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ABSTRACT

Wind energy evaluation is an important goal in the conversion of energy systems to more environmen-
tally friendly solutions. In this paper, we present a novel approach to wind speed spatial estimation on
the isle of Sicily (Italy): an incremental self-organizing neural network (Generalized Mapping Regressor
- GMR) is coupled with exploratory data analysis techniques in order to obtain a map of the spatial dis-
tribution of the average wind speed over the entire region.

First, the topographic surface of the island was modelled using two different neural techniques and by
exploiting the information extracted from a digital elevation model of the region. Then, GMR was used for
automatic modelling of the terrain roughness. Afterwards, a statistical analysis of the wind data allowed
for the estimation of the parameters of the Weibull wind probability distribution function. In the last sec-
tions of the paper, the expected values of the Weibull distributions were regionalized using the GMR neu-

Sicily ral network.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction and state of the art

The increasing demand for energy, coupled with the shortage of
traditional energy sources, has accelerated the research efforts of
the scientific and industrial world towards the efficient exploita-
tion of renewable sources of energy. Knowledge of the spatial dis-
tribution of wind speed is essential for assessing the energy output
of a regional wind energy conversion system. The use of wind en-
ergy in Sicily today shows promising potential due to the large
availability of the resource and the many political and economic
opportunities. The potential benefits of a reliable wind speed pre-
diction and mapping model are obvious in wind power generation;
however, there are many cases in which wind data do not exist for
a particular area, but a quick assessment of wind potential is
needed.

At present, when wind data are not available for a particular
site, the selection of the wind farm site relies on data from the
nearest measuring station and on a wind flow analysis that takes
into account the topography and the roughness level of the sur-
rounding land. However, these calculations may result in signifi-
cant errors in estimating the wind speed, which lead to even
higher errors in energy estimation, especially over complex ter-
rains [1]. A short but effective review of the existing approaches
for wind resource estimation has been performed by Landberg
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et al. [2]. One of the approaches often used in estimating the wind
resource at a site is the measure-correlate-predict (MCP) method
[3], which uses a short measuring campaign at the site and then
correlates these measurements with an overlapping time series
of another site using simple statistical models. However, these
models usually overestimate or underestimate the wind potential.

Several physical models based on the use of weather data have
also been developed for wind speed forecasting and wind power
predictions [4]. These advanced numeric weather prediction
(NWP) models have the potential to improve the modelling of
wind flow, particularly in complex terrain. However, since they
are very complex, they are usually run on supercomputers, which
limit their usefulness for the on-line or very-short-term operation
of power systems. Other methods use global databases of meteoro-
logical measurements or atmospheric mesoscale models, but they
require large computational systems in order to achieve accurate
results [2].

The numerical codes for wind field modelling over rough terrain
are generally divided into two types [5]: dynamic models (also
called prognostic) and kinematic models (also called diagnostic).
The first ones are based on the solution of a full set of time-depen-
dent environmental fluid mechanics equations. The second gener-
ate a wind field by satisfying some physical constraints [6,7]. In all
of these cases, the first step is to estimate the mean value of the
wind speed that is expected at a site and afterwards to estimate
the wind energy that a proposed wind farm would produce in an
average year.
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The task addressed by this paper is the spatial interpolation and
mapping of wind data that is representative of the yearly wind re-
gime of the investigated region. The topic of temporal forecasting
of the wind time series was not dealt with in this work. Forecasting
of wind turbine power outputs in Sicily, despite being an important
and interesting topic, was also not approached in this paper be-
cause of the lack of data about wind farm power outputs.

