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Abstract

Consider multi–inventory systems with controlled flows and uncertain demands (disturbances) bounded

within assigned compact sets. The system is modelled as a first order one integrating the discrepancy be-

tween controlled flows and demands at different sites/nodes. Thus, the buffer levels at the nodes represent

the system state. Given a long–term average demand, we are interested in a control strategy that satisfies

just one of the two requirements: i) meeting any possible demand at each time (worst case stability) or ii)

achieving a pre-defined flow in the average (average flow constraints). Necessary and sufficient conditions
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for the achievement of both goals have been proposed by the authors. In this paper we face the case

in which these conditions are not satisfied. We show that if we ignore the requirement on worst case

stability, we can find a control strategy driving the expected value of the state to zero. On the contrary,

if we ignore the average flow constraints, we can find a control strategy that satisfies worst case stability

while optimizing any linear cost on the average control. In the latter case we provide a tight bound for

the cost.

Keywords: Inventory control, Robust control, Stochastic stability.

1 Introduction

We consider a continuous time linear multi–inventory system with controlled flows and un-

known demands (see, e.g., [1]). The controlled process matrix has more columns than rows

and is full row rank. Flows and demands are bounded within assigned polytopic sets (see,

e.g., [2, 3, 4]). The system is modelled as a first order one integrating the discrepancy be-

tween controlled flows and demands at different sites/nodes. When the discrepancy is null

we say that the controlled flows “balance” the demands. Thus, the buffer levels at the nodes

represent the system state while the controlled flows and the demands represent the vector of

controls and disturbances respectively. It makes sense to choose controlled flows as function

of the demand or of the buffer lengths. In this case we denote by control strategy such a



function.

Such systems arise in several applications, such as manufacturing [5, 6, 7, 8, 9], commu-

nications [10, 11], water distribution [12], logistics and traffic control [13].

With such systems, here and in several other works [2, 3, 4, 6, 14, 15, 16], a typical goal

is to find a control strategy that stabilizes in a robust sense (i.e., under any disturbance

realization) the state. Motivations derive from the benefits associated to keeping the state

and consequently also the inventory costs bounded.

Several authors use inventory costs to construct a performance index and then look for an

optimal [16, 17, 18] or near-optimal [19] control strategy. The idea of a performance index

and optimal control strategy is present also in this work.

Bounding polytopic sets for the controlled flows and demands have also appeared in a num-

ber of recent papers on robust network flows [20, 21, 22, 23, 24]. In particular, [21] is centered

around the idea of “adjusting” some of the variables to the outcome of the uncertainty. In

other words some variables are decided before the uncertainty realization while the rest are

decided after the uncertainty realization. Such a problem formulation is known under dif-

ferent names such as “Adjustable Robust Counterpart” (ARC) problem, “Two-stage Robust



optimization with recourse”. In many cases, the adjustable variables are expressed affinely

on the uncertainty and the problem is renamed “Affinely Adjustable Robust Counterpart”

(AARC) problem.

There are interesting connections between this paper and the notions of “adjustable vari-

ables” in ARC, AARC. For instance, the controlled flows play the role of the adjustable

variables in the ARC set up and in most cases the strategy is affine in the uncertainty as in

AARC problems.

In particular, we focus on stabilizing control strategies meeting alternatively one of the

two following requirements:

AFC Average Flow Constraints — the control strategy must return an average control

that balances the average disturbance, the latter one being a-priori known. Henceforth,

we say average control (disturbance) to mean the control (disturbance) vector averaged

over time. Intuitively, this means that the discrepancy between the controlled flows and

the demands integrated on an infinite horizon must be finite. When this happens we

also say that the controlled flows satisfy/meet the demands.

WCS Worst Case Stability — the control strategy must drive the state to a hyperbox in



finite time and keep the state within it for the rest of the time under any disturbance

realization. The hyperbox has pre-assigned dimension ε ≥ 0 and no assumption on the

average disturbance is made.

Henceforth, the sentence “the control strategy satisfies AFC (WCS)” indicates that such a

control strategy meets the first (second) requirement. Justifications for AFC derive from the

observation that contracts, long-term agreements or even physical limitations of production

machinery may fix the utilization level of the network on the long run. This immediately

translates into constraints on the average flows.

In [25], we have found conditions for a control strategy to satisfy both AFC and WCS.

