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Abstract— Robust dynamic coalitional TU games are re-
peated TU games where the values of the coalitions are
unknown but bounded variables. We set up the game supposing
that the Game Designer uses a vague measure of the extra
reward that each coalition has received up to the current time
to re-adjust the allocations among the players. As main result,
we provide a constructive method for designing allocation
rules that converge to the core of the average game. Both the
set up and the solution approach also provide an insight on
commonalities between coalitional games and stability theory.

I. I NTRODUCTION

This paper deals withrobustnessand dynamicsin coali-
tional TU games along the line of [3], [4]. The above
two elements naturally arise in all the situations where the
coalitions values are uncertain and time-varying.

Robustnesshas to do with modeling coalitions’ values as
unknown entities. This is in spirit with some literature on
stochastic coalitional games [14], [15]. However, we deviate
from this stochastic framework since we model coalitions
values as Unknown But Bounded variables within a priori
known polytopic sets [5]. This has much in common with
the recent literature on interval valued games [1], where the
authors use intervals to describe coalitions values similarly
to what is done in this paper. We also recognize some
differences in that we focus more on the time-varying nature
of the coalitions values. In doing this, we also link the
approach to Set invariance Theory [6] which provides us
some “nice” tools for stability analysis (see, e.g., the resort
to a Lyapunov function in the proof of Theorem IV.1).

Dynamicsenters into the picture in the form of a system
state time evolution. The state accounts for the accumulated
discrepancy between coalitions’ values and allocations up
to the current time with the assumption that the game is
played repeatedly and continuously over time. So, the state
accounts for the extra reward that a coalition has received up
to the current time. At each time, different coalitions’ values
realize which are undisclosed to the Game Designer (GD)
who then adjust allocations based on partial information on
system state. Bringing dynamical aspects into the framework
of coalitional TU games is an element in common with other
papers [8], [10]. The main difference with those works is
that the values of coalitions are realized exogenously and no
relation exists between consecutive samples.

With this premise in mind, we are interested in providing
certain convergence properties for the average game. Conver-
gence conditions together with the idea that allocation rules
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use a measure of the extra reward that a coalition has received
up to the current time by re-distributing the budget among
the players are a main issue in a number of other papers [2],
[7], [9], [12], [13] as well. However, this paper departs from
the aforementioned contributions mainly in that dynamics
is there captured by a bargaining mechanism with fixed
coalitions’ values while we let the values be time-varying
and uncertain. This last element adds some robustness in
our allocation rule which have not been dealt with before.

The main result of the paper is a constructive method
to design allocation rules that converge to the core of the
average game. In addition to this, the set up of the game
together with the proposed solution method put an accent on
the sharing of common attributes between coalitional games
and stability theory.

This paper is organized as follows. In Section II, we
formulate the problem pointing out all issues that are high
in our list of concern and make the problem challenging.
In Section III, we present the basic idea of our solution
approach which consists in turning the problem into a flow
control one. In Section IV, we state the main result of this
work regarding some convergence properties that come with
a proper allocation rule design. In Section V, we provide
some numerical illustrations. Finally, in Section VI, we draw
some concluding remarks.

II. PROBLEM FORMULATION

Consider a set of playersN = {1, . . . ,n} and all possible
coalitions S⊆ N arising among these players. Introduce a
time-varying characteristic functionψ(S,t) which assigns a
real value to each coalitionS at time t ≥ 0:

ψ : 2N \ { /0}×R+ → R.

If we denote bym= 2n−1 the number of possible coalitions,
we can view the characteristic functionψ(.,t) as returning
a continuous-time signal in them-dimensional space:

v(t) ∈ R
m
, ∀t ≥ 0.

Turning from a function to a signal is useful to define the
following dynamical coalitional games.

Definition II.1 (dynamical TU game) For each time t≥ 0,
the instantaneous, integral, and average dynamical gameis
defined by the pairwise

• (instantaneous game) < N,v(t) >, with v(t) ∈ R
m;

• (integral game) < N, ṽ(t) >, with ṽ(t) =
∫ t

0 v(τ)dτ;
• (average game) < N, v̄(t) >, with v̄(t) = ṽ(t)

t .
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Henceforth, we use the symbolψ̃(t) and ψ̄(t) to indicate
the integral and average up to timet respectively of any given
function ψ(t). Also, the underlying assumption throughout
this paper is thatv(t) is unknown to the GD but confined
within a convex set at any time. We also assume thatv(t) is
a mean ergodic stochastic process.

