j, o 5) = fotx(aﬁ) ety (t), a(t), B(t))dt+ )
case. Such a notion of solution goes back to Crandall-Evans- Zto(a,B)

. ; o 0 : + e Y(y(t)),
Lions [8]. Obviously, this is a weak definition of solution, o ) i
and in particular, if a functiom is a classical solution (i.e. it for the exit-time problem in Section Il and IV. The mea-
is differentiable and satisfies the equation by equality), the¥rable controbv € A = {a : [0, +-00[— A, measurablgis

for the infinite horizon case in Section V, (i.e. without
striction tof2), or

it is also a viscosity solution. governed by the first player who wants to minimize the cost,
In Section V, we consider an optimal control problem ofvhereas and the second player, by choosing the measurable
type control 5 € B = {f : [0, +o0[— B, measurablg wants to
o maximize the cost. We define the non-anticipative strategies
mﬂax J(z,B) <: m[?x/ e%(y(t),ﬂ(t))dt) , (see, e.g., [9]) for the first player

subject toj() = £(y(), A(t)), y(0) =,

where 3 : [0,+0c[— B is the measurable control, witB = {7 B A B 7[6}‘51 =B i [0,s] = 7)

a compact set. Under rather general hypotheses, the value V[B1] =~[B2] in [0, 5]} .
function of the probleml/(z) = supg J(z, 3), is a viscosity Hence the (lower) value function for the minimiza-
solution of the Hamilton-Jacobi-Bellman equation tion/maximization problem is defined as
U(z) +min{—f(z,b) - VU(x) — (z,b)} = 0. — mi
(@) + mip{—f(@,b) - VU(w) = tlw, b)} V(@) = minmax J(z,v[6], 5).

Such an equation holds in the whole™ if the control nqer rather general hypothesis, the value funciiors the

problem is without state-constraints (i.e. the stgt¢ is free ique hounded uniformly continuous viscosity solution of
to move inIR™); otherwise, if the problem is confined in thethe following Hamilton-Jacobi-lsaacs equation

closureQ of an open sef?, the equation must be coupled

with suitable boundary conditions a¥, usually given by  V(z) + min I;leajf{*f(ﬂf, a,b) - VV(z) = £(z,a,b)} =0,

an exit costy from €. The problem is then (see Section lll . ) . )
and V) which also in this case must be coupled with appropriate
boundary conditions for the exit-time problem.

I(z, - O o=to(y(t), B(E))dt+
max (z,0) ( maxg [y ey (1), B(1)) Il. SOLUTION APPROACH

+e tw(BW(y(t)))a We will pursue the idea of decomposing the infinite

wheret, () is the first exit time from() for the trajectory horizon (1) into afinite horizon problem with o(t) = 0
starting fromz with control 3 (with the conventiort,(3) = and an infiniteinfinite horizonproblem witho(t) = 1 as
+oo if the trajectory never exit frong). expressed below

Under some hypotheses on the regularity @2 and -
on the existence of inner suitable fields on the points of J(Cvu(%;i’(l)f o 9(=(8), ut), w(t)dt+ g
the boundary, the value function turns out to satisfy the J7 €79 (=(), u(t), w(t))dt).
boundary conditionUU = 1 in the so-called "viscosity We can do such a decomposition as once the state enters the

sense”. This means that on the pointof the boundary target7 it will remain in it for the rest of the time [2].

which are of local maximum (respectively local minimum) Let us now explain more in details the notion of optimality
for U — ¢ (when restricted to the closure 6f), we must of a saturated control mentioned in Problem 1. Letand

have U(z) < «(x) (resp.U(z) > w(x)) or U(x) + W be the sets of measurable controls and demands as in the
minpep {—f(x,b) - Vo(z) — £(x,b)} < 0 (resp.> 0), i.e. Introduction (after equation (3)), and [Etbe the set of non-

the equation holds with the "right” sign. anticipative strategies for the player 1 (see (7), replading



by W, A by U, andg by u). The (lower) value function for [ll. M INIMUM TIME PROBLEM OUTSIDE THE TARGET SET

the differential game is then Let us start by observing that we can always chogsg
V(¢) = inf sup J(¢,y[w], w), big enough in comparison with(.) such that, for all. and
Vel wew w, the second contributiorf,.” §(z(t), u(t),w(t))dt in (1)

where( is the initial state. Now)/ must be the unique vis- can be neglected if compared with the first contribution
cosity solution of the Hamilton-Jacobi-Isaacs (HJI) equatio!j’OTg(z(t),u(t)7w(t))dt. In particular this is true if we
chooseg(¢, u,w) = M with M > 0 big enough. With the
H = 9 1 . . .
U.V(C_) + .(g’VV(O) 0, ©) above choice the problem outside the targeis equivalent
where the Hamiltoniarf? is, for every(¢,p) € R™ x R™:  to a minimum time problem witly(¢, i, w) = 1. With this in