This occurs only in some special cases as the obtained conditions seem to be strong. In

this paper, we impose only one of the two basic requirements at the time. In this sense,

the expression “relaxing WCS (AFC)” indicates instances where the requirement on WCS

(AFC) is disregarded. Obviously, the resulting control strategy may not satisfy WCS (AFC).

Only note that, when dealing with AFC, we will also require that the control strategy drives

the state to zero in probability. This is the same of saying that the expected value of the

state tends to zero for increasing times. When this occurs we say that the control strategy



achieves stochastic stability. We next summarize the two main results of this paper.

First, we show that if we relax WCS we can always define a control strategy that satisfies

AFC and achieves stochastic stability (i.e., it is asymptotically stable with probability one)

provided that i) the demand and the buffer levels are not correlated, and that ii) there exists

an average control internal to the bounding polytopic set that satisfy the average demand.

Second, we prove that if we relax AFC, we can find a control strategy that satisfies WCS

while optimizing a linear cost of the average control.

This paper is organized as follows. In Section 2, we describe the model. In Section 3

we recall some preliminary results. In Section 4, we study AFC while relaxing WCS. In

Section 5, we study WCS while relaxing AFC. In Section 6, we provide a numerical example.

Finally, in Section 7, we draw some conclusions.

2 Model formulation

We first introduce the multi–inventory model and then state formally the notion of WCS

and AFC. In doing this, we also discuss the underlying assumptions on the topology of the

system and on the disturbance realization. Many concepts introduced in this section can also



be found in [25].

Consider the continuous time system

ẋ(t) = Bu(t) − w(t), (1)

where x(t) ∈ R
n is the vector of the buffer levels, u(t) ∈ R

m are the controlled flows,

B ∈ R
n×m is the controlled process matrix and w(t) ∈ R

n is the vector of the demand. We

also name x(t), u(t) and w(t) simply “state”, “control” and “disturbance” respectively. To

model backlog x(t) may be negative. Also note that a negative demand can be interpreted

as a negative deviation from an expected value of w.

We assume that u and w are respectively subject to constraints

u(t) ∈ U = {u : u− ≤ u ≤ u+}, (2)

w(t) ∈ W, (3)

where u− and u+ are assigned vectors and W is a polytope. We also assume that matrix B

is “fat”, i.e., it has more columns than rows and is also full row rank.

Assumption 2.1 Matrix B is such that m > n and also rank(B) = n.

Indeed, if B is not full row rank the system is unreachable and, as we will see momentarily,

if B is square defining a strategy may become trivial.



Given a vector function of time f : R
+ → R

n we introduce the notation

Av[f ] = lim
T→∞

1

T

∫ T

0

f(t) dt (4)

to denote “the (deterministic) average” of f . Also we restrict our attention to disturbance

realizations w(t) having the property that the average Av[w] always exists and satisfying the

following assumption.

Assumption 2.2 All the possible realizations of the demands w(t) have the same determin-

istic average w̄ = Av[w] with w̄ being in the relative interior of the bounding polytopic set

W. 1

As an example, any ergodic process for w(t) satisfies Assumption 2.2.

To formalize the notion of WCS we next define balancing and ε-stabilizing control strate-

gies.

Definition 2.1 The function Φ : R
n → R

m is a static balancing strategy if for u(t) = Φ(w(t)),

Bu(t) = w(t),

and u(t) ∈ U , for all w(t) ∈ W, for all t ≥ 0.

1we mean that w̄ is an interior point of W with respect to the smallest linear subspace including it, for instance given a

vector v �= 0, 0 is in the relative interior of a segment joining v and −v



The fact that, for m = n, the only static balancing strategy is trivially u(t) = B−1w(t)

justifies Assumption 2.1.

When, a static balancing strategy is applied, we have ẋ(t) = 0 for all t ≥ 0 and therefore we

refer to this scenario as the static case/problem. Then, theoretically, the buffer level remains

bounded since the controlled flows meet the demand at each time. However, this is not a

feedback strategy and the resulting system is not stabilized as infinitesimal measurements

errors on w(t) may cause buffers overflow. Actually, our ultimate goal is solving the dynamic

problem of steering the system buffer to the neighborhood of a prescribed level. To this end,

we introduce the following definition.

Definition 2.2 Given ε > 0 and a reference value x̄, an ε-stabilizing strategy is a feedback

control strategy u(.) for which there exists a continuous positive function ψ(t), monotonically

decreasing and converging to 0 as t → ∞ such that for all w(t) ∈ W and for all x(0), the

conditions u(t) ∈ U and

‖x(t) − x̄‖ ≤ max{‖x(0) − x̄‖ψ(t), ε}

hold true.