In this paper, we describe the application of a novel integrated
approach in which different techniques are used for spatial wind
speed estimation above a complex terrain surface such as that of
Sicily. The task of this work is twofold: to supply the regional en-
ergy planners with a useful tool for choosing the site of wind farms
and to present a general methodology that can be applied in any
other regional context to achieve the same goal. The approach ap-
plied in this paper is different than the ones described above: it is a
typical data-driven approach, essentially based on the use of artifi-
cial neural networks (ANNSs). This means that no physical or math-
ematical law connecting the variables at hand is used, because the
model lets the data “speak for themselves”, or, in other words, the
learning process is based on the data themselves. ANNs have been
widely used in different fields including pattern recognition,
approximation, and time series prediction. Nowadays they are also
widely used for spatial data interpolation in an attempt to over-
come some of the limitations of more traditional spatial analysis
methods. A sufficiently wide, though not exhaustive, overview of
some of the neural, geostatistical and hybrid models used for
space-temporal wind forecasting was already provided in the pa-
per by Cellura et al. [8]. The most commonly used neural model
is the multi-layer perceptron (MLP) network, but other models
such as radial basis functions (RBF), counter-propagation neural
networks (CPNN) and hybrid models have also been used. ANNs of-
fer the advantage that they contain no critical assumptions about
the nature of the spatial data to be processed and are well suited
to process noisy and non-linear data manifolds, which is the type
of data generated in environmental studies.

2. Theoretical background

ANNs consist of numerous simple processing units (called neu-
rons) that we can globally program to learn the underlying rela-
tions contained in the data. For this reason, in order to correctly
model the studied system, neurons need to be trained with a train-
ing set (TS), which must be representative of the intrinsic dynamics
of the system. In the following sections, a brief description of the
main neural techniques used in this work will be provided, and
the reader is forwarded to the cited references for deeper
investigation.

2.1. Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [9] is a very powerful
data analysis method, conceived to extract relevant information
from data. This method makes it possible to determine the so-
called intrinsic dimension of a data set, i.e., the smallest number
of variables that are needed to describe the set of data without
any significant information loss. CCA is a self-organizing neural
network able to provide revealing low-dimensional mapping of a
high-dimensional and non-linearly-related data set. In summary,
the algorithm proceeds to a global unfolding followed by a local
projection onto the average manifold of the data (Fig. 1). Let us
consider an input consisting of Ny samples belonging to some p-
dimensional manifold, embedded in an n-dimensional input space
X={xp}i=1...Ngy, k=1,...,n

If the data set comes from a non-ideal process, it is generally
noisy and the manifold has some “thickness”, being thus also of

dimension n. The aim of the CCA is to find the underlying manifold
of data (the average manifold) and to map it onto a p-dimensional
output space Y. In order to do this, the algorithm uses N, neurons
with n-dimensional input weights and p-dimensional output
weights. The Euclidean distances Xj; = d(x;, X;) between all of the in-
put vectors x; are considered. CCA forces the distances Yj; = d(yi y;)
between the corresponding output vectors y; to match X for each
possible pair (i, j). This is accomplished by minimizing a cost func-
tion [11].

In order to check the preservation of the topology of the CCA
projection, it is possible to use a representation that is called “
dY-dX”. It consists of the joint distribution of input and output dis-
tances between pairs of neurons. For each possible pair of neurons,
a point is plotted on the dY-dX plane, where dX is the distance be-
tween the neurons on the input layer, and dY is the distance be-
tween the corresponding neurons on the output layer. In a
topology preserving mapping, dY should be proportional to dX, at
least for small dY distances. In this representation, a locally correct
mapping is shown by a straight line with a slope equal to one near
the origin of the axes. On the other hand, strong unfolding is re-
vealed by curvature and spreading of the points plotted on the
dY-dX plane.

2.2. The Generalized Mapping Regressor: a short description

The Generalized Mapping Regressor (GMR) is an incremental
self-organizing neural network with chains (second layer weights)
among neurons. It transforms the mapping problem into a pattern
recognition problem by working in the augmented space, where
vectors are created by attaching the corresponding output vector
to the input vector. In the augmented space, the branches of the
function or the relation that one wants to approximate become
clusters that have to be identified by GMR.

