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Robust allocation rules in dynamical cooperative TU Games

D. Bauso P. V. Reddy

Abstract— Robust dynamic coalitional TU games are re- use a measure of the extra reward that a coalition has receive
peated TU games where the values of the coalitions are yp to the current time by re-distributing the budget among
unknown but bounded variables. We set up the game supposing the players are a main issue in a number of other papers [2]
that the Game Designer uses a vague measure of the extra . '
reward that each coalition has received up to the current tine (71, [9], [12], [1,3] as well. However, th|§ paPer departsrfro_
to re_adjust the allocations among the p|ayersl As main regu the a.foremen“oned Contl’lbutlons ma|n|y In that dynam|CS
we provide a constructive method for designing allocation is there captured by a bargaining mechanism with fixed
rules that converge to the core of the average game. Both the coalitions’ values while we let the values be time-varying
set up and the solution approach also provide an insight on 54 yncertain. This last element adds some robustness in
commonalities between coalitional games and stability tray. . . .

our allocation rule which have not been dealt with before.

. INTRODUCTION The main result of the paper is a constructive method

This paper deals witobustnessand dynamicsin coali- {0 design allocation rules that converge to the core of the
tional TU games along the line of [3], [4]. The abovedverage game. In addition to this, the set up of the game
two elements naturally arise in all the situations where thi®gether with the proposed solution method put an accent on
coalitions values are uncertain and time-varying. the sharing of common attributes between coalitional games

Robustnesfas to do with modeling coalitions’ values asand stability theory.
unknown entities. This is in spirit with some literature on This paper is organized as follows. In Section I, we
stochastic coalitional games [14], [15]. However, we devia formulate the problem pointing out all issues that are high
from this stochastic framework since we model coalition$) our list of concern and make the problem challenging.
values as Unknown But Bounded variables within a priorin Section Ill, we present the basic idea of our solution
known polytopic sets [5]. This has much in common withaPproach which consists in turning the problem into a flow
the recent literature on interval valued games [1], wheee tteontrol one. In Section IV, we state the main result of this
authors use intervals to describe coalitions values silyila Work regarding some convergence properties that come with
to what is done in this paper. We also recognize sonm@ Proper allocation rule design. In Section V, we provide
differences in that we focus more on the time-varying naturgome numerical illustrations. Finally, in Section VI, weadr
of the coalitions values. In doing this, we also link thesome concluding remarks.
approach to Set invariance Theory [6] which provides us
some “nice” tools for stability analysis (see, e.g., theores
to a Lyapunov function in the proof of Theorem IV.1). Consider a set of played = {1,...,n} and all possible

Dynamicsenters into the picture in the form of a systemcoalitions SC N arising among these players. Introduce a
state time evolution. The state accounts for the accunﬂﬂa’[ﬁme-varying characteristic functiogy(S,t) which assigns a
discrepancy between coalitions’ values and allocations ugal value to each coalitio8 at timet > 0:
to the current time with the assumption that the game is
played repeatedly and continuously over time. So, the state g 2N \{0} xRy —R.
accounts for the extra reward that a coalition has receiped
to the current time. At each time, different coalitions’ was
realize which are undisclosed to the Game Designer (Glﬁ
who then adjust allocations based on partial information on
system state. Bringing dynamical aspects into the framlewor v(t) ER™, Wt > 0.
of coalitional TU games is an element in common with other
papers [8], [10]. The main difference with those works isTurning from a function to a signal is useful to define the
that the values of coalitions are realized exogenously and fiollowing dynamical coalitional games.
relation exists between consecutive samples.

With this premise in mind, we are interested in providin@efinition 11.1 (dynamical TU game) For each time t> 0,

certain convergence properties for the average game. Gonve instantaneoysintegral and average dynamical ganie
gence conditions together with the idea that allocatiorsul defined by the pairwise

Il. PROBLEM FORMULATION

Ll'f we denote bym= 2"—1 the number of possible coalitions,
e can view the characteristic functiapy(.,t) as returning
continuous-time signal in the-dimensional space:
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Henceforth, we use the symbgi(t) and gi(t) to indicate
the integral and average up to timeespectively of any given
function (t). Also, the underlying assumption throughout
this paper is that(t) is unknown to the GD but confined
within a convex set at any time. We also assume wigtis
a mean ergodic stochastic process.

) o . average allocation converges to the core of the average game
Assumption 1 (UBB and mean ergodic) Signal \(t) is UBB  on the long run.

within a given convex set: v(t) € ¥ € R™ Furthermore,

the expected value of(ty coincides with the long term p.obiem 1 Find an allocation rule f R™ — o/ € R". such
average, i.e., B(t)] = lime..v(t). that if a(t) = f (£(t)) thenlimi_.a(t) € C(V(t)).

