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Abstract. 

In this paper we analyze the upper tail of the distribution of tourism supply in Portugal, from 2002 to 2009, 

using data belonging to the Instituto Nacional de Estatística database. 

Tourism supply is defined in terms of lodging capacity of hotel establishments in about 250 tourism 

destinations. 

It is shown that the empirical distribution of tourism supply in Portugal is heavy-tailed and consistent with a 

power law behavior in its upper tail. Such behavior seems to be stable over the years, provided that for the 

time horizon covered by our data sets, the scaling parameter is always close to the value of 2. 

The power law hypothesis is positively tested by making use of graphical and analytical methods. 
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1. Introduction. 

Many of the empirical quantities scientists measure, as for instance the heights of human beings or the air 

pressure, have a typical value around which individual measurements are centered. For these quantities the 

typical value is therefore representative of most observations. 

The sizes of cities, people’s personal wealth, the occurrence of words in a English text, and many other 

quantities, instead, vary over an enormous dynamic range of values, sometimes many orders of magnitude, 

making their typical or average value not a characterizing measurement. For these quantities the probability 

of measuring a particular value varies inversely as a power of that value and, therefore, they are said to 

follow a power law, also known as Zipf’s law or Pareto distribution. 



Power laws appear widely in physics, biology, engineering, astronomy, economics, finance, computer 

science, demography, statistics and social sciences. 

Mathematically, a quantity x is said to follow a power law if its probability density function (PDF), f(x), is 

such that  

α−= Cxxf )(  for          (1) minxx ≥

where  C  is a normalization constant, α  is a constant known as the scaling parameter or tail index, and  xmin  

is a lower bound that guarantees the power law behavior1. Very often, indeed, the power law only applies for 

values greater that some  xmin  related to the tail of the distribution. The scaling parameter typically lies in the 

range 2 < α < 3, although there are occasional exceptions2. 

The purpose of the study is to verify if the upper tail of the distribution of tourism supply in Portugal follows 

a power law and to give estimates of the tail index. Data belonging to the Instituto Nacional de Estatística 

database 3 have been used. 

The size of tourism supply is defined in terms of lodging capacity of hotel establishments (hotels, boarding 

houses, inns, lodging houses, motels, apartment hotels, tourist villages and tourist apartments) in about 250 

tourism destinations in Portugal. 

The time horizon spans from 2002 to 2009 to study whether the distribution of tourism supply is persistent 

over time4. 

The power law hypothesis has been tested using both graphical and analytical methods5.  

This study is original in two key regards. In general, no prior research has focused on the empirical 

distribution of the lodging capacity in a tourism destination within the framework of the extreme value 

theory and, in particular, this is the only example we know of a study centered on the distribution of tourism 

supply in Portugal. 

                                                 
1 (1) represents the probability density function of a continuous power law distribution. For mathematical convenience, 
the continuous form is commonly used to also approximate a discrete power law behaviour, whose formula is not as 
simple, by rounding the continuous power law value to the nearest integer. For more details see [3]. 
2 The value of α is always assumed greater than 1 since distributions with α ≤ 1 are not normalizable and hence cannot 
occur in nature. 
3 http://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE. 
4 Actually, 2002 and 2009 are respectively the first and the last data set available for what concerns the lodging capacity 
of tourism destinations in Portugal. 
5 The statistical techniques used in the present study are discussed in [3]. 



The structure of the paper is as follows. Section 2 describes the data sets used for the analysis. Section 3 

focuses on power law and tail index estimation. Section 4 describes several graphical methods for verifying 

the power law hypothesis. Section 5 presents the statistical techniques used to support the qualitative 

analysis. Section 6 concludes. 

 

2. Data description and basic statistics 

The unbalanced panel we use in our analysis is part of the database of the Instituto Nacional de Estatística. 

Data are available for periods since 2002 to 2009 and refer to tourism destinations where a lodging service 

can be provided to tourists. 

Table 1 summarizes the basic descriptive statistics of our panel. For any year it shows the number of tourism 

destination taken into consideration, the total number of bed-places in hotel establishments (hotels, boarding 

houses, inns, lodging houses, motels, apartment hotels, tourist villages, and tourist apartments), the average 

lodging capacity, its standard deviation, and the maximum and minimum lodging capacity. 