The algorithm is here described in a qualitative way (it is de-
tailed in [12]). It consists of four phases: training, linking, merging,
and recall.

The algorithm EXIN SNN [13] is used for the training; it recovers
the augmented space by either creating neurons or adapting their
weights according to the novelty of the input data. This novelty is
quantified by a threshold, called vigilance threshold (p), which
determines the resolution of the modelling. The neurons created
after the first epochs (i.e., presentations of the whole TS to the net-
work) are called object neurons (coarse quantization). Subsequently,
the data are labelled according to the nearest object neuron. In the
following epochs (fine quantization), as many EXIN SNNs as objects
are trained by using data with the same label as the TS. A pool of
neurons (final neurons) is found. Once trained, all data are rela-
belled according to the nearest final neuron (based on a smaller
vigilance threshold than in the case of coarse quantization). The
set of all data labelled according to the same neuron are defined
as the neuron domain.

The next phase is the linking phase. Linking neurons is accom-
plished by computing the second layer weights, which are discrete
and equal to zero in the absence of a link. A link is computed at the
presentation of each datum of the TS. Originally, this computation
was based on the requirement that connected neurons must ap-
proach the direction (called linking direction, LD) of the vector con-
necting the input vector to the weight of the winning' neuron in
the augmented space [13,14]. At each presentation of an input vector,
the neurons that are candidates to be linked to the winning neuron
are sought inside a hypersphere centered on the winning neuron
whose radius is equal to d times the distance between the input vec-
tor and the winning neuron. Alternatively, it is possible to choose in

1 That is, the neuron whose weight vector is the closest to the input vector.



886 M. Beccali et al. / Applied Energy 87 (2010) 884-893

VECTOR

QUANTIZATION

X

4

LOCAL
PROJECTION

-0
~-
~-

(_H H_J
X, . X,

Vi o Y,

Fig. 1. Principle of the CCA algorithm. The input weights first proceed to a vector quantization [10] of the input data space (X) in n dimensions. Then, the output weights
project the input average manifold onto an output representation space (Y) of dimension p <n. Here a two-dimensional mapping of a text which is folded in a three-
dimensional space is done. In practice this algorithm reveals the underlying submanifold of a data set through “unfolding” and dimension reduction, leading to the concept of

CCA.

advance the number of candidates k (k-Test). Hence, this linking car-
ries directional information driven by the input data in order to
determine both the position and the shape of the mapping branch
(cluster). However, because the TS is always noisy and the input data
can be placed everywhere around the neuron, the linking direction
does not sufficiently represent the branch shape. A better technique,
which exploits the domain principal directions (PDs), is also em-
ployed [12]. For each datum, the weights are sorted according to
the Euclidean distance from the datum, and the winning neuron is
determined. This one is then linked to another neuron chosen in a
subset of the neuron pool (candidate neurons). Two criteria have been
implemented for determining the subset. The first (5-BnB) considers
only the neurons included in a hypersphere centred on the data
cloud whose radius is a multiple (defined a priori by a linking factor)
of the distance between the input and the winner weight vectors.
The second (k-BnB) considers only the k nearest neighbours of the
input. In the latter criterion, the value of k has to be defined in ad-
vance. Then, for each candidate, the absolute value of the scalar
product between its PD and the winner’s PD is evaluated. The winner
is linked to the candidate yielding the maximum scalar product (i.e.,
the candidate whose PD is closest in direction to the winner’s PD).
However, this kind of linking is not flexible with respect to noise.
In the paper by Cirrincione et al. [12], the authors present a different
linking algorithm that is more suitable for noisy databases.

In the merging phase, GMR checks whether different objects are
linked. If they are, the objects are merged. The recall phase replaces
the neurons in the reduced manifold with Gaussians representing
the domain. Their parameters are estimated by the maximum like-
lihood (ML) technique. Simple tests and a Gaussian kernel interpo-
lation determine all of the possible outputs of the network.