H(¢,p) := min maX{ (1t — Dw) - p— g% (C, pyw)}. (10) mind, take without loss of generality = {1 € IRm’ —1<

weW peu
Observe that the above equation depends on fungfi¢n ‘“ <ilvi=1..mhW={we ]R B 1 S wj S 1Y) =
and ono. Hence when dealing with the infinite horizon= »n}, and D anm x n matrix satisfyingt/ > DW.
1 and so in the left hand side of the equation there is th\/—:Ve denote byD;; the entries of the matrix. The target
presence of the addendl’(¢). We can look at the saturatedis 7 = {{ € IR’”‘IEI < (1/k) Vi = 1,...,m}, and the
control as a special non anticipative strategy namely, for saturated control policy is(t) = Sat[_1,1](—kz(t))- Hence,
everyw € W we define the two Hamiltonians become, for &lp € R™ (recall that

Yo[w](t) = satp,- u+(—k2), we are considering = 1),

where z is the state trajectory of (2) under the saturated 1,

control as choice fon, and under the choice af. Given jz1 ;pz i)+ Z i

this, we wish to find a functiog?(.) such that the worst cost n | m

returned by the saturated control equals the value functionf? (¢,p) = — > > " piDy; Zsat[_Ll](—kQ;)pq; -

V. This corresponds to imposing j=1li=1 i=1 (1)
V(¢) = e 4 T 0[w], w) = V(Q), By our hypotheses, the controllable setlig’ \ 7, and

. L hen n re, r tively, the uni lutions of
e., the notion of optimality of the saturated control for encev” andV” are, respectively, the unique solutions o

Problem 1 may be expressed by the equality { H(C,VV(C) =0 inR"\T
V=V, (12) V=0 on 97; (14)
whereV is oTtame y maximizing ovew Vo0 on 9T
J(¢,w) = / e W7 (2(1), satp,— u+y(—kz(t)), w(t))dt, The question is then to prove that such two problems have
0

the same solution (note that we do not a priori knBwand
(in the infinite horizon the extremes afé and o) subject 7). Anyway, in this case, due to the structure of the system
to the controlled dynamics and to other hypotheses, we can easy guess that the saturated
(t) = satpy- oo (—kz(t)—Dw(t), 2(0)=( (orz(T) = C)(;ontrol is an optimal choice for player 1. Indeed, since,
whateverw(t) is, for everyi-th component(Dw(t)); cannot
Now, V must be the unique viscosity solution of thechange the sign ofat_y 1)(—kz(t)) — (Dw(t)); (when the

Hamilton-Jacobi-Bellman (HB) equation: initial point satlsf|e$gl| > (1/k)), and since that is the “good
oV(C)+ H(C,VV(() =0, (12) sign” for steering( to the target, Fhen any controller will use
o such a control (or non anticipative strategy).
where the Hamiltoniaif{ is, for every(¢,p) € R™ x R™ In the light of the above considerations, for the value
f[(gp) = mingew{—(sat,- 4+ (—k() — Dw) - p+ function, it is reasonable to consider the following expression
_gU(Ca Sat[u*,u*](_kC)v‘“‘J)}' max {0’ KZ| — %}
In the following, we will look for suitable cosy in V()= max ¢~ ST Dyl [ (15)

order to get the optimality of the saturated control for the

corresponding problems. We will prove such an optimalityrhat is V' is the time requested for steering all the compo-

(i.e. (11)) in two different ways: i) directly computing the nents in the interva]—1/k, 1/k], under the worst scenario

functionsV, V and checking their equality, 2) writing the concerning the demand.