Under the above assumption, the core of the instantaneous

game can be empty at some timeven if the above is true, Remark Il.1 (on relaxing information) In solving the prob-

we can still suppose that the core of the average game is niéfn, we will point out that it is not even necessary for the
empty on the long run. GD to knowe(t) as long as an oracle can tell him whether

£(t) is greater or not than an opportune threshold given by

Assumption 2 (balancedness) The core of the average the GD himself.

game is non empty in the limikm; .. C(¥(t)) # 0. A. Some comments on the above problem

We can view the above assumption as introducing some This section provides an alternative perspective on the
steady-state (average) conditions on a game scenariocsubjeroblem in terms otontrolling the topology of a hypergraph
to instantaneous fluctuations. To clarify more on this point, observe the implications that
Now, assume that the GD can take actions in terms &f given allocation may have on the dynamical coalitions
instantaneous allocations denoteddty) € R" and suppose scenario at any timé > 0. As an example, suppose that
the following budget constraints. at each timg > 0 a certain number of coalitions naturally
arise, say it for instancd?, Q andN\ (PUQ) and take the
Assumption 3 (bounded allocation) The instantaneous al- grand coalition as the ideal scenario. A well known fact is
location is bounded within a hyperbox R" that we can use hypergraphs to describe coalitions scenario
Specifically, we can introduce a time-varying matiig) =
[ce co 1—(cp+co)] wherecsis the characteristic vector
with apriori given lower and upper bounds,a, amaxc R".  Of the generic coalitiorSC N and introduceBet :=1 €
R" as a reference topology. Note thAft) is nothing but
Let us turn to comment on the information structurghe incidence matrix of the hypergraph describing a given
of the problem. To do this, we need to introduce someoalitions scenario at time Now, if the average allocation
new terminology which is useful to clarify the informationis in the core of the average game, all coalitions are in exces
available to the GD. the grand coalition is stable with respect to all sub caaiki
For any coalitiorSC N, we defineexcess (extra reward) at and the incidence matrix of the hypergraphB&) = Byes.
time t> 0 as the difference between the total integral rewardficeversa, ifB(t) # 1 € R", then some coalitions may be
given to it, and the integral value of the coalition itsel€.j in excess some others not and it makes sense to adjust the
~ - allocation in order to driveB(t) towardsB¢. Evidently,
es(t) = zsa;(t)—vs(t). the reference topol Id b i
£ pology could be any generic topology and
not necessarily & R" and this enables us to generalize the
reasoning.

at) € 7 :={a€R": amin < a < amax},

Furthermore, we say th&@ is in excess at time>t O if
the excess is non negative, i.§.cs&(t) > Vs(t). In one
word, coalitions in excess are those with respect to whieh th [1l. FLOW TRANSFORMATION
grand coalition of the integral game is stable. With the a&bov Th - . .

O . e basic idea of our solution approach is to turn the
clarification in mind, we henceforth assume that the GD has PP

- " roblem into a flow control one. To do this, consider the
access to the limit of the average coalitions’ values and eraraphs with vertex setv and edgeseE as:
the vector of coalitions’ excess(t) := [es(t)]scn € R™. ypergrap g '

A ={V,E}, V={vi,....,vm}, E:={e,...,en}.
Assumption 4 (partial information) The GD knows .
lim_.V(t) and £(t) at each time t 0. Furthermore, signal The vertex seV has one vertex per each coalition whereas

v(t) and excesg(t) are non correlated. the edge seE has one edge per each player.
A generic edgd is incident to a vertex; if the player
The problem of interest consists in finding an allocation is in the coalition associated 9. So, incidence relations
rule based on the available partial information so that é thare described by matriB, = [cL]scn € R™" whose rows
instantaneous allocation is selected from this rule then ttare the characteristic vectors of all coalitioBS. N.
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V advantage of turning the inequalities (1) into equalitiés o
type (see, e.g., [3], [4]):

X(t) = Bu(t) —d(t), d(t)e ¥,

- d where matrixB is defined as
> -

B_{Bﬁ 0

and| is an identity matrix of compatible dimensions. Vari-
ablex(t) € R™is now thestateof the system. We still have
to introduce the feasible controls set

] c Rmx(n+mfl)

U:={ueR™™ 1 acw s>0cR™"™ (2

and so the problem can be rephrased as follows: find a control
strategy@ : R™ — U which drives the state(t) to zero in
probability:

Fig. 1. Hypergraph/#’ := {V,E} for a 3-player coalitional game.