With in mind the definitions of balancing and ε-stabilizing control strategy, we can now



state formally the notion of WCS.

Definition 2.3 We say that a strategy satisfies WCS if it is balancing in the static problem

or it is ε-stabilizing in the dynamic problem.

It is left to state formally the notion of AFC. On this purpose, let us consider the system

behaviour on the long run. If we assume that conditions (6) or (7) hold true, and if we apply

either a balancing or an ε-stabilizing strategy for any pre-assigned ε > 0, then the state x(t)

remains constant or bounded and this implies, in turn, that (after integrating (1))

lim
T→∞

1

T

∫ T

0

[Bu(t) − w(t)] dt = lim
T→∞

1

T
[x(T ) − x(0)] = 0.

The latter means that the average control balances the average demand, that is,

B Av[u] = Av[w]. (5)

Now, because of the assumption on B fat, given an average demand w̄, multiple controls ū

exist satisfying the property Bū = w̄. Then we wish to find a control strategy u(t) such that

ū = Av[u(t)]. Roughly speaking, AFC consist in selecting a-priori a desired value for ū and

looking for a control strategy that returns an average control equal to such a value, whenever

Av[w] = w̄ ∈ W. For sake of simplicity we can assume that the average demand is null:



Assumption 2.3 We assume that the average demand is w̄ = 0.

The above assumption is not restrictive as we can always translate the variable w. Then, we

can formalize the notion of AFC as follows.

Definition 2.4 We say that a strategy satisfies AFC if it is such that whenever Av[w] = 0

then Av[u] = 0.

3 Preminary results

We report the necessary and sufficient conditions for the existence of balancing or ε-stabilizing

strategies present in the literature [3].

Theorem 3.1 Given system (1) with polytopic bounding sets (2) and (3),

i) there exists a static balancing strategy as in Definition 2.1 if and only if

W ⊆ BU ; (6)

ii) for any ε > 0, there exists a feedback stabilizing strategy as in Definition 2.2 if and only

if

W ⊆ int{BU}. (7)



The following result shows necessary and sufficient conditions for a control strategy to

satisfy both WCS and AFC [25]. Let us denote by w(r) with r ∈ Ext{W} any vertex of the

polytopic set W. To be more precise, Ext{W} is the set of indices of all vertices of W.

Theorem 3.2 [25] There exists a strategy which satisfies both WCS and AFC if and only if

there exists a matrix D ∈ R
m×n such that

BD = I (8)

u− ≤ Dw(r) ≤ u+, r ∈ Ext{W}. (9)

In the static case, the theorem also shows that the balancing control strategy is linear

u(t) = Dw(t). (10)

In the dynamic case, the ε-stabilizing control strategy is obtained after some mathematical

manipulations which we report in the remaining part of this section. Complete matrices B

and D with matrices C and F such that

⎡
⎢⎢⎢⎢⎢⎣
B

C

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣
D F

⎤
⎦ = I. (11)



Consider the augmented system

ẋ(t) = Bu(t) − w(t)

ẏ(t) = Cu(t).

(12)

Consider the new variable z(t) defined as

z(t) =

⎡
⎣
D F

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣
x(t)

y(t)

⎤
⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎣
x(t)

y(t)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
B

C

⎤
⎥⎥⎥⎥⎥⎦
z(t).

The augmented system becomes

ż(t) = u(t) −Dw(t). (13)

It is decoupled in its state variable, then componentwise we have

żi(t) = ui(t) −Diw(t), (14)

where Di the ith row of D and u−i ≤ ui ≤ u+
i . On the basis of such a decomposition in [25]

we have proved that a possible ε-stabilizing strategy is

ui(t) = sat[u−
i ,u+

i ][−κzi]



where κ > 0 and

sat[u−
i ,u+

i ][ξ]
.
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−i if ξ > u+
i

u+
i if ξ < u−i

ξ if u−i ≤ ξ ≤ u−i

.

Finally, we derive a (discontinuous) switching ε-stabilizing strategy y letting κ→ ∞.

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−i if zi > 0

u+
i if zi < 0

0 if zi = 0

. (15)

4 Average flow constraints and stochastic stability

In this section, we show that if we relax WCS we can always find a strategy that satisfies AFC

and achieves stochastic stability. We recall that the system is almost surely asymptotically

stable if x(t) → 0 with probability one [26].