Assumption 1 (UBB and mean ergodic) Signal v(t) is UBB
within a given convex setV : v(t) ∈ V ∈ R

m
. Furthermore,

the expected value of v(t) coincides with the long term
average, i.e., E[v(t)] = limt→∞v̄(t).

Under the above assumption, the core of the instantaneous
game can be empty at some timet. Even if the above is true,
we can still suppose that the core of the average game is non
empty on the long run.

Assumption 2 (balancedness) The core of the average
game is non empty in the limit:limt→∞ C(ṽ(t)) 6= /0.

We can view the above assumption as introducing some
steady-state (average) conditions on a game scenario subject
to instantaneous fluctuations.

Now, assume that the GD can take actions in terms of
instantaneous allocations denoted bya(t) ∈ R

n and suppose
the following budget constraints.

Assumption 3 (bounded allocation) The instantaneous al-
location is bounded within a hyperbox inRn

a(t) ∈ A := {a∈ R
n : amin ≤ a≤ amax},

with apriori given lower and upper bounds amin, amax∈ R
n.

Let us turn to comment on the information structure
of the problem. To do this, we need to introduce some
new terminology which is useful to clarify the information
available to the GD.

For any coalitionS⊆N, we defineexcess (extra reward) at
time t≥ 0 as the difference between the total integral reward,
given to it, and the integral value of the coalition itself, i.e.,

εS(t) = ∑
i∈S

ãi(t)− ṽS(t).

Furthermore, we say thatS is in excess at time t≥ 0 if
the excess is non negative, i.e.,∑i∈Sãi(t) ≥ ṽS(t). In one
word, coalitions in excess are those with respect to which the
grand coalition of the integral game is stable. With the above
clarification in mind, we henceforth assume that the GD has
access to the limit of the average coalitions’ values and to
the vector of coalitions’ excessε(t) := [εS(t)]S⊆N ∈ R

m.

Assumption 4 (partial information) The GD knows
limt→∞ v̄(t) andε(t) at each time t≥ 0. Furthermore, signal
v(t) and excessε(t) are non correlated.

The problem of interest consists in finding an allocation
rule based on the available partial information so that if the
instantaneous allocation is selected from this rule then the

v1 v2 v3 v4 v5 v6 v7
S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

TABLE I

CORRESPONDENCES VERTICES-COALITIONS

average allocation converges to the core of the average game
on the long run.

Problem 1 Find an allocation rule f: R
m → A ∈ R

n, such
that if a(t) = f (ε(t)) then limt→∞ ā(t) ∈C(v̄(t)).

Remark II.1 (on relaxing information) In solving the prob-
lem, we will point out that it is not even necessary for the
GD to knowε(t) as long as an oracle can tell him whether
ε(t) is greater or not than an opportune threshold given by
the GD himself.

A. Some comments on the above problem

This section provides an alternative perspective on the
problem in terms ofcontrolling the topology of a hypergraph.
To clarify more on this point, observe the implications that
a given allocation may have on the dynamical coalitions
scenario at any timet ≥ 0. As an example, suppose that
at each timet ≥ 0 a certain number of coalitions naturally
arise, say it for instance,P, Q andN\ (P∪Q) and take the
grand coalition as the ideal scenario. A well known fact is
that we can use hypergraphs to describe coalitions scenario.
Specifically, we can introduce a time-varying matrixB(t) =
[cP cQ 1−(cP+cQ)] wherecS is the characteristic vector
of the generic coalitionS⊆ N and introduceBre f := 1 ∈
R

n as a reference topology. Note thatB(t) is nothing but
the incidence matrix of the hypergraph describing a given
coalitions scenario at timet. Now, if the average allocation
is in the core of the average game, all coalitions are in excess,
the grand coalition is stable with respect to all sub coalitions
and the incidence matrix of the hypergraph isB(t) = Bre f .
Viceversa, if B(t) 6= 1 ∈ R

n, then some coalitions may be
in excess some others not and it makes sense to adjust the
allocation in order to driveB(t) towards Bre f . Evidently,
the reference topology could be any generic topology and
not necessarily 1∈ R

n and this enables us to generalize the
reasoning.