The flow control reformulation arises naturally if we view ut):=ext)eU <« limx(t)=0
allocationa;(t) as the flow on edge and the coalition value toe
vs(t) of a generic coalitionS as the demandi;(t) in the With probability one. To tell it differently, we are requig
corresponding vertex;, namelyvs(t) = dj(t). that dynamicsx(t) = Be(x(t)) —d(t) converge to zero in
In view of this, allocation in the core translates intoprobability, or which is the same, we look for the stochastic
satisfying in excess the demand at the vertices. Specjficalbtability of statex(t).

at) eCEt) « Bydt) >d) 1) a()

- -_—
Now, sinced(t) is unknown at timet, we need to introduce #(t) = Bu(t) — d(t)
some error dynamics which accounts for the derivatives of j———————=
excesses: u(t)

sign(x(t))
E(t) =Byalt)—d(t), dt)ev”.

With the above in mind, the problem can be turned into a p(sign(z(t)))
flow control problem where a controller wishes to drive the

error (t) (the excesses) to a target set
Fig. 3. Dynamical system.

T ={€eeR": en=0,¢>0,Vj=1,....m—1}.

But we can do more than this to simplify the tractability of IV. STOCHASTIC STABILITY
€ 4 In this section, we state the main result of this work
m which proposes a solution to Problem 1 with information
6(0) structure as discussed in Remark 11.1. To do this, denote by
o B a generic pseudo inverse matrix Bfand take a feasible
allocationunom such that
€ BUnom= Vnom:= t'ﬂlv(t)’ Unom € U.
€1 4 Also, for future purposes, define a functiaﬁ(.), which
u (t) depends only on the sign aft), as follows:
€

@(sign(x(t))) := Unom+Auc U, Au=—3B'signx). (3)

Now, taking the controli(t) = @(sign(x(t))), we obtain the
Fig. 2. Trajectory fore(t). dynamic systenx(t) = Bo(sign(x(t))) —d(t) as displayed in
Fig. 3. Now, we state the following convergence property.
the problem. Using standard LP techniques we can introduce
m—1 surplus variables (one per each coalition other thapheorem IV.1 Dynamic system (4) Witﬂn(sign(x(t))) asin
the grand coalition) so to project the allocation space &1to (3) converges to zero in probability:
one of higher dimension. In particular, let us expand cdntro .
u(t) = [at)T|s(t)T]T € RM™1 This technique has the X(t) = Bo(sign(x(t))) — d(t). 4)
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Proof:  Consider a candidate Lyapunov functionl implies gj(t) > §j(t) > 0. We can then summurize the
V(x(t)) = 3xT(t)x(t). The idea is to inspect th&{V (x(t))] <  information content available to the GD as follows, Bt

0 for all t > 0. For this last to be true, it must be be the generic coalition associated to comporjent
EV(x()] = E[X (t)xX(t)] , _ 1 then coalitionSin excess
T . sign(x;j(t)) := 10 thi b »
= EX (0)Bu(b)] — EX"(OV(1) .0 nothing can be sai
= E[X (t)BUnom(t)] + E[x (t)BAU(t)] Trivially, the present developement, which is all based
EX" (t)Vhom(t)] — E[XT (1) Av(t)] on control strategy (3), fits the case whex¢) is revealed

—_— completely as abundantly elaborated in [4]. In this lase¢as
the fact that the GD knows(t) implies from (5) that he
= EX(1)BAu()] <O, knowseg(t) as well. Also, it is ir(1t)uitive to infer that in this last
where conditiorE[x" (t)Av(t)] = 0 is a direct consequence of set up, exact knowledge aft) can only influence positively
Assumption 4. But the above conditid{x" (t)BAu(t)] <0 the GD in terms of speed of convergence of allocations into
is satisfied sinc®Au(t) = —dsign(x), which in turn implies the core of the average game. All the above comments go
T back and try to clarify what was anticipated in Remark 11.1
E[x (1)BAu(t)] = E[-6[Ix(t)[l2] <O. where it was stated that it is not even necessary that the GD
m knows exactlye(t).

. V. NUMERICAL ILLUSTRATIONS
Corollary IV.1 The average allocation converges to the core

of the average game: Consider a 3 player cooperative gamense- 7, with the
o following intervals for values of coalitions:
tI|m a(t) e C(v(t)).

v({1}) €[0,4], v({2}) € [0,4], v({3}) €[0,4],

Prg;f:_ Fo_r thg %bgveucogditipn tg)l:_)e t:ug ithtsfufficesdto v({1,2}) € [0,4], v({1,3}) € [0,6],
prove i) Bu= v and ii) u€ U. Proving ii) is straightforwar
from u(t) = @(sign(x(t))) € U for all t > 0. Condition i) is a v({2,3}) €[0,7), v({1,2,3}) € [0,12).

direct consequence of Theorem IV.1. Actually convergencehe convex set/ is characterized by the above intervals.
in probability of (4) to zero means lims x(t) =0 and this From Assumption 4 GD knows the long run average game,
in turn impliesBu=v. B e, lim_»V(t) = Vhom We consider the choice of balanced
nominal game ag,om=[1 23456 10'. During simulations