two corresponding Hamilton-Jacobi equations and checking Let i* be the solution of the above maximization (the last

they have the same unique solution. component to reach the target set), the generic component
Remark 1:A trivial choice isg¢?({, u,w) = |sat(—k({) —  of the costate ip; = 1/(1 — Z’le |D;-;|) andp; = 0 for

u|. It penalizes any control different from the saturated all j # *. The optimal choice fow is w; = sign(D;-;).

control. However, such a choice makes the game (and tlteis easy to check that the two Hamilton-Jacobi problems

mathematical problem) without interest. in (14) are both satisfied by (15) where such a function is




differentiable. On the other hand, on the points where it is Now, if we fix w(t) = —© for all ¢, then, sinceu(t) =
not differentiable (i.e. the point where the maximizing index-kz(t), the trajectory is given by

in (15) changes), the definition of viscosity solution applies. - .
We can also note that, on such points of non-differentiability 2(t) = e M (C _ Dw) + %
(which are located on some portion of hyperplanes), we can k k

only have test fant'or‘p such thaty — ¢ ha_s a minimum, - ence, the cost associated to such a choices 66 (after
and also that the-th component of the gradieffy has the simple calculation)

same sign of;. Hence the left-hand side of the equations in
2

(14) are the same (see also (13)). . 1 Dw
It must be noted that while the saturated control is unique J(C) =35 HC |l T AC|| Dw|?,
optimal for the component*, this is no longer true for all
the other components # i*. Actually, all z; with j # i We guess, not surprisingly, thak is indeed the value

once reached the target may exit and enter again several timig@gction V of the maximization problem. This can be done,
following an infinite number of different trajectories and thisfor instance, by proving that/ solves the corresponding

until also z;+ reaches the target set. Hamilton-Jacobi equation

IV. A" QUADRATIC COST’ WITHIN THE TARGET SET 7 A Y o7 Y7 _

- | ! Q)+ min { —(—k( — Dw) - VIL(C) = §(G, —k¢,w) } = 0.

Within the target set we consider the following quadratic (19)
cost depending oq, i, w for fixed k > 0: This can be easily checked, sinceis differentiable and
. kE+1 Dw o, 1 5 .o hence a classical solution of (19) (when we put the gradient
9(C mw) = B) ||C+T|| +ﬂ”“_DwH +CIID(w=w)I, of J inside the equation, by the hypothesis about the max-
where, || - || is the euclidean norm ilR", @ € W is a imization of (17) we immediately get that the minimum in

the left-hand side is reached s, and hence we conclude).
By uniqueness of the solution of (19),must coincide with
ﬁﬂe value functior.

We now consider the differential game, subject to (2), with
running costg, and exit-cost fron/” given by

generic vertex, a-priori chosen, B9 andC' > 0 is a suitable
constant, which will be fixed later. Our guess is that, insid
the target7, the saturated control is the unique optima
strategy for the min-max problem related to the c@&d,
and suitable exit-cost from the closed get
Since we are decoupling the initial problem in two prob- 1 Do
lems, outside and inside the targgt in this section we may Y(() = 5“( - THQ + 4C||Dw||?,
consider the infinite horizon problem with initial tinfé = 0.
First of all, let us consider the maximization problem over Following the solution approach explained in Section II,
w € W, with controlu equal to the linear saturated one: we guess that the (lower) value functidi for such a
. problem, coincides with the functioli = J already found.
V() = sup/ e ta(z(t), —kz(t),w), (16) By the general results, as explained in the Introduction,
. ; the lower value functiofV is the unique bounded continuous
subject t02(t) = —kz(t) — Dw, 2(0)=( e 7. . . ;
viscosity solution of the boundary value problem
Note that here we are not imposing an exit cost frém

Indeed, it is without meaning in this case since, whichever .
g V(¢) + min max {—(u— Dw)-VV({)+

the controlw is, the trajectory can not exit frord. WEW pell
We now specialize the constafit> 0 in the definition of —§(C,pw)=0inT, (20
the costj. We choose a vertex of W, andC > 0 such that, V=14 ondT,

for all ¢ € 7, the maximum ovew € W of the expression . _ _ .
where the boundary condition are in the viscosity sense.