3. Case study: wind speed spatial estimation

The data used for the study are represented by the hourly mean
values of wind speed at 10 m above the ground level (a.g.l.), re-
corded at 29 different anemometric stations spread out on the
Sicilian territory.

Fig. 2 shows the locations of the 29 anemometric stations
marked with small squares. The data from the Fiumedinisi station
were used only for validation of the obtained results.

3.1. Topography model

The base information for the modelling operation described in
this section is represented by a digital elevation model (DEM) of

the region with a sampling interval? of 30 m. In order to obtain
the TS for the neural model of the terrain surface, a regular mesh
of square elements with a cell size of 850 m was generated. This
mesh was superimposed onto the DEM and the geographic coordi-
nates (Easting and Northing) of its nodes were automatically
extracted.

The approximation of the land surface of Sicily was obtained by
following a hierarchical approach; the first level is represented by a
pre-processing phase, and the second level consists of the actual
modelling.

During the pre-processing phase, the data (namely, the three-
dimensional vectors whose components are the Easting, Northing,
and Elevation of each point of the mesh) were first linearly normal-
ized within the interval [0, 1] and then clustered by following a
neighbourhood criterion, implemented through the utilization of
a self-organizing map (SOM). SOMs are a particular kind of NN
used for data clustering purposes [15]. Each neuron of a SOM is
represented by a weight vector (prototype vector or codebook vec-
tor) whose dimension is the same as the dimension of the input
vectors.

Several SOMs were tested and the obtained results were evalu-
ated on the basis of the Davies-Bouldin (D-B) cluster validity index
[16]. The chosen map was a sheet shaped SOM with a rectangular
grid, and it was made up of 100 neurons. The k-means partitive
clustering algorithm [17] was implemented on the prototype vec-
tors of the trained SOM. The algorithm was applied repeatedly,
with the number of clusters ranging from 2 to 20 (a reasonable
number in the framework of our application), and the correspond-
ing trend of the D-B index was observed. As the partition realized
by the k-means algorithm is not unique, the algorithm was run 20
times for each fixed value of the number of clusters, and for that
value the chosen partition was that with the minimum quantiza-
tion error, defined as:

N
Eg =[x — my|| (1)
i=1

where m; is the weight vector associated with the winning neuron
for the input vector X;, and ||-]| indicates the Euclidean distance.
The chosen cluster configuration identified six clusters. The ob-
tained clusters are represented in Fig. 3, along with the neurons of
the trained SOM. Fig. 4 shows the value of the D-B index as a func-

2 The sampling interval of the DEM represents its level of detail (resolution), which
is related to its cell size.
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Fig. 2. Locations of the anemometric stations that supplied the wind data used for the study.
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Fig. 3. Representation of the six clusters obtained by using a SOM with rectangular
grid made up of 100 neurons (the coordinates of the plotted grid points are the de-
normalized ones).

tion of the number of clusters and a schematic representation of
the clusters in which the prototype vectors of the SOM were subdi-
vided through the k-means algorithm.

Using the points belonging to each of the six clusters, a different
GMR was trained. In this case, the data were normalized in the
interval [-1, +1] before training.

Fig. 5a and b shows the results of the linking phase obtained in
the parts of the region corresponding to clusters 1 and 6, and to
clusters 2, 3, and 5, respectively. The PD method with k=4 was
used as the linking method. In the rough phase, p; = 0.5 was used,
while in the fine tuning phase, p, = 0.05 was used. As can be noted,
the distribution of the neurons follows the data distribution very
well.

3.2. Roughness model

One important factor that is able to influence the wind profile
within the so-called boundary layer is the terrain roughness. In fact,
it has a deep influence on the frictional forces acting on the air flow
blowing over the ground surface. In particular, the influence of the
surface roughness on the vertical wind profile is taken into account
in some specific formulas through a term called the surface rough-
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Fig. 4. Plotting of Davies-Bouldin (D-B) index vs number of clusters (a) and
representation with different colours of the corresponding six clusters in which the
map units of the SOM were subdivided (b).

ness length, which is strongly dependent on the land coverage
within the investigated area. The roughness length of the whole re-
gion was modelled here by the implementation of another GMR
model. In this case, only one GMR was used because the surface
to be approximated is composed of discrete values, and it is not
necessary to use a high number of neurons to model it and identify
the discontinuities.