III. F LOW TRANSFORMATION

The basic idea of our solution approach is to turn the
problem into a flow control one. To do this, consider the
hypergraphH with vertex setV and edgesetE as:

H := {V,E}, V = {v1, . . . ,vm}, E := {e1, . . . ,en}.

The vertex setV has one vertex per each coalition whereas
the edge setE has one edge per each player.

A generic edgei is incident to a vertexv j if the player
i is in the coalition associated tov j . So, incidence relations
are described by matrixBH = [cT

S]S⊆N ∈ R
m×n whose rows

are the characteristic vectors of all coalitionsS⊆ N.
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Fig. 1. HypergraphH := {V,E} for a 3-player coalitional game.

The flow control reformulation arises naturally if we view
allocationai(t) as the flow on edgeei and the coalition value
vS(t) of a generic coalitionS as the demandd j(t) in the
corresponding vertexv j , namelyvS(t) = d j(t).

In view of this, allocation in the core translates into
satisfying in excess the demand at the vertices. Specifically,

ã(t) ∈C(ṽ(t)) ⇔ BH ã(t) ≥ d̃(t) (1)

Now, sinced̃(t) is unknown at timet, we need to introduce
some error dynamics which accounts for the derivatives of
excesses:

ε̇(t) = BH a(t)−d(t), d(t) ∈ V .

With the above in mind, the problem can be turned into a
flow control problem where a controller wishes to drive the
error ε(t) (the excesses) to a target set

T := {ε ∈ R
m : εm = 0,ε j ≥ 0, ∀ j = 1, . . . ,m−1}.

But we can do more than this to simplify the tractability of

ǫ1

ǫ2

ǫm

ǫ(0)

ǫ(t)

Fig. 2. Trajectory forε(t).

the problem. Using standard LP techniques we can introduce
m− 1 surplus variables (one per each coalition other than
the grand coalition) so to project the allocation space intoa
one of higher dimension. In particular, let us expand control
u(t) = [a(t)T s(t)T ]T ∈ R

(n+m−1). This technique has the

advantage of turning the inequalities (1) into equalities of
type (see, e.g., [3], [4]):

ẋ(t) = Bu(t)−d(t), d(t) ∈ V ,

where matrixB is defined as

B =

[

BH

−I
0

]

∈ R
m×(n+m−1)

and I is an identity matrix of compatible dimensions. Vari-
ablex(t) ∈ R

m is now thestateof the system. We still have
to introduce the feasible controls set

U := {u∈ R
n+m−1 : a∈ A , s≥ 0} ∈ R

n+m−1 (2)

and so the problem can be rephrased as follows: find a control
strategyφ : R

m → U which drives the statex(t) to zero in
probability:

u(t) := φ(x(t)) ∈U ⇔ lim
t→∞

x(t) = 0

with probability one. To tell it differently, we are requiring
that dynamics ˙x(t) = Bφ(x(t))− d(t) converge to zero in
probability, or which is the same, we look for the stochastic
stability of statex(t).

ẋ(t) = Bu(t) − d(t)

sign(x(t))

φ̂(sign(x(t)))

u(t)

d(t)

Fig. 3. Dynamical system.

IV. STOCHASTIC STABILITY

In this section, we state the main result of this work
which proposes a solution to Problem 1 with information
structure as discussed in Remark II.1. To do this, denote by
B† a generic pseudo inverse matrix ofB and take a feasible
allocationunom such that

Bunom= vnom := lim
t→∞

v̄(t), unom∈U.

Also, for future purposes, define a function̂φ (.), which
depends only on the sign ofx(t), as follows:

φ̂ (sign(x(t))) := unom+ ∆u∈U, ∆u = −δB†sign(x). (3)

Now, taking the controlu(t) = φ̂(sign(x(t))), we obtain the
dynamic system ˙x(t) = Bφ̂(sign(x(t)))−d(t) as displayed in
Fig. 3. Now, we state the following convergence property.