. . ) _ the instantaneous game@) € 7 should satisfy the average
In this subsection we expand more on the informatioBenavior given by:

structure of the problem. In particular, we highlight hove th ‘
whole feedback on statgt) can be reviewed as the result lim = [ v(T)dT = Vhom
of an oracle-based procedure. t==tJo
To see this, let us start by recalling that the control sgate Next, we describe an algorithm to generate) € ¥ such
is based on the only sign of stat@) which can be expressed that the above condition holds true.

by

A. Comments on available information

X(t) = BU(t) — d(t) = g(t) — §t). (5) Algorithm:

1) Generatenrandom pointsgje ¥ c R™, i=1,2,---,m.
2) SolveR.p = Vnom, With R=1{rq, ra,--- rm|.

3) If p>0and1’p> 0, then go to 4) else go to 1).

The above condition relates stai¢) to the excess(t). Now,
with reference to componerjt the sign ofx;(t) yields:

1 g(t)>§(t) 4) RescaleR asR= (1"p)Randp asp= (1%
sign(xj(t) == 0 &t) =51 ®)  s)ifriev,i=12--,m then go to 6) else go to 1.
-1 g(t) <§t). 6) STOP

In the above condition, revieg (t) as a nonnegative thresh- By construction, of the algorithmynom is in the relative
old and notice that “the GD has access to the sigr;@f)” interior of the convex hull generated by columns of the
has the following interpretation: after submitting such anatrix R. If an instance of the game(t) is chosen as
threshold to an oracle, the GD is revealed whether the excasswith probability p; from the pair (R p), Assumption
exceeds such threshold or not. Recall that nonnegativehesgl is satisfied. For simulations we ran the algorithm 20
the threshold has its roots in the feasibility conditigh) €U times to generate a total of 140 points (or @R p) pairs)
for all t > 0 with feasible se as in (2). in #. Further, from each of the 20 pairs we take 2000
Nonnegativeness of the threshold provides us with mndom selections (using Matlalb andsrc function),
further comment on the information available to the GDwhich amounts to 4@00 instantaneous games$t). The
Actually, from the first condition in (6), we can concludenominal choice of allocations and surplus is taken as
that coalitions associated to a positive stetg are certainly Unom= [2.5 3 45 1.5 1 15 1.5 2 15|". It can be verified
in excess. This is clear if we observe thgign(x;(t)) =  thatBunom= Vhom.
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Choice of d: For simulations, the choice o is crucial

so as to ensureu(t) € U. This condition translates
We observe
-3 |BiTj| < (B'sign(x)), < 3; |BiJ'j |. A conservative estimate

t0 Umin < Upom + 6BTsign(x) < Umax-

of & is obtained asJmin < Unom® dMax{y |BiTj I} < Umax

For m =7, we have ma>{zj|BiTj|} = 2.11. For the

E[V(#)]

instantaneous game a negative allocation/surplus is n

allowed, soUnji, > 0.1. Furthermore, an allocation/surplus

greater than the value of grand coalition is not allowed,

S0 Umax < Vnom(N).1. We chosed = 0.75, which satisfies

the above stated requirements. The robust allocation rule

is implemented numerically with a stepsize Af= 0.01.

Next, we present performance results of the robust contr
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(a) Time plot ofxy 3 (t).
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(b) Time plot of X;3 5y (t).

Fig. 4. Performance of the robust control laagsign(x(t))).

law given by equation (3). From Theorem IV.X(t)
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VI. CONCLUSIONS AND FUTURE WORK

In this paper we derived a robust control law that ensures

the
the
the

average allocation vector is contained in the core of
average game. However, the control law is derived on
premise that GD knows apriori, the nominal allocation

vector. If this information is not available the derivation
of control law implicitly involves solving an LP problem.
Currently this work is in progress. By further relaxing the

information requirement, the problem can be treated as a

learning process where the GD is trying to learn the nominal

game from instantaneous games. We postpone working in

this direction for the future.

(1]

converges to zero in probability with a specific choice of[2]

control law. Fig. 4(a) illustrates this behavior (for cadialn

{1,3}). Further, by Corollary IV.1, the same control law 3
ensures that the average game is balanced in a long run,

in other words lim_»x(t) =0 and Fig. 4(b) illustrates
law
ensuresE[V(x(t))] is negative for allt > 0, we illustrate

this behavior (for coalition{1,3}). The control

(4]

(5]

this behavior in Fig. 5. From Corollary V.1, the average
allocation vector is contained in the core of the averaggg

game, i.e. lim.a(t) € C(v(t)). However, the control law

does not guarantee the convergence of allocation vectors {8l
the nominal allocation vector on a long run. We illustrate g

this observation in Fig. 6.
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