The information concerning the land coverage was obtained by
the superimposition of the same mesh grid as before over the geo-
referred digital land cover map created by the CORINNE (coordina-
tion of the information on the environment) project of EC (updated
in 2002). In order to assign a value of the roughness length to each
part of Sicily, we used a table proposed by Wieringa [18]. In a nut-
shell, we reclassified the CORINNE land map of Sicily by applying a
similarity criterion with the classes contained in Wieringa’s table.

The PD method with k = 4 was used for the linking phase (with
p1=0.5 and p, = 0.05). Fig. 6a and b shows the results of the link-
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Fig. 6. Roughness model. Results of the linking phase (a) and of the merging phase (b).

ing and merging phases, respectively. The different “macro-typol-
ogies” of surface roughness appear in Fig. 6 as overlapping layers.

3.3. First approximation estimate of the wind speed

The base information for this phase of the analysis is repre-
sented by the expected values of the theoretical Weibull distribu-
tion functions describing the wind regime at each of the 29
measurement sites available, as determined in the paper by Cellura
et al. [19]. However, because GMR is basically incremental, the
number of neurons depends on the complexity of the problem
and the learning parameters. If only a few (e.g., N=29) observa-
tions are fed to GMR, the network would require only N neurons
or less, which is insufficient for the spatial approximation. In order
to solve this problem, a large number of neurons were induced by
creating a fictitious TS; using the inverse distance weighting (IDW)
technique, the mean wind speed was estimated at each point of the
same mesh grid used in Sections 3.1 and 3.2. Despite the fact that
the estimate obtained using this method is not very accurate, it is
not supposed to have a negative effect on the reliability of the spa-
tial modelling realized by GMR for reasons that will be explained in
the following section. By using IDW, it was possible to estimate the
values of the average wind speed at 10 m a.g.l. for each point of the

grid, starting at the expected values of the Weibull distributions
that had been previously computed.

3.4. Data investigation by CCA

In this section, the CCA technique is applied with the aim of
identifying the intrinsic dimension of the data set under study and
thus understanding how to pre-process (project) the data in order
to create a TS for GMR. In fact, CCA is not used simply as a nonlin-
ear projector, its diagrams are also used as tools for the detection
and analysis of nonlinearities. The data set at hand, which we will
call the wind manifold henceforth, is made up of five-dimensional
vectors. We use five-dimensional vectors because, for each point
of the above-mentioned mesh grid, one knows the three spatial
coordinates, the value of the roughness length, and the average
wind speed estimated using the IDW method.

The version of the CCA algorithm used here is characterized by a
variable 43 which decreases proportionally to the inverse of the iter-
ation step, from the initial value of 4, =12 up to A5, = 0.05.

3 ) is a pre-defined distance the cost function depends upon (see [11]).
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Fig. 7a shows the projection of the five-dimensional data set
onto a two-dimensional space, and Fig. 7b shows the correspond-
ing dY-dX diagram. In this plot, it is possible to notice the pres-
ence of a strong nonlinearity (the bending of the data cloud
with respect to the bisector), which indicates that dimension
two does not fit the data. The projection onto a three-dimensional
space (Fig. 8a and b shows a narrower scattering of the points in
the dY-dX diagram, but it reveals that dimension three is still
inadequate to correctly represent the data. Fig. 9a shows the
points obtained by plotting the first two CCA components of the
five-dimensional vectors projected onto a four-dimensional space.
Fig. 9b shows the corresponding dY-dX diagram. The low scatter-
ing of the points close to the bisector suggests that the intrinsic
dimension of the wind manifold is close to four. This fact implies
that reducing data dimensionality by projecting the data in
dimensions that are equal to the intrinsic dimension or lower,
may result in a strong mutual link among the components, as will
be better explained in Section 4.

