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In this work we analyze the dynamics of a quantum particle subject to an asymmetric bistable

potential and interacting with a thermal reservoir. We obtain the time evolution of the popu-

lation distributions in both energy and position eigenstates of the particle, for di®erent values of

the coupling strength with the thermal bath. The calculation is carried out using the Feynman-
Vernon functional under the discrete variable representation.
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1. Introduction

A feature which makes a strong di®erence-between the behaviour of a quantum

system with respect to a classical one is quantum tunneling. This e®ect often occurs

in condensed matter physics, such as Josephson junctions and hetero-nanos-

tructures.1,2 In a dissipative quantum system interacting with a thermal bath, the

quantum tunneling can play an important role on the relaxation time from a

metastable state.3 During the last few years, the e®ects of environment on quantum

tunneling phenomenon have been intensively studied.4�7 Commonly, environment

is modelled as a number N (usually N!1) of harmonic oscillators considered at

thermal equilibrium, i.e. thermal bath, interacting with the quantum system through

a bilinear coupling.8�12 In this context, symmetric and asymmetric quantum bistable

systems are good enough to analyze superconducting quantum bits and decoherence
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phenomena.13,14 Obtaining longer coherence times in such systems, when they

interact with noisy environment, is one of the major requirements in devising and

manufacturing devices capable of storing quantum bits. In this respect, a main topic

is to know the properties of a particle subject to an external potential, in the presence

of random °uctuations. It can also be useful to study the changes occurring in the

dynamics of a quantum particle a®ected by noisy perturbations, when di®erent

shapes of the potential pro¯le are used. Potentials which model the interaction with

laser beams have most interesting implications for quantum systems such as the

coherent destruction of tunneling,15 the e®ect of quantum stochastic resonance,16 and

the control and reduction of decoherence in open quantum systems.17 In this work, in

order to analyze the evolution of a quantum particle subject to time-independent

asymmetric bistable potential and a®ected by environmental noise, we use the

Caldeira-Leggett model,4 which allows us to derive a quantum mechanical analogue

of the generalized Langevin equation. The study is performed by using the approach

of the Feynman-Vernon functional18 in discrete variable representation (DVR).19,20

2. The Model

Our system consists of a quantum particle with mass M , interacting with a thermal

bath which plays the role of environment. The dynamics of the particle is investigated

by using the Caldeira-Leggett model.4 In our analysis, q̂ and p̂ are one-dimensional

operators for position and momentum, respectively.

The unperturbed Hamiltonian of the system is

Ĥ 0 ¼
p̂ 2

2M
þ V̂ 0ðq̂Þ ð1Þ

where

V̂0ðq̂Þ ¼
M 2!4

0

64�U
q̂ 4 � M!4

0

4
q̂ 2 � q̂�; ð2Þ

is the asymmetric bistable potential shown in Fig. 1. Here, � and �U are the asym-

metry parameter and the barrier height, respectively, and !0 is the natural oscillation

frequency. In our study we consider only 8 energy eigenstates. In Fig. 1 these energy

eigenvalues are shown on the vertical axis. In the same ¯gure, on the horizontal axis,

we indicate the 8 position eigenvalues, obtained by using the DVR-state jq�i. The
black circle marks the initial position of the particle, that is the system at t ¼ 0 is in a

state given by a proper linear combination of the 8 eigenstates jq�i considered in our

analysis. The curves shown in the ¯gures are the eigenfunctions corresponding to the 8

energy eigenvalues.

In order to describe the dynamics of the particle interacting with environment, we

consider the following Hamiltonian

ĤðtÞ ¼ Ĥ 0ðtÞ þ ĤB; ð3Þ
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where

ĤB ¼
XN
j¼1

1

2

p̂ 2
j

mj

þmj!
2
j x̂j �

cj
mj!