D Dw Dw iali i i
—C-—w+—w ) —w+C||D(w—w)H2, . If now we _specu%hze a little bit more Fhe consta(ﬁtz_o
k k k in the definition ofg, we may get thal” is also a solution
. o _ (17)  of (20) (note that it satisfies the boundary condition in the
is always taken in-w (note that the first addendum of suchcjassical way, and hence also in the viscosity sense). This is

expression is just the sum of the two first addenda when  possible by the following observations. Let us pugwhich

p = —k(). This is possible by choosing equal to one of s gifferentiable) and its gradient in (20). For evernye W,
the two opposite vertices which strictly maximize the normet Lt € U reach the maximum in the left-hand side. Now,
of Dw (which exist since we may suppose the maftbhave note that our condition o' is only a lower bound. Hence

2k +1 2

2

Dw
o

k

positive entries), and then taking such that we may takeC' larger than its lower bound. In particular,
k1 Do ||2_||-_ Dz ||? since, for every( € 7, u € U, w € W, the difference
- e (2 i o 9 / U
Z MAX(CeT wevertW w#—w A1 D= D =D 19(¢, —k(,w) — g(C, p,w)|, which is

—¢(Dw+Dw)+ 2L DY)

1
(18) 37 |I#¢ + Dw|* = [l — Dw?|,



is small of orderl/k, we can take” a little bit larger than member given by-kz(t) — c. Moreover, observe that it is
its lower bound such that it is also true that, for everg 7, increasing if¢ < —(c¢/k) and decreasing i-(c/k) < ( <

the minimum with respect ta € W of the expression 0. Hence, in any case, it converges (for— +o0) to the
equilibrium —(c¢/k). Note that such an equilibrium point is
~ (ko = Dw) - VV(C) = 9(C, pr, w), just obtained (fr(/)n%au()/k whenw¢ = —1, that is whenu¢
is taken in—@. But, as standard calculations show, the onlgolves the problemu(c¢) = max,¢[11jw(c¢). The cost
possibility is u_z = —k¢ and henceV solves (20). By ©f such a controlled trajectory is
uniqueness, we then gét = V, andu(t) = —kz(t) is 3 oo k(e — ¢)
the unique possibility for optimality. V(<) Z/O e~ (—kz(t))dt = ]

Remark 2: Argument of future works is searching a suit- ~
able running cosg which leaves the demand free to switchLet us note thatV has a continuous derivative in
(at least) between two opposite vertices. [-()1/k),0[, given by the negative constarit’(¢) =
—k/(k 4+ 1). Moreover we have tha/(¢) — for
¢ — 0" andV(¢) — %L, for ¢ — Tk.

In this section, we propose a conservative approach that|f instead¢ < —(1/k), then the system has the right hand
allows us to solve the original problem without decomposingjde equal tol — ¢ until =z reaches the value-(1/k) and
it into the finite an infinite horizon problem. Let us Sp"t after, again, equa| to-kz — c. Since the reaching time is
the demando(¢) into m independent demands”)(t) each  + — — (k¢ + 1)/(k — kc), dividing the system in the two
one acting on a different component. This corresponds {gtervals of time[0, 7] (with initial point ¢), and [r, +oc]
consideringm decoupled one-dimensional dynamics of typgwith initial point —(1/k)), we obtain the trajectory

kc
V. A CONSERVATIVE APPROXIMATION k1

n

C+(1—-o)t 0<t<,

Zi(t) = u;(t) — "w(-i) .
i(t) =ul) ZD” i) Z(t){ o ktkT (C_l) C
k

Jj=1

k
In the rest of the section, we focus on the one dimensional

version of our problem and drop the indéwhere possible. Adain, such a trajectory is increasing and converges to
In the one dimensional context, it is natural to think (and~(¢/k)- The corresponding cost and cost derivative} in
we will prove it in the sequel, for a suitable cost) that the* —(1/k)[ are

optimal choice for the player 2 is to use - . k
V() =—-eT"(1-¢)

E+1 E+1

Note thatV is then continuous and derivable, siricé¢) —

ketl for ¢ — —1" andV(¢) —» —z&=, for ¢ — -1
) Rrl e % T+ %
where, if z(t) = 0, then w(f) may be any value from " jnstead¢ > 0, a similar analysis as before gives

[—1, 1]™. Now, consider the following objective function _ i
V() =77 +0) 0<¢<(1/k)
9(¢; p) = max{|sat_1,1)(=kC)|, |ul}, e

