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Abstract Classical cooperative game theory is no longer a suitable tool for those
situations where the values of coalitions are not known with certainty. We consider a
dynamic context where at each point in time the coalitional values are unknown but
bounded by a polyhedron. However, the average value of each coalition in the long run
is known with certainty. We design “robust” allocation rules for this context, which
are allocation rules that keep the coalition excess bounded while guaranteeing each
player a certain average allocation (over time). We also present a joint replenishment
application to motivate our model.

Keywords Cooperative games · Dynamic games · Joint replenishment

1 Introduction

Classical cooperative game theory is no longer a suitable tool for those situations where
the values of coalitions are not known with certainty (see, e.g., Suijs and Borm 1999;
Suijs et al. 1999; Timmer et al. 2003, 2005). In this paper, we consider a sequence
of games, where, differently from Filar and Petrosjan (2000) and Haurie (1975), the
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24 D. Bauso, J. Timmer

average coalitions’ values (over time) are known with certainty but the instantaneous
values are unknown but bounded by a polyhedron. This model may be seen as a
dynamic extension of the recently introduced cooperative interval games (cf. Alparslan
Gök et al. 2008a,b,c) where a coalition value is a closed interval on the real line.

At each point in time a certain revenue is allocated to each player. In general,
these revenues will not meet the actual instantaneous value of the coalitions. To keep
track of this, an excess vector stores the difference between the instantaneous value of
each coalition and the sum of the allocated revenues to all its players. [This excess is
different from the coalitional excess that appears, e.g., in the definition of the nucleolus
(Schmeidler 1969).] We may interpret this excess vector as the state variable describing
the history of our dynamic system. Under the assumption that the only information
available at each time is the excess of the coalitions, our goal is to design “robust”
allocation rules, i.e., allocation rules that (i) keep the excess vector bounded within a
pre-defined threshold ε at each time (we will refer to such rules as ε-stabilizing), while
(ii) guaranteeing a certain average allocation vector over time. Justification for keeping
the excess vector bounded follows from the observation that a fair allocation should
not allocate maximum excess to the same coalition each time. Our problem of interest
may arise in a number of real life situations as, for instance, in joint replenishment
applications (cf. Sect. 2.3). One may notice that our problem is similar in spirit to
classical problems in machine learning (cf. Cesa-Bianchi et al. 2006; Cesco 1998;
Lehrer 2002). Therefore, after introducing our allocation rule (or algorithm, since it
is an iterative procedure), we compare it to the algorithms proposed in Cesco (1998)
and Lehrer (2002).

This paper is organized as follows. In Sect. 2, we describe the problem. In Sect. 3,
we design the allocation rule. In Sect. 4, we compare our algorithm to some existing
algorithms. In Sect. 5, we consider allocation rules based on the Shapley value. Finally,
in Sect. 6, we draw some conclusions.

2 Problem statement

2.1 Family of balanced games

We start by introducing the definition of a family of games with coalitions’ values
lying on pre-assigned closed intervals. Let a game in coalitional form 〈N , v〉 be given
where N = {1, . . . , n} is a set of n players and v is the characteristic function returning
the value of each coalition S ⊆ N . Henceforth let the inclusion S ⊆ N mean “all
coalitions of N except the empty set ∅”. Denote by m = 2n − 1 the number of all
coalitions of N except the empty set ∅ and, with a little abuse of notation, let also
v ∈ R

m be the vector of coalitions’ values, namely, v = [v(S)]S⊆N .

Definition 1 A family of games 〈N ,V〉 is the set of games 〈N , v〉 obtained when v

varies within a polyhedron V = {v ∈ R
m : vmin ≤ v ≤ vmax}, where the bounds vmin

and vmax are given.

For the sake of simplicity, throughout this paper, we always assume v ≥ 0. Also,
for the sake of notation, we henceforth denote by 2N the family of subsets of N . Let
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Robust dynamic cooperative games 25

us recall the definition of a balanced map and a balanced game for games 〈N , v〉 (see,
e.g., Tijs 2003, Definition 11.5). A map λ : 2N \{∅} → R

+ is called a balanced map if∑
S⊆N λ(S)eS = eN . Here, R

+ is the set of nonnegative real numbers and eS ∈ R
n is

the characteristic vector for coalition S with eS
i = 1 if i ∈ S and eS

i = 0 if i ∈ N\S.
Also, an n-person game 〈N , v〉 is called a balanced game if for each balanced map
λ : 2N \{∅} → R

+,

∑

S⊆N

λ(S)v(S) ≤ v(N ). (1)

If the above condition is satisfied for each game v ∈ V , we say that the polyhedron
V describes a family of balanced games, as established more formally in the next
definition.