Then, let us relax the conditions of Theorem 3.1 or 3.2 by simply assuming as follows.

Assumption 4.1 Assume that 0 ∈ int{BU}.

Note that the validity of just one from conditions (6) or (7) or (9) implies 0 ∈ int{BU} but

not viceversa.

Only for this section, we need to make the following additional assumption.

Assumption 4.2 The demand w(t) is a mean ergodic stochastic process and it is not cor-

related with the buffer levels.

The above assumption implies that, at each time, the expected value of w coincides with the

long term average, i.e., E[w] = Av[w] = w̄, and that E[xTw] = 0.

Note that in principle this is a restriction since the demand might be actually affected

by the buffer levels (for instance a customer can choose a supply node or another based on

their congestion state). However, in many situations the assumption is quite reasonable.

This assumption is reasonable whenever the customers have no information on the state of

suppliers. This situation occurs as an example at the retailer level, where the final customer

typically has no idea about the retailer’ inventory position.

The next result concerns the stochastic stability of the system.



Theorem 4.1 Under Assumptions 2.1-4.2, there exists a control strategy such that the sys-

tem is asymptotically stable with probability one. Furthermore, such a strategy satisfies AFC.

A possible control is

u = arg min
u∈U

xTBu. (16)

Proof. The condition 0 ∈ int{BU}, implies that for x 	= 0

min
u∈U

xT

‖x‖Bu ≤ −β

for some β > 0. Consider the Lyapunov function V (x) = xTx/2. The expected value of the

derivative is

E[V̇ ] = E[xTBu] + E[xTw] = E[xTBu] ≤ −β‖x‖,

which implies stability with probability one (see for instance [26]). The proposed strategy

does imply stochastic stability but it does not satisfy necessarily AFC. To enforce AFC we

can use the decomposition (14) of (13)

żi(t) = ui(t) − δi(t),

where δi(t) = Diw(t), where now Di is the ith row of any matrix D satisfying (8) but not

necessarily (9). Note that E[δi] = DiE[w(t)] = 0. If we consider the Lyapunov function z2
i /2,



we see that the control u(t) obtained from (16) is equivalent to the control (15). This means

that the zi subsystem is stable with probability one. Then,

1

T

∫ T

0

[ui(t) − δi(t)]dt→ 0 ⇒ 1

T
[x(T ) − x(0)] → 0,

with probability one.

�

Control (16) generalizes the results proposed in [25]. There, we define a linear strategy

only for the situations in which a matrix D exists that satisfies all the constraints (9). Here,

we drop this restrictive requirement onD and, indeed, we obtain a control (16) that in general

is not linear but can be applied to a greater class of systems. As a side effect, we also get a

complexity reduction in the computation of D.

It is interesting to note that, as long as we are able to characterize the statistics of the

input δ and to characterize the variance of the variable z, we can estimate the variance of

variable x as follows

E[‖x‖2] = E[‖Bz‖2] ≤ ‖B‖2E[‖z‖2] = ‖B‖2
∑

i

E[‖zi‖2].

The values E[‖zi‖2] can be computed easily from the analysis of the single dimensional process

zi(t) under quite general assumptions on the type of signals δ. Note also that E[‖z‖2] is



affected by E[‖δ‖2], and then it makes sense to optimize the choice of the augmenting matrix

D in order to minimize the variance of δ = Dw if we assume that the covariance matrix

E[wwT ] = W is known. Indeed we have

trE[δδT ] = tr[DwwTDT ] = tr[DWDT ].

Then we can choose D by solving the linear quadratic problem

min tr[DWDT ], s.t. BD = I.

5 Worst case stability and optimal average control

In this section we show that if we relax AFC, then we can find a control strategy satisfying

WCS while optimizing a linear cost of the average control. Differently from the previous

section, we now need condition (6) or (7) to be valid whereas we can disregard Assumption

4.2. Also, we can dispense with mentioning explicitly Assumption 4.1, as the latter is trivially

implied by condition (6) or (7) and Assumptions 2.2-2.3.

Given a vector cT = [c1 . . . , cm], we wish to minimize the linear cost

J = cTAv[u].

Let us start by considering the static case. It is reasonable that to minimize the cost we have



to choose u(t) as function of w(t) according to the following optimal criterion

u = arg min
u∈U

cTu s.t. Bu− w = 0.

