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Viale delle Scienze edificio 18, I-90128 Palermo, Italy
(Received 13 April 2011; published 2 September 2011)

Spike train regularity of the noisy neural auditory system model under the influence of two sinusoidal

signals with different frequencies is investigated. For the increasing ratio m=n of the input signal

frequencies (m, n are natural numbers) the linear growth of the regularity is found at the fixed difference

(m� n). It is shown that the spike train regularity in the model is high for harmonious chords of input

tones and low for dissonant ones.
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A mammal’s auditory system represents a very effective
sound perception apparatus with high-level characteristics
of sensitivity, recognition of speech, musical chords, sound
sources location, etc. [1]. As a result, it has attracted
scientific attention since the time of Pythagoras until the
present [2]. The increased interest in the auditory system is
due to stability of its functionality against omnipresent
noise of relatively high intensities, especially in neural
ensembles of the brain [3]. In spite of many successful
studies of the auditory periphery [2,4,5] and the corre-
sponding pathways in the brain [6], some, at first glance,
simple psychoacoustic effects of sound perception have not
been explained for many years, which indicates an insuffi-
cient understanding of the functionality principles of the
auditory analyzer, especially its neural part. Such effects
are very attractive for physicists, because they seem ex-
plainable using relatively simple models as in Refs. [5,7,8].
In addition, achievements in the auditory system investi-
gation provide an understanding of the other, less studied
sensory systems, which exhibit the analogous principles of
conversion of environment stimuli into the neural spike
trains [9].

One of the most difficult open questions in hearing theory
[10] relates to perception of very simple musical chords—
pairs of pure sinusoidal tones. The question is, why do the
chords with commensurable frequencies, referred to as con-
sonant chords, sound pleasant (harmonious, stable), whereas
the chords with incommensurable frequencies, referred to as
dissonant ones, sound unpleasant (inharmonious, unstable)?
It has been shown rather convincingly [11–14] that the
behavioral preference of consonant chords is due to some
basic principles of neural functionality and is common for
birds, rodents, monkeys, and human. However, the question
remains in the following form: which characteristics of
physical processes in the brain reflect the differences between
consonance and dissonance perception? The quantitative
description of these differences has been obtained in

psychoacoustic experiments with people [15], in which sub-
jects were asked to judge the ‘‘pleasantness’’ of various
sounding chords on a limited scale of natural numbers.
Then the scores for each chord were averaged, and in this
way the table of ‘‘consonance level’’ values for a set of chords
was obtained. In Refs. [6,16], the subjective ‘‘consonance
level’’ has been associatedwith so-called pitch salience. Pitch
is a subjective place of a perceived complex sound on the
frequency scale. In a simple case, if a sound consists of 2 or 3
pure tones, the pitch is perceived as some additional, virtual
tone. In thementioned papers the pitch salience is defined as a
height of a certain peak of a complicated cumulative quantity
obtained from a large array of spike trains. At the moment, it
is impossible to say that the pitch salience is a clear physical
characteristic of some concrete signal. In other words, it
provides a very good phenomenological description of con-
sonance and dissonance perception, but hides its underlying
physical basis.
In this Letter we try to answer the above question by

showing which characteristic of the physical processes
involved in brain functioning discriminates between
consonance and dissonance. Specifically, we present the
results of the consideration of spike train regularity at the
output of the auditory system’s neural model as a simple
parameter of the neural signal showing the difference
between the feeling of harmony and disharmony while
listening to tone dyads. The regularity is introduced (see
below) as the quantity linearly connected with informa-
tional entropy due to a natural framework for many
problems in biological signal processing provided by in-
formation theory (see, e.g., Ref. [17], and references
therein). We show that consonant chords influencing the
auditory system produce regular spike trains at the sys-
tem’s output, in contrast to dissonant chords, which result
in irregular spike trains.
The key element of the cochlea in the inner ear of

mammals is the basilar membrane, which performs the
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sound Fourier transform with a good precision [1,5]. As a
result, different spectral components of the input signal,
i.e., different oscillating parts of the basilar membrane, act
upon different sensory neurons (sensors). Sensors trans-
form mechanical oscillations into spike trains sent to the
brain. Because we restrict our analysis by two spectral
harmonics (simple chords of tone pairs), it is sufficient to
consider the model with two sensors at the input (see
Fig. 1). The sensors N1, N2 are subjected to the mixture
of subthreshold sinusoidal signals with different frequen-
cies and statistically independent additional white
Gaussian noises. The sum of weighted sensors’ spike trains
summed with the third statistically independent white
Gaussian noise is sent to the interneuron N3. The output
spike train of the interneuron is the main object of inves-
tigation. Each neuron is modeled by the simple nonlinear
model referred to as the noisy leaky integrate-and-fire
neuron [18]. A similar system was used to study the ghost
stochastic resonance phenomenon and binaural pitch per-
ception [19]. The detailed description of the model, meth-
ods of analysis, and obtained analytical expressions can be
found in Ref. [20]. In that paper the hidden Markov be-
havior [21] of interneuron’s spiking has been theoretically
revealed, analyzed, and proved by direct numerical simu-
lation of Langevin equations. For each state of the hidden
Markov chain (HMC) the first passage time probability
density (FPTPD) for the passage of the interneuron’s
threshold of spike generation has been found. For com-
mensurable input frequencies (�1=�2 ¼ m=n, wherem, n
are natural numbers), all FPTPDs consist of peaks, and
each peak corresponds to switching into some existing
state of the HMC. Thus, the element of the HMC’s tran-