+1, V() =eT

w(t) = —sign(z(t)) arg max \ ZDiJwﬂ e [-1,1]", (21)
j=1

V() =-eT1-c)—=+1 (1/k) <,
and the corresponding infinite horizon game with cost k+1
o0 wherer = (1 — k¢)/(k — kc) is the reaching time of the
J(Cul),w(.)) = / e tg(z(t),u(t))dt, value1/k. Also in this case:/k is an attracting equilibrium
0 A

point. Then, the valud” is continuous and derivable in—
wheree™" is a given discount term. We want to show thats, 0[U]0, +oc[. Moreover, it is continuous if = 0 where
the saturated strategy, is the optimal one for the first playet. is equal tokc/(k + 1) but is not derivable in{ = 0.
Hence, first of all, let us prove the (non surprising) optimalityThe left limit of derivatives is—k/(k + 1) whereas the right
of (21) for the second player in the corresponding maximizimit is k/k+1. Hence, in the view of the viscosity solutions
ing optimal control problem when(t) = sat[_, 1;(—k2(t)), approach, we can say that there are not test functiosisch
that is when the cost is just equal teat_; 1j(—kz(t))|. thatV — ¢ has a local maximum i = 0, whereas the set
Definingc = 377_, | D;|, the system is (recall < ¢ < 1)  of the derivatives in{ = 0 of all test functionsy such that

400 = sty (—he(0) + lsion(=(1). +(0) = . (@2) |} 15 @ local minmum i = s exacty the inerval

Let us suppose-(1/k) < ¢ < 0. Then the trajectory is  The functionV is the optimal value for the problem of

(recall that if z(t) € [—(1/k),0[, thensat[_1 1j(—kz(t)) = maximizing, amongu € W, the following cost
—kz(t), andsign(z(t)) = —1) ~ o0
J(w(.)) = / |sat;_1 11(—k=z(t))|dt,
z(t):e_kt(g—i-%)—% Vit > 0 0 o

. . . subject to the dynamics
Note that such a trajectory is always negative and hence it

is exactly the solution of the system (22) with the second 2(t) = satj_q1 q(—kz(t)) — cw(t), 2(0) =,



; [P . . . . arcs 112(3|4|5|6|7|8]29
if and only if it is a viscosity solution iR of the problem Upperbounds 3 [ 2 (333313515
V(¢)+ min sat|_ k¢ <) + nodes 1[2]3[4]5
© we[-1,1] = ( )= ) © upperbounds| 0 [ 2 [ 3 [ 2 | 2
—Isat[—l,u(—kC)I} =0 averages |0 |1 ]2[1]1
Here we do not have boundary conditions since the problem TABLE |

is not restricted to a subset, but it is treated in the whole  conTROLLED FLOWS CONSTRAINTS AND DEMAND BOUNDS
IR. A direct calculation shows thaf is a viscosity solution.
Now we guess thdt’ is also a viscosity solution of the Isaacs

equation for the differential game given by the cost P 1 é’% 4
[e%e} N 0
J(Cu(.),w(.) = / e max{|sat_y 1 (—kz(t))|, [u(t)}at ~ ~° Rz
0 0.4
subject to the dynamics (2). Hence, we have to provelthat OMMWW«MWWWWWMM 0275
is a viscosity solution of s 095

0 100 200 300 400 500 0 100 200 300 400 500

~ ~ 0.4
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and hence we will get, by uniqueness, that it is equal to the os o
lower value function of the game. N0 "o
. . . . - -0.5 -0.

To this end, we have to split the analysis in the following T T T T T

cases: ay < —(1/k), b) —(1/k) < ¢ < 0, ¢c) ¢ = 0, d) 0s ime
0<¢<1/k, e)( > 1/k. A careful analysis of all these N“O_QWMWWWWWWWM

cases brings the desired result, and also the fact that the linear ;5o 20 w0 a0 00

saturated control is the unique optimal choice for the first e

player. In particular, outside the target, the optimal ChOiCfaig. 2. The variablez(¢) with saturated linear feedback control (5) with
for the first player isu = 1if ( <0 (u=—-11if ( >0) k=4

which is exactly the linear saturated control, and corresponds

to the optimal choice for a minimum time problem.
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