Trivially, this is the optimal balancing strategy.

In the following, we show how to estimate the worst case cost. For each vertex w(r) with

r ∈ Ext{W}, consider the minimum balancing flow

u(r) = arg min
u∈U

cTu s.t. Bu− w(r) = 0. (17)

Define

J∗ = max∑
r∈Ext{W} αr=1, αr≥0

∑
r∈Ext{W}

αr(c
Tu(r)) s.t.

∑
r∈Ext{W}

αrw
(r) = 0. (18)

Then we have the following result.

Theorem 5.1 Under Assumptions 2.1-2.3 and condition (6), we have that the optimal bal-

ancing strategy is such that

J = cTAv[u] ≤ J∗

Moreover the bound is tight, namely for any ε > 0 there exists w(t) such that J > J∗ − ε.



Proof. For all w(t) ∈ W we write

w(t) =
∑

r∈Ext{W}
αr(t)w

(r), αr ≥ 0,
∑

r∈Ext{W}
αr = 1.

Here, with a little abuse of notation, the coefficients αr(.) with r ∈ Ext{W} depend on time

t. Owing to condition (6) an optimal balancing strategy Φ(w) exists (remind Φ(w) balancing

means that BΦ(w)−w = 0 for all t ≥ 0) and at a generic time t can be chosen according to

J1 = min
u∈U

cTu, s.t. Bu =
∑

r∈Ext{W}
αrw

(r).

The value u =
∑

r∈Ext{W} αru
(r) is a feasible solution of this problem. Since J∗ is achieved

by maximizing over the αr the instantaneous cost is J1 ≤ J∗ and therefore the average

J = cTAv[u] ≤ J∗.

To prove that the bound is tight, consider the values α∗
r which solves the maximization

problem (18) and the following T–periodic demand piecewise constant in intervals of length

Ti = α∗
rT

w(t) = w(r),

r−1∑
i=0

Ti ≤ t ≤
r∑

i=0

Ti, r ∈ Ext{W}.

Note that Av[w] = 0. The optimal cost is necessarily achieved by applying u(r) in any interval,

but this turns out to be J∗.

�



It is worth pointing out (for reasons that will be clear later) what follows.

Remark 5.1 The long term cost remains unchanged if we replace the constraints Bu(t) −

w(t) = 0 by the constraint Bu(t) − w(t− τ) = 0. for any fixed τ > 0.

To handle the dynamic problem we consider a sampled–data strategy in which u(t) = u(k),

t ∈ [kτ, (k + 1)τ) [2]. Denote by x(k) = x(kτ), w(k) =
∫ (k+1)τ

kτ
w(σ) dσ, and obtain

x(k + 1) = x(k) + τBu(k) −
∫ (k+1)τ

kτ

w(σ) dσ

= x(k) + τBu(k) − w(k)

and note that w(k) ∈ W. Then introduce the new variable

x̃(k + 1) = x(k) + τBu(k)

and again note that x(k)− x̃(k) = −w(k−1). Let ρ be such that W is inside the ρ–ball, i.e.,

‖w‖ ≤ ρ for all w ∈ W. Then, depending on whether ‖x(k)‖ > τρ or ‖x(k)‖ ≤ τρ choose

u(k), respectively, as

u(k) = arg min
u∈U

‖x(k) + τBu‖ (19)

or as

u(k) = arg min
u∈U

cTu s.t. τBu+ x(k) − x̃(k) = τBu− w(k − 1) = 0. (20)



We next prove that this strategy is i) robust stabilizing as it drives the state to the ball of

radius τρ and, once the state is in the ball ii) is optimal as it compensates at each interval

the demand of the previous interval with the minimum balancing flow. The challenging and

original part of the proof is the second one, as to prove the first result we can simply refer

to [2].

Theorem 5.2 Under Assumptions 2.1-2.3 and condition (6), strategy (19,20) is ε-stabilizing

with ε = τρ and guarantees an average cost J ≤ J∗.

Proof. The fact that the strategy drives x(k) to the ball of radius ε = τρ has been proven

in [2].

Let us consider the following delayed cost

JD = minu(t)∈U cTAv[u]

s.t. Bu(t) − w(t− τ) = 0

(21)

and according to Remark 5.1 we have JD ≤ J∗. Consider the next problem

JR = minu(t)∈U cTAv[u]

s.t.
∫ (k+1)τ

kτ
[Bu(t) − w(t− τ)]dt = 0,

k = 0, 1, . . .