2
j

q̂

 !
2

" #
ð4Þ

is the Hamiltonian which describes the thermal reservoir and its interaction with the

particle. As usual, the thermal bath is depicted by an ensemble of N harmonic

oscillators with spatial coordinate x̂j, momentum p̂j, mass mj, and frequency !j. The

coe±cients cj are the coupling constant between system and thermal bath.

We note that, as N ! 1, from Eq. (4) a continuous spectral density is obtained.

In our study we use the Ohmic spectral density characterized by an exponential

cut-o® !c

Jð!Þ ¼ �! exp � !

!c

� �
: ð5Þ

Here, � ¼ M� with � the strength of the coupling between system and heat bath. We

note also that !c � !0; !j; �.

Because of the bilinear coupling between the coordinate q̂ of the system and the

coordinate x̂ of the thermal bath, this model is the quantum analogue of a classical

system a®ected by a constant random force.7 In the next two subsections we brie°y

summarize the mathematical approach used in this study.
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Fig. 1. Potential pro¯le V0ðqÞ (see Eq. (2)) for �U ¼ 3 and � ¼ 0:5. Energy levels and corresponding
eigenstates considered in our analysis are indicated by horizontal lines and curves, respectively. The energy

eigenvalues are E0 ¼ �2:01, E1 ¼ �0:92, E2 ¼ 0:11, E3 ¼ 1:08, E4 ¼ 1:97, E5 ¼ 2:69, E6 ¼ 2:76,

E7 ¼ 3:27. By using the DVR-state jq�i, eigenvalues of the position operator are obtained and shown on the

horizontal axis: q0 ¼ �4:17, q1 ¼ �1:38, q2 ¼ 1:71, q3 ¼ 3:02, q4 ¼ 4:05, q5 ¼ 4:97, q6 ¼ 5:86, q7 ¼ 6:81. The
initial position is qstart ¼ 0 (black circle).
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2.1. The Feynman-Vernon approach

In order to make our analysis independent on the properties of the heat bath, we trace

out the degrees of freedom of the reservoir by using the reduced density operator

�ðqf ; q 0f ; tÞ ¼
Z

dq0

Z
dq

0
0Kðqf ; q 0f ; t; q0; q 00; t0Þ�Sðq0; q 00; t0Þ; ð6Þ

where the propagator K is given by

Kðqf ; q 0f ; t; q0; q 00; t0Þ ¼
Z qðtÞ¼qf

qðt0Þ¼q0

Dq

Z q 0ðtÞ¼q 0
f

q 0ðt0Þ¼q00

Dq 0A½q�A�½q 0�FF V ½q; q 0� ð7Þ

andA½q� ¼ expðiðSS ½q�=}ÞÞ with SS ½q� being the classical action functional. In Eq. (7),

FF V ½q; q 0� ¼ expð�ð�F V ½q; q 0�=}ÞÞ is the Feynman-Vernon (FV) in°uence functional

with the in°uence weight functional �F V ½q; q 0� depending on the bath correlation

function.7

2.2. Discrete variable representation

By solving the eigenvalue equation connected with the Hamiltonian Ĥ0 (see Eq. (1)),

we get the energy eigenstates (see vertical axis in Fig. 2). Within the framework of the

discrete variable representation (DVR)19 it is possible to obtain the basis fjq�ig of

eigenstates of the position operator q̂ (see horizontal axis in Fig. 2).
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Fig. 2. Time evolution of the diagonal elements, �q� (� ¼ 0; 1; . . . ; 7), of the density matrix in q-rep-
resentation. The matrix elements �q� are the population distributions in the eight position eigenstates

considered. The time evolution is obtained for di®erent values of the coupling strength: (a) � ¼ 0:01, (b)

� ¼ 0:4, (c) � ¼ 1 and (d) � ¼ 2:8.
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In this representation, using Eq. (7), the continuous real-time path integral given

in Eq. (6) becomes a discrete path with m transitions at times t1; t2; . . . ; tm

