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Abstract—In the last decade wind energy had a strong
growth because of cost effectiveness of the technology and
the high remunerative of investments.

The increase of wind power penetration in power grids,
however, makes necessary the development of instruments
for prediction of productivity of a wind farm.

This paper presents a study dealing with the capability of
neural network to forecast short term production of a wind
farm by the correlation of wind and energy production data.
Available measures of wind parameters were related to
productivity data of a real wind farm. Also wind data not
strictly related to the site have been used in order to assess
their possible influence on the production. After a first step
of data pre-processing a statistical analysis has been done.

The model of input-output correlation is based on the use
of artificial neural networks.

Index Terms—Artificial neural networks, multi layer
perceptron, wind data, wind energy production.

1. INTRODUCTION

Among renewable ene rgy t echnologies, wind fa rms
became more and m ore attractive int he 1 ast deca de in
many co untries. Wind farms in stallations dram atically
increased in areas where public incentives to gether with
climatic condi tions, t opography a nd en vironment ha ve
allowed their development. High wind energy penetration
has in many c ases caused problem o f grid stability and
balance due to the fluctuating and unpredictable nature of
its generation.

Obviously, a g ood know ledge of thew ind
characteristics is the prere quisite for good planning and
implementation of any project of wind energy [1,2].

In future, the presence of a hi gh wind power in the
electricity grid will cause problems in many grids, at least
in terms of network management

The strate gies facedi n thi s work aim ed to bei ng
complementary to the tools of management of the power
systems.

This work d eals with the d emonstration of th e p otential
capability o f predictive algo rithms b ased o n artificial
neural net works ( NN) [3] fo rt he forecast of e nergy
production of a given wind farm.

The strength of these methods is based on their ability
to help the system operator during the on line scheduling
oft he networki npa rticular when winde nergy
contribution to th e en ergy mix ish igh (period wh ere
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consumption is low while wind speed is high). In such
situationst hen etwork’s balanceisd  ifficult to
maintain[4].

Neural n etworks haveth ecap abilityto pro cess
complex input-output data sets in order to predict events
from other ob served phenomenon even if not clearly or
physically correlated. T his canbe donet hrought he
creation of “intelligent” systems able to find, through a
dynamic p rocess b ased onm ultiple it erations, th ¢
relationship between e nvironmental var iables ( wind
speed and direction, temperature, pressure, humidity) and
output parameters (electricity production)[5].

The case study p resented her e aim s to esti mate the
energy pr oduction o ft he farm under consi deration
through the correlation of the production and wind data
fromp ublicand  privaten etworks (SIAS-Sicilian
Agrometeorological In formation Se rvice a nd C NMCA-
National M eteorology an d C limatology Aer onautics
Center )

The use of wind data not closely related (for position
and height of measurement) to the investigated location is
abra nd new app roach. Infact ,t he useo fwi nd
distribution physical m odelsis g enerally li mited to
micrositing studies mainly voted to optimize the layout of
the p lant. Models im plementing com plex terrain
characteristics for large areas surrounding the wind farm
are very difficult to manage.

It is known that, especially during micrositing p hase,
wind d atan eeded to estimate the p roductivity, are
collected in the areas closest to the plant and at heights
comparable with those of wind turbines (typically 50 m).

II. CASE STUDY

A. Wind farm characteristics

This work was carried out using wind and power data
ofawind fa rms located in Sicily co mposed by 11
turbines o £85 0k W. Wi nd parameters have bee n
measured by the st ation C NMCA of Tra pani and f rom
those of SIAS in Mazara del Vallo, Trapani Fulgatore and
Castelvetrano located in the area of the wind farm whose
position is shown in picture 2.



Fig. 1. Topography of the province of Trapani, the plant area and
location of stations SIAS

Figure 1 shows that the province of Trapani presents a
large area  with lev el o rography (altitu des rang ing
between0 an d 250m )asth eyfa llwith inth e
anemometric stations and the farm object of this study.

Wind farm actually grows on a h illside ridge with a
peak height equal to 136 m , while the surrounding areas
are all below that level.

The e xpected wind farm load factors is ab out 2000
hours per year.

B. Data Characteristics

In order to implement a fo recast model for wind farm
the authors have used artificial neural networks. The limit
of the neural network is often re presented by the data
quality.

The dat a (averagedi ne very 10 m inutes) were
collected by the site manager. Two wind speed sens ors
are installed at height 50 m. In case of one sensor failing,
the o ther still op erates, thus en suring con tinuous data
collection. Two wind direction sensors are in stalled at
height 50 m . The power data from each turbi ne a re
available from 28 April 2005 to March 2008.

The other data used are wind speeds data measured by
the a nemometer station CNMCA and the  network of
SIAS. Tablels howsa sum mary of t hea vailable
anemometric data.