 

Year Tourism 
destinations 

Lodging 
capacity Mean St. Dev Max Min 

2002 245 239903 979,1959 3538,593 35853 8 

2003 245 245778 1003,176 3607,172 37210 12 

2004 245 253852 1036,131 3754,773 37906 8 

2005 250 263814 1055,256 3850,631 40294 12 

2006 251 264037 1051,94 3788,449 39852 13 

2007 252 264747 1050,583 3763,972 39712 16 

2008 255 273975 1074,412 3827,751 40575 16 

2009 254 273804 1077,969 3839,241 40227 12 

Table 1. Basic statistics of the Portuguese tourism supply data sets. 
 

3. Power laws and tail index estimation 

The most common approach for testing empirical data against a hypothesized power law distribution is to 

observe that (1) implies the linear form 

log ( ) log logf x x Cα= − +          (2) 



 showing a straight line on a doubly logarithmic plot (the so called Zipf’s plot). 

Therefore, the presence of a linear relationship on the log-log axes can be seen as a first signal of power law 

behavior in the distribution, possibly for , with the scaling parameter  α  given by the absolute slope 

of the straight line. 

minxx ≥

There are several techniques to estimate the parameter α and the lower bound xmin. In this paper we have used 

the maximum likelihood estimators (MLEs) for the scaling parameter and the Kolmogorov-Smirnov (KS) 

statistic for estimating the lower bound. 

The MLE for the discrete case is [3] 
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whose average error decays as Ο  and become smaller than 1% of the value of  α  as  xmin )( 2
min
−x 6. 

Table 2 shows the estimates of  xmin  and  α  along with the number of tourism destinations  whose 

total lodging capacity is greater than . The last column therefore shows the number of firms for which 

the power law fitting may be more correct. 

minx̂xN ≥

minx̂

 

Year minx̂  â  minx̂xN ≥  

2002 456 1.9500 74 

2003 489 1.9500 72 

2004 529 1.9700 70 

2005 596 2.0200 69 

2006 585 1.9900 69 

2007 668 2.0000 61 

2008 590 2.0200 74 

2009 620 2.0100 70 

Table 2. Power law fits of the Portuguese tourism supply data sets. 



All the values of  a   are close to 2.0 and are, therefore, consistent with the above mentioned rangeˆ 6. 

Moreover, the persistence of the value for eight years suggests that the upper tail of the distribution of 

Portuguese tourism supply is pretty stable over time. This result, together with the increase of  over 

time, can suggest a certain translation invariance of the lodging capacity distribution. 

minx̂

Fig. 1 shows the distributions of our data sets with the solid line representing best fits to the data using the 

MLE. In those and all subsequent plots, we show the complementary cumulative distribution function 

(CDF), 1-F(x), where F(x) is given by  
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provided that the visual form of the CDF is more robust than that of the PDF against fluctuations due to 

finite sample sizes, particularly in the tail of the distribution.  

The plots definitely show a clear linearity in the right tail of the CDF with linearity being persistent over 

time. 

 

4. Graphical testing of the power laws hypothesis 

The Zipf’s plots shown in Fig 1 give us just a first clue that actual data are effectively drawn by some power 

law distribution7. Yet, since a log-normal distribution or an exponential distribution can look roughly 

straight on a log-log plot as well, a further graphical analysis of data turns out to be necessary for supporting 

the hypothesis of a power law behavior. Therefore, we study the tail behavior of our distributions within the 

framework of the extreme value theory and present the results of two specific tools: the mean excess function 

(MEF), and the quantile-quantile plot (QQ plot). 

The MEF of a sample X1, X2, …, Xn is defined as 
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6 Unfortunately, in the literature there are not other empirical studies of the same type to compare our results to. 
7 On the contrary, if the CDF were non linear in the right tail, the power law hypothesis would be ruled out without the 
need of any other analysis. 
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Fig. 1. The cumulative distribution functions and their maximum likelihood power law fits for the Portuguese tourism supply data sets. 
 



that is the sum of the excesses over the threshold u divided by the number of data points exceeding u (I = 1 if 

Xi > u and 0 otherwise).  