��m �mðtÞ ¼
X
�0 �0

Z �ðtÞ¼�m

�ðt0Þ¼�0

D�

Z 	ðtÞ¼	m

	ðt0Þ¼	0

D	C½�; 	�FF V ½�; 	���0 �0 ð8Þ

where C½�; 	� ¼ A½q�A�½q 0� and the in°uence weight functional of the FV functional is

�FV ½�; 	� ¼ �
Xm
l¼1

Xl�1

j¼0

�lSðtl � tjÞ�j � i
Xm
l¼1

Xl�1

j¼0

�lRðtl � tjÞ	j: ð9Þ

Here, the absolute coordinates qj are replaced by the discrete relative coordinates

�jðtÞ ¼ qjðtÞ � q 0jðtÞ and center of mass coordinates 	j ¼ qjðtÞ þ q 0jðtÞ.
Because we are interested in the evolution of the populations, in Eq. (8) we

consider the diagonal terms ��m�m
ðtÞ. Applying the non-interacting cluster approxi-

mation (NICA),20 we get the following master equation (ME)

���ðtÞ ¼
XN
�¼1

Z t

t0

dt 0H��ðt� t 0Þ���ðt 0Þ; � ¼ 1; . . . ;N ; ð10Þ

where N is the number of eigenstates and the kernel H, which indicates the cluster

matrix, takes into account of all possible transitions in the DVR paths.3

According to the path integral technique based on the Feynman-Vernon theory,

using ME corresponds to take into account only the paths connecting diagonal

elements of the reduced density matrix of the position operator q̂.20

Within NICA we neglect all intercluster interactions. We assume furthermore

that the characteristic memory time 
mem of the matrix elements of H in Eq. (10) is

the smallest time scale of the problem (Markovian limit). By this assumption we

obtain the following Markovian approximated master equation

�
:
��ðtÞ ¼

XN
�¼1

���ðtÞ���ðtÞ ð11Þ

with the time-dependent rate coe±cients

���ðtÞ ¼
Z 1

0

d
H��ðt; t� 
Þ: ð12Þ

Since the diagonal elements ���ðtÞ obey Eq. (11), the long-time dynamics is ruled

by a single exponential decay. Thus, Eq. (11) is a set of coupled ordinary ¯rst-order

di®erential equations, which can be decoupled via a diagonalization procedure. The

diagonalized rate matrix reads

XN
�1;�2¼1

ðS�1Þ��1
��1�2S�2� ¼ �����; ð13Þ
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where S�� denotes the element of the transformation matrix and �� the eigenvalues

of the rate matrix. The general solution of the Markov approximated ME is

���ðtÞ ¼
XN
�;�¼1

S�� ðS�1Þ��e��ðt�t0Þ���ðt0Þ: ð14Þ

Because of the conservation probability, for the diagonal matrix elements holds

���ðtÞ ¼ �
X
� 6¼�

���ðtÞ: ð15Þ

This condition implies that one eigenvalue equals zero, i.e. �1 ¼ 0. Therefore,

���ðtÞ ¼ �1
�� þ

XN
�¼2

XN
�¼1

S�� ðS�1Þ��e��ðt�t0Þ���ðt0Þ; ð16Þ

with �1
�� ¼PN

�¼1 S�;1ðS�1Þ1;����ðt0Þ being the asymptotic population of the DVR-

state jq�i. The rate which determines the dynamics over the largest time-scale is the

quantum relaxation rate

� � minfj<ð��Þj; � ¼ 2; . . . ;Ng; ð17Þ
where �� are the eigenvalues of the rate matrix and j<ð��Þj are the non-zero absolute

values of the real part of ��.

In the next section we focus our study on the medium-short time behavior of the

system, using the largest ��1
� as timescale to analyze the non-equilibrium dynamics of

the quantum particle in the presence of thermal °uctuations.