TABLEI
SUMMARY OF WIND DATA
Sensory  Data | Acquisition|
Station Cqde Network | height| Collection  Time
(m) | Period
Mazzara del M SI AS 10 02-07 1h
Vallo
Castelvetrano CSI AS 10 02-07 1h
Trapani | ppgl Ass | 10 | 0207 th
Fulgatore
Trapani Birgi T CNMCA 10 02-06 1h
. May 05- 10°
Mast 50 Sud Vi Private 50 Dec 07
Mast 50 May 05- 10°
Nord V2 Prjvate 50 Dec 07
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First it was necessary to process the raw data in order
to d etermine th e days on which su rveys wereno t
available,t oid entifyi ncorrectdata ,to remove
days/months/years in which the number of missing data
was high. A fterwards, the time of rel iable data has been
reduced to 2 years (2005 and 2006).

Figure 2 shows that the trend of power data is similar
from 2005 to 2006 in all turbines and very different from
these in 200 7 in wind turbines T0O07, T00S, T0O09, TO 10
and TO11.
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III. DESIGN OF ARTIFICIAL NEURAL NETWORKS MODEL

Neural Networks (NN) h ave the ability to learn from
past experiences and then apply their knowledge to new
circumstances. This is p ossible th anks to the ab ility to
create areprese  ntative syste m of the m ultiple
relationships between ra ndom vari ables ofac omplex
system and a h igh ap titude to express assessments on a
regular b asis ab out ap propriate situ ations app arently
chaotic.

The process of creatinga nd eval uation of neural
systems [6] is shows in figure 3.

EXPERIMENT

ESTIMATE
MODEL

Aucca el

Fig. 3. Procedure for the creation and evaluation of neural systems

Because the available data for every year are 8760 and
the nu mber of inp uts parameters is v ariable (fro m a
minimum of 3t oam aximum of 6 )t he aut hors has
decided to use in a first step a networks with 100 neurons
and a number of iterations, in the training phase, equal to
100 [7].



By li miting the field of so-called MLP (Multi Layer
Perceptrons) i n th is st udy were tested two typ es of
models :

eModels NN ARX (Neural Netw ork Autoregressive
exogenous signal);

eModels NNA RMAX ( Neural N etwork Au to
Regressive M oving Ave rage eXosogenous
signal)

The software u tilized for the NNsm odeling was
Matlab [8].

In order to create the m odel it is also ne cessary t o
define t he set of t he t raining datato beused f orthe
"learning process". F ort he val idation oft he m odel
another set of d ata is u sed. The v alidation set tests the
ability of generalization of the network [9].

A. Training Phase

Authors used for the learni ng pro cess the dataset o f
2006. T his y ear was t he only one having the com plete
series of wind and power data.

The forecacast processing was carried out for different
time steps from 2 to 5 hours.

The performance of the NN model evaluated using the
NSSE ( Normalized Sum Sq uare Er ror) de fined by t he
equation (1):
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® Yprepiction 18 the output value from the neural
network after training;

o Y rear is the value of average power of all
training;

e 5 is the number of values of power output (8760
minus the time step).

Low values of this index imply best performances.

Table Il shows as ummary state ment for NNARX
networks f or scan ning t ime wi th 1 00 neurons, i nput
variables and time step 2-3 hours.

TABLE II
SUMMARY STATEMENT NNARX MODEL

Station Input ¢ NSSE time| NSSE time
step 2 step3
Mazara M{tV1 0,072 0,059
Castelvetrano| C-V10, 079 0,066

Trapani

Fulgatore T| F-V1 0,079 0,061
Dir 50m D-V1 0,093 0,082
SIAS M -C-TF 0,054 0,042
SIASL M -C-TF-V1 0,051 0,037
SIAS2L M -C-TF-V1-V2 0,049 0,034
SIAST2L Ml -C-TF-T-V1-V2| 0,045 0,030

It is worth noting that the higher the number of inputs the
lower the error while the use of wind direction data has a
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small influence on the NN performance. Moreover, it can
be observed that NNAR X models using both speed and
direction data at 50 m ab ove ground level (D-V1) has
higher errors that the other models running with the same
time step.

With the m odel NNARMAX have been carried out o nly
simulations f or t he networks t hat h ave given better
performance (Table I1T)

TABLE IIT
SUMMARY STATEMENT NNARMAX MODEL
Station T nput NSSE time| NSSE time
step 2 step3
SIASL M -C-TE-V1 0,050 0,039
SIAS2L M| -C-TF-V1-V2 0,046 0,038
SIAST2L M -C-TF-T-V1-V2| 0,043 0,033

Results of the training phase didn't identify a the best
model between NARX and NARMAX because the NSSE
are very similar.