Definition 2 A family of balanced games 〈N ,Vb〉 is the set of games 〈N , v〉 obtained
when v varies within a polyhedron

Vb = {v ∈ V : condition (1) holds},

where the bounds vmin and vmax are given.

Sets of balanced games can also be found in the work of Kranich et al. (2005) and
Lehrer (2002).

Next, let us revisit the notions of core and allocation rules. Indicate with ∆n the
simplex in R

n and recall that a game is balanced if and only if the core is nonempty
(Bondareva 1963; Shapley 1967). By definition each game 〈N , v〉 with v ∈ Vb is
balanced, and so the core C(v),

C(v) =
{

a ∈ R
n : a

v(N )
∈ ∆n,

∑

i∈S

ai ≥ v(S) for all S ⊆ N

}

,

is nonempty. This means that there exists an allocation a ∈ C(v) of v(n) with the
interpretation that no coalition has an incentive to split off from the coalition N .
Now, the problem is to find an allocation rule a(v) such that a(v) ∈ C(v) for all
games v ∈ Vb. To solve this, first observe that the core is a convex set described by
linear equations and inequalities. For our purpose it is useful to change all inequalities
into equations. Therefore, we first introduce a vector of nonnegative surplus variables
s = [s1, . . . , sm−1]′ where ζ ′ denotes the transposed of a given vector ζ . Each surplus
variable corresponds to a coalition of players and describes the difference between the
allocated value and the coalitional value,

∑
i∈S ai − v(S). Notice that we only need

m − 1 surplus variables because
∑

i∈N ai = v(N ) due to the efficiency condition of
the core. Further, we introduce an incidence matrix B ∈ R

m×n with the characteristic
vectors eS as rows, and an augmented matrix A ∈ R

m×(n+m−1) defined by

A =
⎡

⎣B

∣
∣
∣
∣
∣
∣

−I
− − −−

0 . . . 0

⎤

⎦, (2)
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26 D. Bauso, J. Timmer

where I is the (m − 1)-dimensional identity matrix. Now, finding an allocation rule a
in the core C(v) corresponds to finding a so-called allocation vector u ∈ R

n+m−1 in
the set

U(v) = {u : Au = v, u ≥ 0} (3)

because if u ∈ U(v) then u = [a
s

]
for some a ∈ C(v). Observe that, in general, U(v)

is a polyhedron of dimension n − 1.

2.2 Dynamic system

Given the definition of family of balanced games, we now consider a sequence of
games that fluctuates in the bounded polyhedron Vb. We denote this by

v(t), t = 1, 2, . . . with v(t) ∈ Vb for all t (4)

and v(t) = [v(t, S)]S⊆N is the vector of coalitional values. The values of v(t) and
v(t +1) are not correlated, which means that we cannot describe transitions from v(t)
to v(t + 1). This also implies that we cannot take v(t) as a state variable and define
dynamics (neither deterministic nor stochastic) on it. On the contrary, it is realistic to
assume that we know with certainty the average vector of coalitions’ values v̄, being
defined by

v̄ = lim
T −→∞

1

T

T∑

k=0

v(t). (5)

Obviously, v̄ characterizes the sequence of games under consideration.
Further, assume that allocations to players are made at a higher rate than the rate of

change of the coalitional values, which equals 1. Allowing different rates means that
he who allocates the revenues provides a faster response in reply to the excesses of
the coalitions. We will show later on that faster allocations allow for lower excesses.
More precisely, let the integer number 1/Θ be the rate of allocations. Then Θ is the
time between two successive allocations. To facilitate our analysis, we stretch the time
scale by the rate 1/Θ and consider a new sequence of games, namely

v(k) = v(t)Θ, k = t − 1

Θ
+ 1, . . . ,

t

Θ
, t = 1, 2, . . . . (6)

This new sequence of games has the following interpretation. In the original time
interval (t − 1, t] the vector of coalitional values equals v(t). We distribute these
values equally over the 1/Θ allocations that occur in this time period, so this results
in values v(t)Θ for each point in time where allocations are made. This way we can
ensure that the total amount allocated to the players in the new interval ((t−1)/Θ, t/Θ]
does not exceed the available amount v(t, N ).
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Robust dynamic cooperative games 27

If we use the notation VΘ
b = Θ · Vb, the sequence of games Eqs. 4 and 5, is

equivalent to the sequence of games

v(k), k = 1, 2, . . . with v(k) ∈ VΘ
b for each k = 1, 2, . . .

v̄ = limT −→∞ 1
T

∑T
k=0 v(k)

(7)

where v̄ = Θ v̄. In the remainder of this paper, we will refer to the sequence of games
in Eq. 7.