3. Results

In this section, we study the time evolution of our quantum particle taking into account

the 8 energy levels shown in Fig. 1. We restrict the study to the 8 lowest levels of the

system, becausewe are interested in the dynamics of a particle that can not reach energy

levels higher than the relative maximum of the potential. In particular, we intend to

analyze the time behaviour of the populations for di®erent values of the coupling

strength, focusing on the time behaviour of the state jq0i (left side well of the potential).
By using the DVR-state jq�i, as initial condition for the particle we choose the

non-equilibrium position qstart ¼ 0. The corresponding state is given by

jqstarti ¼ c1jq1i þ c2jq2i ð18Þ
with c1 ¼ 0:745 and c2 ¼ 0:667.

By integrating Eq. (10) for di®erent values of the parameter �, which represents

the intensity of the environmental noise, for each eigenstate jq�i we obtain the time

behaviour of the corresponding population �q� � ��� (see Fig. 2). Moreover, by a

simple change of basis, we calculate the time evolution of the populations also in the

energy representation (see Fig. 3). As one can see from Eqs. (11), (13), for each value
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of � there are N relaxation times ��1
� . Here, we consider the maximum of these

relaxation times, and note that this time increases rapidly for larger values of �.

Therefore, to describe the time evolution of the system for di®erent values of �, we

choose as time scale 
 the largest of the relaxation times obtained for � ¼ 0:01 and

calculate the evolution of the system for a maximum time t ¼ 600 
 . This choice

allows to follow the transient dynamics of the system for low and intermediate values

of the coupling constant (see panels a, b, c in Figs. 2 and 3). For higher values of � the

system can not reach the regime condition, because of the presence of relaxation

times longer than the maximum time chosen to calculate the numerical solution (see

panel d in Figs. 2 and 3). This delay in the system dynamics can be explained by the

quantum Zeno e®ect, responsible for the suppression of the tunnel e®ect. Moreover,

we observe in Fig. 2 a nonmonotonic behaviour of the population �q0 as a function of

the time. Finally, as a consequence of the quantum Zeno e®ect, the eigenstate jq0i can
be maximally populated at di®erent times, varying the coupling strength and,

therefore, the value of �. This could be useful in view of placing a quantum particle in

a given position at a ¯xed time.

We note that it would be interesting to compare our results with those obtained in

the case of a harmonic oscillator coupled with a thermal bath without any cuto®, as

studied in previous works.21�23 On physical grounds we expect that the time beha-

viour of the purity of the system state is strictly connected with the relaxation rates.
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Fig. 3. Time evolution of the diagonal elements, �
E�

(� ¼ 0; 1; . . . ; 7), of the density matrix in energy
representation. The matrix elements �

E�
are the population distributions in the eight energy eigenstates

considered. The time evolution is obtained for di®erent values of the coupling strength: (a) � ¼ 0:01, (b)

� ¼ 0:4, (c) � ¼ 1 and (d) � ¼ 2:8.
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In our analysis the relaxation rates have been used to determine the timescale for

obtaining the time evolution of the population distributions. Moreover, we found a

freezing phenomenon of the state of the system due to the Zeno e®ect.24 Finally, we

note that the complete description of the dynamics of our initial pure state should be

obtained by following the time evolution of all elements of the density matrix as

expressed by Eq. (8). This will be subject of future investigations.

4. Conclusion

In this work, we analyze the dynamics of a quantum particle subject to an asym-

metric bistable potential and interacting with noisy environment. The study is per-

formed exploiting the approach of the Feynman-Vernon functional18 within the

framework of the discrete variable representation.19,20 By using the Caldeira-Leggett

model,4 we describe the transient dynamics of the system for di®erent values of the

coupling strength between the particle and the noisy environment, modelled as a

thermal bath. Due to the quantum Zeno e®ect, responsible for the suppression of the

tunnel e®ect, a delayed dynamics of the system is observed for higher values of the

coupling strength. We ¯nd also that the metastable state inside the left side well of

the potential can be populated at di®erent times varying the value of the coupling

strength.
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