The performance evaluation of neural networks, in the
training phase, is co mpleted by the comparison between
the predicted and the real output (Figure 4).

Output-P rediz_ione ) Love - '{Wf STERZ

Fig. 4. Comparison of Output-Prediction in network D -V1 and
SIAST2L time step 2 (NNARX)

Another big issue was detected in the management of
data related to null or v ery low production by the wind
farm. This is due to t he presence in the t raining set of
events with wind speed or po wer production null. This
data are ge nerally rel ated t o fai lures or not ordinary
service. T hese events are  misrepresented duri ng the
training phase of the networks [3].

B. Validation Phase

For the validation phase it was decided to use a subset
of data (speed and production) detected into 2005.

This set it was ch osen with the goal to avoid outputs
withnu Ilv alues of pro duction and witha good
correlation between power and velocity according to the
rated power curve of the turbines

Figure 5 s hows the trend o f wind p ower production
and wind spe eds i nt he pe riod bet ween 8: 00 am of
16/12/2005 and 15:00 of 19/12/2005 with 80 events per
hour.
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Fig. 5. Trend of wind power production and wind speeds
The results (two examples are shown in Figures 6 and
7) show some deficiency of the network in productivity
forecasting.
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Fig. 6. Comparison output of NNARX neural network with time step 2
and actual data
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Fig. 7 Comparison output of NNARMAX neural network with time
step 2 and actual data

It is worth noting that NNs with complex architectures
while are capable to well describe the phenomena during
the training phase, give unsatisfactory resu Its wh en run
with a new set of data [7].

Starting fro m th is assu mption, au thors tried to
optimize the model reducing its co mplexity with the aim
to find the best architecture.

C. Artificial Neural Networks with 10 Neurons

The authors have there fore decided to re peat the test
with a less complex neural network with only 10 neurons,
numbers of input more than 3 and time step less than or
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equal to 3 hours. It is exp ected that the reduction of the
complexity o fth e n etwork lead s to h igher errors in
training phasebu ttoa  better p erformanceinth e
validation phase.

Results of the NARX training phase confirmed that the
increase of the number of input had a good influence on
NSSE (Table IV).

Otherwise, this fact is not cl early represented for the
NNARMAXI1 model. (Table V).

During the training phase NSSE of both models (with
10 neurons) are very similar and higher of the equivalent
networks with 100 neurons

TABLE IV
SUMMARY STATEMENT NNARX MODEL WITH 10 NEURONES

Station I nput NSSE time| NSSE time
step 2 step3
SIASL2 10 M -C-TE-V 0,0962 0,0919
SIAS2L2 10| M-C-TF-V-V 0 0960 0,0914
SIAST2L2 100 M-C-TF-T-V-V{, 0939 0,0908
TABLEV
SUMMARY STATEMENT NNARMAX MODEL WITH 100 NEURONES
Station I nput NSSE time| NSSE time
step 2 step3
XSIASL2 10 M -C-TF-V 0,0951 0,0923

XSIAS2L2 10M  -C-TF-V-V 0,0949 0,0915
XSIAST2L2 10| M-C-TF-T-V-V|0, 0928 0,1152

For t he val idation o ft he N N aut hors ha ve used t he
same set of data used for the networks with 100 neurons.

The figures 8 and 9 show the results of NNARX and
NARMAX networks with time step 2 hours.

It can be observed that there is an improvement in the
forecast capability. In fact the fluctuations around the real
value decrease. This effectis true for all th e n etworks
investigated.
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Fig. 8. Comparison of output of NNARX neural network (10 neurons
and time step 2) and actual data
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Fig. 9 Comparison of outputs of NNARMAX neural network (10
neurons and time step 2) and actual data

In order to make a m ore detailed com parison am ong
the simulation outputs obtained by the several NN models
the normalized error wa s calculated usi ng the following
equation:

E _ YiREAL _Y}]iPREDlCTION| (2 )

iNORMALIZED
iREAL

where Y represents the energy production in the time
step.

Maximum, minimum, sum , avera ge, variance and
standard deviation val ues of't he er rors have been
calculated in o rder t o assess the performances of eac h
models. Results are given in the following tables.

Following tables show an analysis of the performances
for the different models under investigation.