Now, denote by x(k + 1) ∈ R
m a vector of variables describing the aggregate

coalition excesses over all previous games v(1), . . . , v(k) (the value x(0) is the excess
at time 0), i.e.,

x(k + 1, S) = x(k, S) +
∑

i∈S

ai (k) − (sS(k) + v(k, S)) for all S ⊆ N , (8)

where ai (k) is the revenue allocated to player i and sS(k) is a desired surplus for coa-
lition S. Roughly speaking, the coalition excess at time k is the difference between the
sum of the allocated revenues to the players of the coalition and the value of the coa-
lition increased by a desired surplus for that coalition. The aggregate coalition excess
x(k +1, S) is the coalition excess summed over all previous games v(1), . . . , v(k) and
therefore represents the state of the system (x(k) describes the history of the system).
We rewrite Eq. 8 in the following matrix form

x(k + 1) = x(k) + Au(k) − v(k), v(k) ∈ VΘ
b , k = 1, 2, . . . , (9)

where u(k) = [a(k)
s(k)

]
, a(k) = [ai (k)]i∈N and s(k) = [sS(k)]S⊂N . The condition

u(k) ≥ 0 is omitted for the sake of notation. Now, let the vector ū ∈ U(v̄) be arbitrarily
chosen, where v̄ is assigned once given the sequence of games (Eq. 7). The following
lemma recalls a result obtained in Bauso et al. (2006).

Lemma 1 (Average constraint) Let the sequence of games (Eq. 7) be given. There
exists an allocation rule f : R

m −→ R
n+m−1 such that for u(k) = f (v(k)),

Au(k) = v(k) (10)

lim
T −→∞

1

T

T∑

k=0

u(k) = ū (11)

if and only if there exists a matrix D ∈ R
(n+m−1)×m that satisfies

AD = I ∈ R
m×m (12)

D(v − v̄) + ū ≥ 0 ∀v ∈ VΘ
b . (13)

The allocation rule is linear on v(k), that is

u(k) = ū + D(v(k) − v̄). (14)
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28 D. Bauso, J. Timmer

In the following, we call limT −→∞ 1
T

∑T
k=0 u(k) the average allocation (vector).

Note that condition (Eq. 10) implies that u(k) = [a(k)
s(k)

] ∈ U(v(k)) at each time k.
This in turn means that a(k) is an element of the core C(v(k)) of the game 〈N , v(k)〉
obtained from freezing the coalitions’ values at time k. Furthermore, it is easy to show
that the above result and the following ones are still valid if the budget to allocate at
each time period has a fixed size. Denoting by u+ the maximal size of the budget,
condition (Eq. 13) changes to 0 ≤ D(v − v̄) + ū ≤ u+, ∀v ∈ VΘ

b .
Observe that the linear allocation rule (Eq. 14) requires perfect knowledge of the

coalition values at each sample time. Differently, in this paper the coalitions’ values
v(k) are unknown and revenues are allocated at time k based on the aggregate coalition
excesses x(k). Any allocation rule based on the state x(k) will be referred to as a
feedback rule. We are interested in finding dynamic allocation rules that keep the
excess vector bounded within a pre-specified threshold while satisfying the condition
that if the average coalitions’s value is v̄ then the average allocation is ū. For this we
need the following definition, see Bauso et al. (2006). For ξ ∈ R

m , let ξi denote the
i th component of ξ , and define

|ξ | = max
i

|ξi |.

Let Z denote the set of integers, and Z
+ the set of nonnegative integers. Let f =

{ f (0), f (1), f (2), . . .} be any bounded one-sided sequence in R
m , and define

‖ f (k)‖ = sup
k∈Z+

| f (k)|.

Our dynamic allocation rule is defined as follows.