sition matrix is obtained as follows: �ij ¼
R
ði!jÞ �

ðiÞðtÞdt,
where �ðiÞðtÞ is the FPTPD of the interneuron in the ith
state, and (i ! j) is the interval, in which the peak of

�ðiÞðtÞ, corresponding to switching into a state j, is situated.
In the paper [20] the average FPTPD—the interspike

interval distribution (ISID) of a spike train at the output of
N3 was studied. It has been found that for small numerator

and denominator of the frequency ratio m=n, e.g., 2=1,
3=2, 4=3 (consonant ratios in music), the ISID consists of
well-shaped peaks. On the other hand, if m, n are big
numbers, e.g., m=n ¼ 16=15, 45=32 (dissonant ratios),
then the ISID is blurred, which means a less regular spike
train than in the previous, consonant case. However, a
quantitative estimation of the spike train regularity has
not been performed.
With this aim, here, starting from the HMC’s transition

matrix we calculate the informational entropy H of the
interneuron’s spike train using the Shannon’s formula
([22], I.7)

H ¼ � XM�1

i¼0

pi

XM�1

j¼0

�ijlog2�ij; (1)

where pi is the probability of state i, which can be obtained
from the f�ijg matrix ([22], I.5), and M is the whole

number of states of the HMC. As a result, the set of entropy
values, for the ordered sequence of m=n ratios (Farey
sequence), is found and shown in the inset of Fig. 2.
To characterize the regularity of the spike trains we

introduce the spike regularity measure R as

Rðm=nÞ ¼ Hmax �Hðm=nÞ; (2)

where Hmax is the maximal entropy value over all consid-
ered m=n ratios. Obviously, R is defined up to a multi-
plicative constant, because the minimal R is always zero:
Rmin ¼ Hmax �Hmax ¼ 0, and the maximal one is the
difference between maximal and minimal entropies:
Rmax ¼ Hmax �Hmin, whereas Hmax, Hmin are found only
for the finite set of m=n ratios and could be different, e.g.,
for a reduced or extended one. The true values of Hmax,
Hmin are unknown for the system, but they do not influence
on the below consideration.
As it is easily seen, the dependence Rðm=nÞ (see Fig. 2)

corroborates the hypothesis of the connection between the
harmony perception and highly regular spike trains in
neural ensembles of the auditory system [20]. Indeed, the
regularity R (the entropy H) is high (low) for small natural
numbers m, n (namely, m, n < 10); i.e., the investigated
system produces a regular output spike train under the
influence of consonant chords at the input.
In this Letter, we focus on the following property of the

Rðm=nÞ dependence: R grows linearly with increasing ratio
m=n at fixed difference (m� n) (Fig. 2, bold solid lines).
First of all, it is rather unexpected that the informational
characteristic of a highly nonlinearly transformed signal
demonstrates such a simple linear dependence on the
parameters of the input.
It is also interesting to note that this behavior of the

regularity is very similar to the well-known first pitch-shift
effect [23] in the psychoacoustics: the linear growth of
pitch for the linear upward shift of frequencies of sounding
tones at a given difference between the frequencies.
Indeed, as per studies [7,24], the pitch corresponds to a

FIG. 1. The investigated model. N1, N2 are the sensors, N3

is the interneuron. �1ðtÞ, �2ðtÞ, and �3ðtÞ are the statistically
independent white Gaussian noises.
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fundamental frequency of sounding tones, which in the
presented case is

!p ¼ �1=m ¼ �2=n; (3)

because �1=�2 ¼ m=n, i.e., �1 ¼ m!p and �2 ¼ n!p.