TABLE VI
ANALYSIS OF THE NORMALIZED ERRORS OF NNARX MODEL 100
NEURONS WITH TIME STEP 2
SIASL] SIAS2L.2 | SIAST2L2
Max 193, 92 749,36 996,22
Min 0, 000 0,001 0,003
Sum 479, 433 1398,035 1815,404
Average 0, 147 17,924 23,274
Variance 912, 71 7963,35 14399,55
St deviation 30,211 89,238 119,998
TABLE VII

ANALYSIS OF THE NORMALIZED ERRORS OF NNARX MODEL 10
NEURONS WITH TIME STEP 2

SI | ASL2 10 | SIAS2L2 10| SIAST2L2 1
Max 47, 27 604,16 427,40
Min 0, 001 0,003 0,000
Sum 182, 252 779,731 1080,337
Average 2, 337 9,997 13,850
Variance 58, 58 4734,69 4459,46
St deviation 7,654 68,809 66,779

Itis worth no ting th at by r educing th e nu mber of
neurons, and thus the complexity of t he neural network,
the NNARX model is certainly the one that best describe
the events presenting for all cases a lowe rave rage
normalizes error (ranging from 2.34 to 13.85).
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TABLE VIII
ANALYSIS OF THE NORMALIZED ERRORS OF NNARMAX MODEL 100
NEURONS WITH TIME STEP 2

XSIAS L2 XSIAS2L.2| XSIAST2L2
Max 60, 138 761,100 1971,960
Min 0, 000 0,000 0,011
Sum 197, 363 1193,698 | 2668,408
Average 2, 530 15,304 34,210
Variance 73, 205 8042,871 | 50675,225
S deviation 8,556 89,682 225,112
TABLE IX

ANALYSIS OF THE NORMALIZED ERRORS OF NNARMAX MODEL 10
NEURONS WITH TIME STEP 2

XSI ASL2 10 | XSIAS2L2 10 | XSIATS2L2 1
Max 132, 456 469,260 926,954
Min 0, 005 0,003 0,002
Sum 285, 894 978,263 1317,276
Average 3, 665 12,542 16,888
Variance 252, 584 4046,147 11267,524
S.deviation 15,893 63, 609 106,149

Different result has been experienced for NNARMAX
model. In this case the reduction of the complexity of the
network is not au tomatically related to an improvement
of the performances. This fact is d ue to the influence of
the data set content.

D. The Effect o f Preliminary Da ta Man agement in NN
Performance

Previous resu Its sh owed th at th e wo rst p erformances
of th e NN mo dels are m ainly related to p resence of
negative values in the output of networks. These values
are g enerally related to m easured data of th e power
production near to zero. For this reason authors decided
to improve a step of analysis of raw data with the aim to
reduce the noise of i nformation processed by the neural
network.

The data with al ow ene rgy pr oduction or having a
relevant (e rror > 2 0%) dif ference form the rated power
curve have been deleted from the test set (Fig.10).
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Fig. 10 Actual and theoretical working points o f the wind farm in the
set of validation

With the new data sets derived froma more precise
filtering of raw data, network performance is significantly
improved. The avera ge norma lized error ran ges fr om
0.123 to 0.200 for networks NNARX (10 neurons) (figure
11)and from 0. 127 to 0.196 ( figure 12) for networks
NNARMAX (10 neurons).

The 12 bars reported in figures 11 and 12 represents for
cach tested model the twoe  rrors obtained by the



simulations eith er with th e original d ata set eith er with
the reduced data set (the bars with the arrow pointers).
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Fig. 11 Average nor malized errors for NNARX networks with original
and reduced data sets (with arrow pointers)
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Fig. 12 Average nor malized errors f or NNARM AX networks with
original and reduced data sets (with arrow pointers).

IV. CONCLUSIONS

The aim o fthis wo rk is sho w how artifi cial n eural
network can be utilized asato olto predict the wind
energy output using wind data not strictly related to the
plant site as i nput. On the other hand the paper showed
howi nput dataqu alitycan 1 nfluence the NN
performance.

Different co nfigurations o f NN we re generated a nd

test under several conditions. Results obtained using raw
data ap peared to be unfair in order to suggest NN as a
real prediction tool. Therefore the authors have decided to
improve the a nalysis of raw data with a new and m ore
accurate data filtering. The aim was to reduce the noise of
information processed by the neural network.
It should be stressed that the presence in the input and
output data of su bsets of i nconsistent eve nts ( not n ull
with wind speed and null energy production) hasabi g
influence on the neural network performance.

Standard deviation
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For this reason it is v ery important during the step of
validation o f data t o c onsider t he power curve of't he
turbines in order to discard data not fitting with it.

Also si ngularities deri ving from pl ant m aintenance,
grid interruption, etc. must be carefully considered.

Obviously, an or dinary maintenance plan repeated in
the several years in the same period or days, would be
"recognized" by th e network with a n egligible effect o n
final errors. On the other hand the presence of negative
output values was observed during both training and test.

These eve nts occurre d in the prese  nce of sudden
decreases in wind speed or in presence of no wind data or
no production data.

With t he ne w dat a set deri ved froma more precise
filtering of raw data, network p erformance was
significantly improved.
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