Definition 3 Given ε > 0 and a reference value xref for system (Eq. 9), an ε-stabilizing
allocation rule is a feedback rule for which there exists a continuous positive function
φ(k), monotonically decreasing and converging to 0 as k −→ ∞ such that for all
x(0), the following condition holds true

‖x(k) − xref‖ ≤ max{‖x(0)‖φ(k), ε}.

For the sake of simplicity, take xref = 0. Then the above condition implies that x(k)

does not deviate more than ε from 0 in the long run. For any x(0) with ‖x(0)‖ ≤ ε the
condition simply requires that ‖x(k)‖ ≤ ε for all k. With this in mind, our problem of
interest can be stated as follows.

Problem 1 For the sequence of games (Eq. 7), find an ε-stabilizing allocation rule
such that its average allocation equals ū, i.e., limT −→∞ 1

T

∑T
k=0 u(k) = ū.

Note that the requirement limT −→∞ 1
T

∑T
k=0 u(k)= ū simply represents a

constraint on the coalitions’ excess in the long run.
Also, observe that the ε-stabilization of the excess vector x(k) means that at each

time k the excess x(k) does not exceed a pre-defined threshold ε of the game 〈N , v(k)〉.
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Robust dynamic cooperative games 29

Fig. 1 Example of one
warehouse W and three retailers
R1, R2 and R3. Retailer R1
faces a demand in the interval
[0, 5], R2 in the interval [0, 10],
and R3 in the interval [3, 8]

W R2

R1

[0,5]

[0,10]

[3,8]
R3

Using the definition of the ε-core from Lehrer (2002), the above problem corresponds
to finding an allocation rule that at each time k returns a vector in the ε-core of the
one-shot game 〈N , v(k)〉.

Remark 1 We can refrain from the assumption that the average vector of coalitions’
values is known a-priori and formulate the above problem under the milder assumption
that v̄ is simply averaged on-line over past coalitions’ values. Later on we show that
the allocation rule depends on matrix D as in Eqs. 12 and 13. Hence, if the value v̄ is
averaged on-line, it becomes time varying and since it appears in the computation of
D in Eq. 13, the latter matrix must be updated iteratively.

2.3 Motivating example

Consider a single-period one-warehouse multi-retailer inventory system (see, e.g.,
Hartman et al. 2000; Meca et al. 2003, 2004). Figure 1 displays a warehouse W
serving three retailers R1, R2 and R3. Each retailer faces a demand bounded by a
minimum and a maximum value. For instance R1 faces a demand d1 in the interval
[d−

1 , d+
1 ] = [0, 5], R2 faces a demand d2 in the interval [d−

2 , d+
2 ] = [0, 10], and R3

faces a demand d3 in the interval [d−
3 , d+

3 ] = [3, 8].
After demands di are realized, each retailer Ri must choose whether to fulfill the

demand or not. The retailers do not hold any private inventory. Therefore, if they
wish to fulfill their demands, they must reorder goods at the central warehouse. The
retailers may share the total transportation cost K = 7. Before demands are realized,
the warehouse holder decides how to allocate the transportation costs among the
retailers. This decision is only based on the knowledge of the minimum demand
d−

i and maximum demand d+
i .

The corresponding cost game has a set of three players N = {1, 2, 3}, namely
the three retailers. If player i plays alone, the cost of reordering coincides with the
full transportation cost (since a single truck serves him only) whereas the cost of not
reordering is the cost of unfulfilled demand, that is, lost demand. Assume the latter
cost is one unit per unit of unfulfilled demand. Then the cost associated to the retailers
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30 D. Bauso, J. Timmer

R1 and R2 are respectively,

c({1}) ∈ [
min{d−

1 , K }, min{d+
1 , K }] = [0, 5]

c({2}) ∈ [
min{d−

2 , K }, min{d+
2 , K }] = [0, 7].

If two players form a coalition they are forced to select a joint decision (“both reorder”
or “both do not reorder”). The cost of reordering for the coalition also equals the total
transportation cost that, this time, must be shared between the two players. The cost of
not reordering is the sum of the unfulfilled demands of both players. For instance, the
cost of coalition S = {1, 2} is c({1, 2}) ∈ [min{(d−

1 +d−
2 ), K }, min{(d+

1 +d+
2 ), K }] =

[0, 7].
For a generic n-player game, we have for all coalitions S ⊆ N

min

(

K ,
∑

i∈S

d−
i

)

≤ c(S) ≤ min

(

K ,
∑

i∈S

d+
i

)

. (15)

We can compute the cost savings v(S) of a coalition S as the difference between the
sum of the costs of the coalitions of the individual players in S and the cost of the
coalition itself, namely,

v(S) =
∑

i∈S

c({i}) − c(S). (16)

Given the upper and lower bounds for c(S) in Eq. 15, the value v(S) is bounded as
follows:

∑

i∈S

min(K , d−
i )− min

(

K ,
∑

i∈S

d−
i

)

≤ v(S)≤
∑

i∈S

min(K , d+
i )− min

(

K ,
∑

i∈S

d+
i

)

.