4. Wind speed spatial estimation by GMR

In this section, the estimation of the mean hourly wind speed at
10 m a.g.l. will be described. The temporal information is resumed
in the Weibull distributions related to each measurement site and
only their expected values are retained (the corresponding vari-
ances are considered to be estimators of the error for the anemo-
metric station). The expected values of the Weibull distributions

were used instead of the sample means, because it is more reliable
to work on the distribution than on the sample first order mo-
ments. The input space vectors have four components (the three
spatial coordinates plus the roughness length), the output space is
one-dimensional (the wind speed), and the augmented space is
thus five-dimensional.

Two experiments were performed; in the first one, the wind
manifold was pre-processed by a projection onto a four-dimen-
sional space before the learning phase was run, and in the second
one, the wind manifold was projected onto a three-dimensional
space.

4.1. GMR with data projected in a four-dimensional space

Once the intrinsic dimension was estimated as described in Sec-
tion 3.4, a TS for the GMR was obtained by projecting the original
TS in a four-dimensional space using the principal component
analysis (PCA, [20]) technique, which is faster than CCA. After-
wards, the data were statistically normalized. The EXIN SNN learn-
ing required p; = 0.9 and p, = 0.3. Pruning strategies were used in
order to decrease the final number of neurons. Each learning phase
lasted four epochs. Concerning the linking phase, both the LD and
the PD methods with two candidates (k = 2) yielded too many ob-
jects after merging. Only two objects were recovered when using
the PCA method with k =4, which is the final choice for this pro-
ject. The grid containing the territory of Sicily was divided into
two sub-grids of the same size by picking out one point out of
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Fig. 9. Visualization in a two-dimensional space of the four-dimensional projection of the five-dimensional TS (a) and related dY-dX diagram (b).

Fig. 10. Map of the average wind speed (m/s) at 10 m a.g.l. obtained with the
validation set by the GMR network trained with data projected in a four-
dimensional space.

two for the TS and leaving the other one for the data set to be used
for results validation (validation set). The standard deviation of the
Gaussian kernel used for the interpolation in the recall phase is
approximately one-third of the range of the Gaussian-cosine
experimental semi-variogram shown in the paper by Cellura
et al. [19].

Fig. 10 shows the map obtained when the GMR is fed with the
data of the validation set. The correlation coefficient between the
residuals and the measured data is equal to 0.210, which means
that most of the spatial data correlation was explained by the neu-
ral network.

The choice to use the data projected in a dimension that is close
to the intrinsic dimension of the data manifold (but still slightly
lower” than it) constrains all of the variables, forcing the wind speed
to be linked to the other features. In other words, by projecting in a
dimension that is slightly lower than the intrinsic dimension, the
components of the original vectors are linked to each other in such
a way that the variables known to have a higher level of precision
(in this case, the spatial coordinates and, with some exception, the
roughness length) drive the learning process of the features of those
variables that are known to have a lower degree of precision (in this
case, the average wind speed).

4 See Fig. 9: the points cloud in the dY-dX diagram still has a small “thickness”
around the bisector.

In a very large sense, the described approach can be seen as a
non-linear co-kriging technique [21]. However, unlike co-kriging,
it does not require the estimation of all the cross-covariance func-
tions, which can be a computationally intensive task.

4.2. GMR with data projected in a three-dimensional space

Here, the original TS is projected in a three-dimensional space
by PCA. The EXIN SNN learning requires p; = 0.9 and p, = 0.2, and
pruning is allowed. Each learning phase lasts four epochs.
Fig. 11a shows the PCA projections of the TS data (after normaliza-
tion) along with the fine quantization neurons of GMR and their
links. In the linking phase, the PCA method with four candidates
(k=4) yields, after the merging phase, only one object (see
Fig. 11b). The recall phase is the same as in the previous subsec-
tion. The map obtained by feeding GMR with the data of the vali-
dation set is shown in Fig. 12. This map is similar to that shown
in Fig. 10, but smoother (because dimension three is further from
the intrinsic dimension), and the representation is less accurate.