(22)



and note that since the constraint of this new optimization problem is a relaxed version of

(21) we have JR ≤ JD. On the other hand, the integral constraint of (22) is equivalent to

∫ (k+1)τ

kτ

Bu(t)dt− w(k − 1) = 0.

Thus the optimal solution of problem (22) is constant in each interval [kτ, (k+1)τ ] and turns

out to be (20) which therefore provides a cost J = JR ≤ JD ≤ J∗.

�

Remark 5.2 The bound J∗ is tight for the optimal strategy (19,20). To prove this fact,

consider a long discrete–time interval partitioned in sub-intervals, that are proportional to

the α∗
r . On each sub-interval define a constant demand equal to a vertex of W and apply

the result of the above theorem. It is trivial to see that, the longest the discrete interval the

closer JR and JD come to J∗.



6 Example

The proposed investigation method can be applied to high dimensional systems without

particular problems since it is based on a standard and efficient algorithm. For the sake of

comprehension, we consider the very simple example proposed in [25]

ẋ(t) = v1(t) + v2(t) − d(t)

with

0 ≤ v1 ≤ 5, 0 ≤ v2 ≤ 3, 1 ≤ d ≤ 7

with Av[d] = 4. Consider the nominal values

v̄1 = 3.5, and v̄2 = 0.5

as assigned desired average values for the two inputs. Define u1 = v1 − v̄1, u2 = v2 − v̄2 and

w = d− d̄. Then the feasible flows and demand are

−3.5 ≤ u1 ≤ 1.5, − 0.5 ≤ u2 ≤ 2.5, − 3 ≤ w ≤ 3

and Av[w] = 0. The set of feasible flows is the rectangle (solid line) A-D-F -L displayed in

Fig. 1. Segments NB and GE include all feasible flows that balance the minimum demand

w = −3 and the maximum demand w = 3 respectively, i.e., u1 +u2 = ±3. Also, the segment



HC is the set of feasible flows that balance a demand w = 0. It is easy to see that there no

exist any matrix D that satisfies the conditions of Theorem 3.2 and therefore, according to

the theory developed in [25], this average flow ū = 0 is not achievable. In other words, there

are realizations of w with Av[w] = 0 that cannot be compensated by flows with 0-average.

Indeed all the achievable averages are in the dotted polygon B-E-G-N in Fig. 1. Given the

fact that ū = 0 is not achievable, we can either achieve stochastic stability by guaranteeing

the 0–average or optimize an average linear flow cost.

To achieve stochastic stability consider the following augmentation

⎡
⎢⎢⎢⎢⎢⎣
B

C

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 1

μ ν

⎤
⎥⎥⎥⎥⎥⎦

whose inverse is

⎡
⎢⎢⎢⎢⎢⎣
B

C

⎤
⎥⎥⎥⎥⎥⎦

−1

=
1

μ− ν

⎡
⎢⎢⎢⎢⎢⎣

−ν 1

μ −1

⎤
⎥⎥⎥⎥⎥⎦



The system is equivalent to

ż1(t) = u1(t) + −ν
μ−ν

w(t)

ż2(t) = u2(t) + μ
μ−ν

w(t).

(23)

It is easy to see that the set of all vectors of the form

⎡
⎢⎢⎢⎢⎢⎣

−ν
μ−ν

μ
μ−ν

⎤
⎥⎥⎥⎥⎥⎦
w =

⎡
⎢⎢⎢⎢⎢⎣

−ν/μ
1−ν/μ

1
1−ν/μ

⎤
⎥⎥⎥⎥⎥⎦
w, w ∈ [−3, 3]

is a 0–symmetric segment (see the dash-dot segments in Fig. 1). No matter how μ and ν are

taken, such a segment is never included in the rectangle defining the constraints for u1 and

u2. This last consideration is in agreement with the fact that the augmented system cannot

be stabilized in the worst case. Indeed it can be shown that the extrema of this interval

are on the lines including segments NB and GE and that if one of the extrema is inside

the rectangle of feasible flows A-D-F -L the other one is outside. However both equations

in (23) can be written in the form żi = ui + δi. Since E[w] = 0, we have E[δi] = 0, and so

the system can be stabilized in the stochastic sense with the provided control. Note that if

z1(t), z2(t) → 0 (or they are bounded), then y(t) → 0 and x(t) → 0 (or they are bounded),



so we have

1

T

∫ T

0

(μu1 + νu2)dt =
1

T
[y(T ) − y(0)]dt→ 0

namely

μAv[u1] = −νAv[u2]