Figure 2 is obtained at �2 ¼ const and increasing �1.
Thus, for the sake of comparison of R and !p, we are

interested in the dependence of !p on the ratio m=n at the

constant difference (m� n), which is simply derived from
Eq. (3)

!p ¼ �2

m� n

�
m

n
� 1

�
: (4)

For a set of (m� n) values the dependence !pðm=nÞ
shows a fan of straight lines, which, on the face of it, is
similar to the Rðm=nÞ behavior. However, these lines are
close to those in Fig. 2 only if the correction parameters are
introduced into Eq. (4): !p ¼ ��2ðm=n� �Þ=ðm� nÞ,
where � depends on (m� n), so, there is not the direct
connection between pitch and regularity. The necessity of
� and � can be established from the following simple
reasoning. Note, the common period of cos�1t and
cos�2t is 2�m=�1 ¼ 2�n=�2, which is equal to
2�=!p [see Eq. (3)]. Consequently, the pitch value !p is

equal to the repetition frequency of the sum cos�1tþ
cos�2t. Of course, the interneuron N3 sums not sinusoids,

but corresponding spike trains at its input. However,
we should just say that a structure of the input spike train
of N3 on average repeats with the frequency !p. It is

clear, the shorter an averaged repeated structure of the
spike train at the input is, the more regular the output
spike train will be. At the same time, we understand that
not only the length, but also a complexity of this repeated
input structure influences the output regularity. Moreover,
this complexity depends on the noise intensity and mecha-
nisms of signal transformation by the system, but not on
the pitch. That is why the dependence!pðm=nÞ [Eq. (4)] is
unlikely to coincide precisely with the Rðm=nÞ dependence
(Fig. 2).
Nevertheless, we see that the relation between pitch and

regularity should exist, and the observed qualitative corre-
spondence between the obtained dependence Rðm=nÞ and
the dependence !pðm=nÞ, confirmed in experiments [23],

proves the feasibility of the model under investigation. In
some sense, the regularity embraces both the pitch value
(periodicity of a spike train) and the pitch salience (evidence
of the periodicity). Thus, the use of the regularity valueR as a
measure of the ‘‘consonance level’’ may have a number of
advantages in comparison with the use of the pitch salience.
First, regularity is a clear physical quantity of a concrete
spike train. Second, an R value can be obtained directly from
a spike train by the calculation of informational entropy
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FIG. 2. Regularity of the interneuron’s spike train depending on the frequency ratio of input sinusoidal signals m=n ¼ �1=�2. Near
each point there is the exact ratio m=n. The bold solid lines approximate the locus of the Rðm=nÞ points for constant differences
(m� n). The dashed line is the example of locus change for m� n ¼ 1 (see text for clarification). The constant frequency of the
second sensor’s sinusoidal signal is�2 ¼ 0:4 rad= sec . The first sensor’s frequency varies:�1 ¼ m

n �2. The noise intensity is the same

for all three noise sources: D ¼ 1:6� 10�3. Inset: informational entropy of the interneuron’s spike train versus the frequency ratio of
input sinusoidal signals m=n.
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using one of many developed approaches [25]. Third,
obtaining a regularity value does not require determination
of a pitch value, which is a problem in a case of unknown
or too complex input sound, e.g., a voice of a human. We
suppose also that an experimental confirmation of the plots
shown in Fig. 2 can be very fruitful for a neurophysiological
application. For example, the discovery of brain regions,
where the property of the spike train regularity shown in
Fig. 2 is well expressed for various chords of pure tones,
could help in the understanding of how pleasant or unpleas-
ant sounds are perceived by mammals, which are more
complex than the musical chords.

Actually, in Fig. 2 there are a number of points,
which are noticeably shifted down from the bold lines
corresponding to differences (m� n) for these points
(see, e.g., 7=6, 6=5, 5=4, 4=3, and 3=2). This could be
qualitatively explained as follows. As it has been said, the
regularity increases due to increasing both of pitch value
!p and pitch salience. When m, n > 10, the pitch salience

increases rather quickly, for decreasing m, n, due to the
separation of overlapping FPTPD’s peaks in each state of
HMC. Then, approximately at m, n � 7, all the peaks
become separate [20], so the increase of the pitch salience
slows down, whereas the increase of !p remains the same.

Thus, in the behavior of Rðm=nÞ we observe a slope
change. For example, at m� n ¼ 1 (Fig. 2), the bold
line switches to the dashed one. The analytical description
of this phenomenon is in progress.

In summary, based on the theory developed in Ref. [20],
we have presented the procedure of informational entropy
estimation for the non-Markov spike train at the output of
the auditory system model, which can be described by the
hidden Markov chain. Based on the entropy dependence on
the frequency ratio of input sinusoidal signals, the high or
low regularity level of the auditory system’s spike trains
has been suggested as an indicator of feeling of harmony
during sound perception or disharmony, respectively. From
the physics viewpoint, in the Letter we have proposed the
quantitative description of the distortion of a sinusoidal
oscillations sum by the noisy threshold system. It is shown
that, even for well-distinguishable frequencies of oscilla-
tions, a small shift of one of the frequencies, changing the
ratio �1=�2 ¼ m=n, may result in an appreciable either
increase or decrease of regularity of the output impulse
sequence (jumps between bold lines in Fig. 2).
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