A MEF with an increasing linear trend is a symptom of the presence of a power law in the right tail of the 

distribution. 

Fig. 2 shows the mean excess function plot (the so-called meplot) for years 2005, 2006, 2007, 2008, 20098. 

The upward trend shown by the plot confirms a heavy-tailed distribution of data and its persistence over 

time. 
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Fig. 2. The MEF of the Portuguese tourism supply for the last five years of our data sets. 
 

In statistics, a QQ-plot (quantile-quantile plot) is a convenient visual tool to examine whether a sample 

comes from a specific distribution. Specifically, the quantiles of an empirical distribution are plotted against 

the quantiles of a hypothesized distribution. If the sample comes from the hypothesized distribution or a 

linear transformation of it, the QQ-plot is linear. 

In the extreme value theory, the QQ-plot is typically plotted against the exponential distribution (i.e, a 

distribution with a medium-sized tail) to measure the fat-tailness of a distribution. If the sample comes from 

an exponential distribution, the points on the graph would lie along a straight line. A concave presence in the 

                                                 
8 The other years in the panel are not shown in the plot just to make it more readable. 



plot would indicate a fat-tailed distribution, whereas a convex departure is an indication of a short-tailed 

distribution. 

Fig. 3 shows the QQ plots for our data sets. The concave form can be easily recognized in any of the plots 

and, therefore, these findings are in agreement with previous qualitative results. 

 

5. The goodness-of-fit tests. 

Methods described until now are very useful tools for studying the tail behavior of an empirical distribution, 

but they are not sufficient. 

Therefore, the goodness of our power law hypothesis is further tested using a goodness-of-fit test, which 

allows us to determine a p-value that quantifies the extent to which a given distribution represents a good 

model for actual data. 

Such test is based on the measurement of the distance between the distribution of the empirical data and the 

hypothesized model. This distance is compared with distance measurements for comparable synthetic data 

sets drawn from the same model, and the p-value is defined to be the fraction of the synthetic distances that 

are larger than the empirical distance. If  p is large (close to 1), then the difference between the empirical 

data and the model can be attributed to statistical fluctuations alone; if it is small, the model is not a plausible 

fit to the data. 

There are a variety of measures for quantifying the distance between two probability distributions, but for 

nonnormal data the commonest is the Kolmogorov-Smirnov (KS) test. 

Table 3 reports the KS statistics for the fit to the power-law model for any year in the panel. p-values are 

statistically significant for each of the years under study, indicating that our data sets are consistent with a 

power-law distribution. 

 

Year 2002 2003 2004 2005 2006 2007 2008 2009 

p-value 0.79 0,58 0.62 0.72 0.67 0.54 0.58 0.58 

Table 3. p-values for the fit to the power-law model for Portuguese tourism supply data. 
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Fig. 3. QQ plots of the Portuguese tourism supply data against standard exponential quantiles. 



Conclusions. 

In this paper we have analyzed the distribution of tourism supply in Portugal, measured by the lodging 

capacity of hotel establishments in about 250 tourism destinations from 2002 to 2009, by making use of both 

qualitative and quantitative methods. 

We have firstly followed the common practice of identifying power-law distributions by the approximately 

straight-line behavior of a histogram on a doubly logarithmic plot.  

Yet, since such straight-line behavior is a necessary but by no means sufficient condition for true power-law 

behavior, we have also used a set of techniques that allow us for validation and qualification of power laws. 

Our qualitative analysis shows that there is objective evidence for the heavy-tailed distribution of tourism 

supply in Portugal, indicating that the number of tourism destinations with a large lodging capacity is 

noticeably greater than what one would expect with a simple Gaussian distribution. 

Moreover, supported by our tests results, we do also claim that the power law hypothesis for the distribution 

of Portuguese tourism supply turns out to be, statistically speaking, a reasonable description of the data.  

These two characteristics have shown to be robust over time. 

For planners involved in developing tourism destinations (international tourism development organizations, 

government agencies, as well as private tourism companies and investors) quantifying the heavy tail can be 

important to address questions concerning future infrastructure needs. The upper tail is indeed related to the 

largest lodging capacities and to their frequencies. 
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