Repeating the same argument for the variable x we have

Av[u1] + Av[u2] = Av[w]

so that for Av[w] = 0 we are actually achieving the desired average values (0, 0) for u. This

condition is stochastically assured. Note that if, as a special case, we choose μ = 1 and

ν = −7 (or any proportional value), then the possible average values of v1 and v2 turn out

to be proportional to the desired values 3.5 and 0.5 (even when Av[w] 	= 0). This fact is

interesting if the values 3.5 and 0.5 come out from a “desired workload partition” between

the arcs 1 and 2 (in the sense that arc 1 should be loaded 7 times as much as arc 2).

We simulated the transient assuming μ = 1 and ν = −7 and the buffer in an initial

condition of backlog x(0) = −3. In Fig. 2 we show the transient of variables x and y.

Note the initial undershoot of variable y caused by a “mismatch” from the desired workload

partition between u1 and u2. Indeed, both controls initially saturate to fix the backlog. Fig.



3 reports the finite–time average values Avt[ui] := (
∫ t

0
ui(t)dσ)/t. There, observe that the

aforementioned mismatch is eventually recovered, y bounded, while the averages values of u1

and u2 converge to zero.

Figures 2 and 3 have a different time scale since the transient of the average of u1 and

u2 is slower than the transient of x and y. The final ripples are a well known effect of the

discretization.

Let us now, retain worst case stability and optimize the average. On this purpose, first,

consider the case where the state is within the ball of radius τρ, ‖x(k)‖ ≤ τρ, and the

control compensates at each interval the demand of the previous interval according to (20).

Distinguish between the two opposite cases where u1 has a (unitary) cost lower/greater than

u2. Denote by cT = [c1 c2] and refer to Fig. 1. If c1 < c2 then the level surfaces for the linear

cost cTu = K, where K is a parameter, are parallel to line a. If w(k − 1) = 0, then line

HC is the set of feasible flows for (20), namely satisfying τBu− w(k − 1) = 0. In this case,

minimizing according to (20) corresponds to translating the surface level until we intersect

the extreme point C of HC which represents the minimum. If we repeat the same procedure

when demand is minimum, w(k − 1) = −3 or maximum, w(k − 1) = 3, the set of feasible



flows is described by line NB and GE and the corresponding minima are points B and E

respectively.

It is easy to see that for any w(k − 1) ∈ W minimization (20) returns all points of line

BD, if 1 ≤ w(k − 1) ≤ 5 and DE if 5 ≤ w(k − 1) ≤ 7.

Consider the opposite case where c1 > c2. Then the level surfaces are parallel to line

b and minimization (20) returns all points of line NL, if 1 ≤ w(k − 1) ≤ 3 and LG if

3 ≤ w(k − 1) ≤ 7.

It is left to consider the case where ‖x(k)‖ > τρ, and the state is driven into the ball

of radius τρ in finite time under control (19). It is easy to see that depending on whether

x(k) < 0 or x(k) > 0, the optimal control (19) spans the triangle A-B-N and E-F -G

respectively. Finally, observe that the cost for driving the state into the ball in finite time

does not affect the long-term average cost.

7 Conclusions

In a recent paper [25] we have provided necessary and sufficient conditions for achieving

simultaneously worst–case stability and average flow constraints. This work studies the case



where the aforementioned conditions are not valid. We answer to the question whether at

least one between worst–case stability or average flow constraints can be still guaranteed. For

this reason this work represents a continuation of [25]. Along this line of research, at least two

other issues draw our attention for the near future: i) the specialization of LMI techniques

to multi-inventory applications (see, e.g., the recent work [27]), and ii) the adaptation of

randomized algorithms [28] to the robust optimization of inventory control strategies.
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List of Figures

• Fig. 1 Set of feasible flows (solid rectangle A-D-F -L); surface levels for c1 < c2 and c1 >

c2 (lines a and b respectively); set of feasible flows balancing minimum and maximum

demand, w = ±3, (segments NB and GE); set of feasible flows that balance a demand

w = 0 (segment HC); achievable averages (points in the dotted polygon B-E-G-N).

• Fig. 2 The evolution of variables x (plain) and y (dashed).

• Fig. 3 The evolution of the average of u1 (dashed) and u2 (plain).
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