Theorem IV.1 Dynamic system (4) witĥφ(sign(x(t))) as in
(3) converges to zero in probability:

ẋ(t) = Bφ̂(sign(x(t)))−d(t). (4)
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Proof: Consider a candidate Lyapunov function
V(x(t)) = 1

2xT(t)x(t). The idea is to inspect thatE[V̇(x(t))] <
0 for all t ≥ 0. For this last to be true, it must be

E[V̇(x(t))] = E[xT(t)ẋ(t)]

= E[xT(t)Bu(t)]−E[xT(t)v(t)]

= E[xT(t)Bunom(t)]+E[xT(t)B∆u(t)]

− E[xT(t)vnom(t)]−E[xT(t)∆v(t)]
︸ ︷︷ ︸

=0

= E[xT(t)B∆u(t)] < 0.

where conditionE[xT(t)∆v(t)] = 0 is a direct consequence of
Assumption 4. But the above conditionE[xT(t)B∆u(t)] < 0
is satisfied sinceB∆u(t) = −δsign(x), which in turn implies

E[xT(t)B∆u(t)] = E[−δ‖x(t)‖1] < 0.

Corollary IV.1 The average allocation converges to the core
of the average game:

lim
t→∞

ā(t) ∈C(v̄(t)).

Proof: For the above condition to be true it suffices to
prove i) Bū = v̄ and ii) ū∈U . Proving ii) is straightforward
from u(t) = φ̂(sign(x(t))) ∈U for all t ≥ 0. Condition i) is a
direct consequence of Theorem IV.1. Actually convergence
in probability of (4) to zero means limt→∞ x̄(t) = 0 and this
in turn impliesBū = v̄.

A. Comments on available information

In this subsection we expand more on the information
structure of the problem. In particular, we highlight how the
whole feedback on statex(t) can be reviewed as the result
of an oracle-based procedure.

To see this, let us start by recalling that the control strategy
is based on the only sign of statex(t) which can be expressed
by

x(t) = Bũ(t)− d̃(t) = ε(t)− s̃(t). (5)

The above condition relates statex(t) to the excessε(t). Now,
with reference to componentj, the sign ofx j(t) yields:

sign(x j(t)) :=







1 ε j(t) > s̃j(t)
0 ε j(t) = s̃j(t)
−1 ε j(t) < s̃j(t).

(6)

In the above condition, review ˜sj (t) as a nonnegative thresh-
old and notice that “the GD has access to the sign ofx j(t)”
has the following interpretation: after submitting such a
threshold to an oracle, the GD is revealed whether the excess
exceeds such threshold or not. Recall that nonnegativenessof
the threshold has its roots in the feasibility conditionu(t)∈U
for all t ≥ 0 with feasible setU as in (2).

Nonnegativeness of the threshold provides us with a
further comment on the information available to the GD.
Actually, from the first condition in (6), we can conclude
that coalitions associated to a positive statex(t) are certainly
in excess. This is clear if we observe thatsign(x j(t)) =

1 implies ε j(t) > s̃j(t) ≥ 0. We can then summurize the
information content available to the GD as follows, letS
be the generic coalition associated to componentj:

sign(x j(t)) :=

{
1 then coalitionS in excess

−1,0 nothing can be said.

Trivially, the present developement, which is all based
on control strategy (3), fits the case wherex(t) is revealed
completely as abundantly elaborated in [4]. In this last case,
the fact that the GD knowsx(t) implies from (5) that he
knowsε(t) as well. Also, it is intuitive to infer that in this last
set up, exact knowledge ofx(t) can only influence positively
the GD in terms of speed of convergence of allocations into
the core of the average game. All the above comments go
back and try to clarify what was anticipated in Remark II.1
where it was stated that it is not even necessary that the GD
knows exactlyε(t).

V. NUMERICAL ILLUSTRATIONS

Consider a 3 player cooperative game, som= 7, with the
following intervals for values of coalitions:

v({1}) ∈ [0,4], v({2}) ∈ [0,4], v({3}) ∈ [0,4],

v({1,2}) ∈ [0,4], v({1,3}) ∈ [0,6],

v({2,3}) ∈ [0,7], v({1,2,3}) ∈ [0,12].