The correlation coefficient between the residuals and the mea-
sured data in this case is equal to 0.169, which means that nearly
all of the spatial data correlation was explained by the neural net-
work. Indeed, the remaining correlation is due to noise in the data
and modelling errors.

4.3. Estimation of the average wind speeds at 50 m above the ground
level

The evaluation of the yearly theoretical power output of a wind
turbine at a certain location depends upon the curve of the wind
speed distribution at the turbine’s hub height. For many commer-
cial turbines, the hub’s height is 50 m, although more powerful and
higher turbines are being commercialized at present.

In this paper, the average wind speed at 50 ma.g.l. was ob-
tained by the application of the following formula [22]:

U, ( z )“
e 2
Uzref Zref @

where U, is the wind speed at height z, Usz is the reference wind
speed at height z., and o is the power law exponent. In this case,
we used a height of 10 ma.gl. as zp.

The exponent « is a highly variable quantity. Some researchers
have developed methods for calculating o [22]. The expression
used in this paper is the one proposed by Justus [23]:
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Fig. 11. PCA-projected TS, fine quantization neurons and links (a) result of the GMR merging phase (b).

Fig. 12. Map of the average wind speed (m/s) at 10 m a.g.l. obtained with the
validation set by the GMR network trained with data projected in a three-
dimensional space.
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where U is given in m/s and z.y is given in m.

Unlike other expressions that can be used for the estimation of
a, such as those by Counihan [24] and by Spera [25], Eq. (3) does
not depend upon the surface roughness length.

The resulting map of wind speed at 50 ma.g.l. is shown in
Fig. 13. In this case, the values of the wind speed attained are high-
er than those shown in the analogous map contained in the paper
by Cellura et al. [8] and closer to the ones contained in the Italian
Wind Atlas [26], which were determined using the mass-consis-
tent code wind-field interpolation by non-divergent schemes
(WINDS) [27].

5. Discussion of the results

In order to assess the performances of the implemented models,
we compared the values of the wind speed at 10 m a.g.l. for the 29
anemometric station locations that were predicted by the two
GMR models to those obtained with the NNRK approach [8].

In general, the performance of a neural network must be as-
sessed using data different than those used to train the model,;
however, in this case, it makes sense to compare the observed
and the predicted values of the mean wind speed at the same loca-
tions of the anemometric stations. In fact, the two GMR models

Fig. 13. Map of the wind speed at 50 m a.g.l. obtained starting from the map shown
in Fig. 12.

were not trained directly using the expected values of the Weibull
distributions related to the stations, but instead were trained using
an artificial TS (see Section 3.3). For each model, we computed the
value of the overall absolute percentage error (APE), defined as
follows:
S| Mk 100

APE = B T (4)
where w; is the value of the wind speed estimated by the model for
the i-th station and g; is the expected value of the Weibull distribu-
tion related to the same station.

The APE values obtained with the GMR model trained with data
projected on a four-dimensional and a three-dimensional space are
6.52% and 4.70%, respectively. The value obtained with the NNRK
model is 9.54%. The maximum and minimum percentage errors ob-
tained with the GMR model trained with data projected on a three-
dimensional space are 39.9% (Cammarata station) and 0.017%
(Mazara station), respectively. The maximum and minimum per-
centage errors obtained with the GMR model trained with data
projected on a four-dimensional space are 34.0% (Cammarata sta-
tion) and 0.015% (Canicatti station), respectively. A further test
was performed using the data recorded at the Fiumedinisi station.
By using the ML method, the shape and scale parameters of the
Weibull probability distribution function (pdf) fitted to the data
were estimated, and the expected value of this distribution was
computed. Table 1 shows the values of the mean wind speed esti-
mated by the three models and the related distance from the de-
sired value (i.e., the expected value of the Weibull distribution,
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Table 1

Results obtained for the station of Fiumedinisi by GMR trained with data projected in
a three-dimensional space (GMR Proj 3), GMR trained with data projected in a four-
dimensional space (GMR Proj 4) and the NNRK algorithm.

GMR Proj 4 GMR Proj 3 NNRK

Estimated mean wind speed (m/s) 2.57 2.67 4.04
Difference from the desired value (m/s) -1.02 -0.92 0.45
Absolute percentage error (%) 28.41 25.63 12.53

1 =3.59) in terms of the APE. In this case, the NNRK algorithm out-
performs the algorithms based on GMR, but this can be justified by
the consideration that the Fiumedinisi station is external to the
area covered by the stations whose data were used to train the
models. For extrapolation problems, kriging algorithms perform
better than GMR, which is mainly a non-linear function
interpolator.

Fig. 14 shows a comparison of the values of the mean wind
speed at 50 m a.g.l. In the same graph, the wind speeds found in
the Italian Wind Atlas are also reported. The slight underestima-
tion that is still present for the values in the Wind Atlas may be
attributed not only to the two completely different approaches
used, but also to the different data sources. For this reason, it is
not useful to compare the percent error from our models with that
made by the Wind Atlas [26].

A comparison with the other neural models employed in the lit-
erature to address the same problem is difficult, because the use of
neural models applied to the yearly mean wind speed forecasting
over complex terrains is new, and little literature exists for compar-
ison. Some applications concerning wind speed forecasting were al-
ready discussed in the paper by Cellura et al. [8]; however, they are
mostly focused on flat regions and, moreover, are based on consid-
erably longer wind time series and/or more weather stations.

6. Conclusions

A novel neural approach has been used in this paper to tackle
the problem of wind speed spatial estimation over the territory
of the isle of Sicily (Italy), starting from the measurements re-
corded at a set of anemometric stations. This is a very difficult task
because of the relative shortness of the wind time-series used for
the anemometric characterization of each site and the scarcity of
measurement stations with regard to the complex topography of
the terrain surface. It represents the first application of this neural
model to this kind of problem, and is the result of the synergy be-
tween a careful exploratory data analysis and the exploitation of
the capability of the neural networks to extract the knowledge di-
rectly from the data. The core of the data pre-processing phase is
represented by the application of the CCA technique for the estima-
tion of the intrinsic dimension of the “wind manifold”. The final re-
sult of the work is a map of the estimated average wind speed at
50 m a.g.l. The most original aspect of the work is the utilization
of a novel neural network architecture and the original way in
which information about a variable was inferred from information
known about other variables with a higher level of detail. The
inference was also made without any assumption about the reci-
procal relations between the well-characterized variables and the
relatively-unknown variable.

The presented approach is applicable, by following the same
procedure outlined here, in any geographical context, provided
that enough information about the features of the territory (topog-
raphy, land coverage, and any other additional items) is known.
The MATLAB code for the application of the GMR model can be pro-
vided by the authors on request.

However, it must be emphasized that, in general, the results of
any mathematical model are to be taken only as a guide for choos-
ing the site of wind farm operations, and even small amounts of
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Fig. 14. Comparison of the values of wind speed at 50 m a.g.l. in the locations of the anemometric stations obtained starting from the predictions accomplished by using GMR
trained with data projected in a three-dimensional space (GMR Proj 3) and in a four-dimensional space (GMR Proj 4). In the graph are also shown the predictions obtained
with the NNRK algorithm [8], the expected values of the Wind distributions related to each anemometric station (Wind) and the wind speed values read in the Italian Wind

Atlas [26].
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monitoring of the selected areas is always advisable before starting
economic investments.
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