The convex setV is characterized by the above intervals.
From Assumption 4 GD knows the long run average game,
i.e., limt→∞ v̄(t) = vnom. We consider the choice of balanced
nominal game asvnom= [1 2 3 4 5 6 10]T . During simulations
the instantaneous gamesv(t) ∈ V should satisfy the average
behavior given by:

lim
t→∞

1
t

∫ t

0
v(τ)dτ = vnom.

Next, we describe an algorithm to generatev(t) ∈ V such
that the above condition holds true.

Algorithm:

1) Generatem random points,r i ∈V ⊂R
m, i = 1,2, · · · ,m.

2) SolveR.p = vnom, with R= [r1, r2, · · · rm].
3) If p≥ 0 and1T p > 0, then go to (4) else go to (1).
4) RescaleR asR=

(
1T p

)
R and p as p = p

(1T p)
5) If r i ∈ V , i = 1,2, · · · ,m, then go to (6) else go to (1).
6) STOP

By construction, of the algorithm,vnom is in the relative
interior of the convex hull generated by columns of the
matrix R. If an instance of the gamev(t) is chosen as
r i with probability pi from the pair (R, p), Assumption
4 is satisfied. For simulations we ran the algorithm 20
times to generate a total of 140 points (or 20(R, p) pairs)
in V . Further, from each of the 20 pairs we take 2000
random selections (using Matlabrandsrc function),
which amounts to 40,000 instantaneous gamesv(t). The
nominal choice of allocations and surplus is taken as
unom = [2.5 3 4.5 1.5 1 1.5 1.5 2 1.5]T . It can be verified
that Bunom= vnom.
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Choice of δ : For simulations, the choice ofδ is crucial
so as to ensureu(t) ∈ U . This condition translates
to Umin ≤ unom + δB†sign(x) ≤ Umax. We observe
−∑ j |B

†
i j | ≤

(
B†sign(x)

)

i ≤ ∑ j |B
†
i j |. A conservative estimate

of δ is obtained asUmin ≤ unom± δ maxi{∑ j |B
†
i j |} ≤ Umax.

For m = 7, we have maxi{∑ j |B
†
i j |} = 2.11. For the

instantaneous game a negative allocation/surplus is not
allowed, soUmin ≥ 0.1. Furthermore, an allocation/surplus
greater than the value of grand coalition is not allowed,
so Umax ≤ vnom(N).1. We choseδ = 0.75, which satisfies
the above stated requirements. The robust allocation rule
is implemented numerically with a stepsize of∆ = 0.01.
Next, we present performance results of the robust control
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(a) Time plot ofx{1,3}(t).
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(b) Time plot of x̄{1,3}(t).

Fig. 4. Performance of the robust control laŵφ(sign(x(t))).

law given by equation (3). From Theorem IV.1,x(t)
converges to zero in probability with a specific choice of
control law. Fig. 4(a) illustrates this behavior (for coalition
{1,3}). Further, by Corollary IV.1, the same control law
ensures that the average game is balanced in a long run,
in other words limt→∞ x̄(t) = 0 and Fig. 4(b) illustrates
this behavior (for coalition{1,3}). The control law
ensuresE[V̇(x(t))] is negative for allt > 0, we illustrate
this behavior in Fig. 5. From Corollary IV.1, the average
allocation vector is contained in the core of the average
game, i.e. limt→∞ ā(t) ∈ C(v̄(t)). However, the control law
does not guarantee the convergence of allocation vectors to
the nominal allocation vector on a long run. We illustrate
this observation in Fig. 6.

0 50 100 150 200 250 300 350 400
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E
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Fig. 5. Time plot ofE[V̇(x(t))]
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Fig. 6. Time plot of ¯a(t)−anom.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we derived a robust control law that ensures
the average allocation vector is contained in the core of
the average game. However, the control law is derived on
the premise that GD knows apriori, the nominal allocation
vector. If this information is not available the derivation
of control law implicitly involves solving an LP problem.
Currently this work is in progress. By further relaxing the
information requirement, the problem can be treated as a
learning process where the GD is trying to learn the nominal
game from instantaneous games. We postpone working in
this direction for the future.
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