For example, the cost savings of coalition S = {1, 2} are v({1, 2}) = c({1})+c({2})−
c({1, 2}) ∈ [0, 5].

It turns out that the cost savings, or value, of each coalition are bounded by a mini-
mum and a maximum value, namely, vmin(S) ≤ v(S) ≤ vmax(S) with fixed bounds
vmin(S) and vmax(S). Hence, in the light of Definition 1, an equivalent description of
the joint replenishment application is obtained by replacing the family of cost games
by the family of cost-savings games 〈N ,V〉 with

V = {
v ∈ R

m : vmin(S) ≤ v(S) ≤ vmax(S), for all S ⊆ N
}

(17)

and v(S) as in Eq. 16. For the sake of brevity we omit the proof that each game in
the polyhedron (Eq. 17) corresponds to a balanced game. We conclude that the joint
replenishment problem can be described by the family of balanced games 〈N ,V〉. To
see the dynamic aspect of the application, consider a situation where the discussed
scenario occurs repeatedly in time, i.e., at each time (day, week) k = 0, 1, . . ., the
warehouse manager allocates the costs and demands are realized.
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Robust dynamic cooperative games 31

3 Dynamic allocation rule

The dynamic allocation rule that we propose as a solution to Problem 1 depends on an
augmented state variable, to be defined below. Such a state variable models the excess
level of each coalition combined with the deviation of the instantaneous allocation
from the pre-defined average allocation of each coalition. With the given augmented
state variable Problem 1 reduces to finding an ε-stabilizing allocation rule for the
augmented dynamic system. Actually, as it will be clearer later on, ε-stabilizing the
augmented system implies both ε-stabilizing the excess vector and meeting the average
constraints.

Given two matrices A and D as in Eqs. 12 and 13, from a standard property of
linear algebra, see also the appendix, we can find two matrices C and F that “square”
A and D and satisfy

[
A
C

]
[

D F
] = I. (18)

Now, consider the augmented system

x(k + 1) = x(k) + Au(k) − v(k),

y(k + 1) = y(k) + Cu(k),
(19)

where v(k) is as in Eq. 6. The additional dynamic variable y(k) keeps track of the
deviation between the instantaneous and the average allocation of each player. Define
the augmented state variable z ∈ R

n+m−1 as

z(k) = [
D F

]
[

x(k)

y(k)

]

,

[
x(k)

y(k)

]

=
[

A
C

]

z(k).

This variable satisfies the equation

z(k + 1) = [
D F

]
[

x(k + 1)

y(k + 1)

]

= [
D F

]
[

x(k)

y(k)

]

+ [
D F

]
[

A
C

]

u(k) − [
D F

]
[

v(k)

0

]

= z(k) + u(k) − Dv(k). (20)

This indicates that the allocation rule u(k) = −z(k), which is linear in z, solves our
problem.

Theorem 1 Consider system (Eq. 20) with v(k) as in (Eq. 6). The allocation rule in
feedback form

u(k) = −z(k) (21)

123



32 D. Bauso, J. Timmer

satisfies

‖z(k)‖ ≤ ‖Dv(k)‖. (22)

Further, if the average coalitions’ value is v̄ then the average allocation vector is ū.

Proof To prove (Eq. 22), we substitute the allocation rule (Eq. 21) in the dynamics of
system (Eq. 20). This results in z(k + 1) = −Dv(k) for all k, which implies (Eq. 22).
For the rest of the proof, by summing (Eq. 20) for different k = 1, 2, . . ., we obtain

1

T

T −1∑

k=0

u(k) − 1

T

T −1∑

k=0

Dv(k) = z(T ) − z(0)

T
→ 0

as T → ∞, since the numerator is a finite quantity whereas the denominator tends to
infinity. Therefore ū = Dv̄, which concludes the proof. ��

For fixed ε we wish to find the maximum time period Θ∗ such that ‖Dv(k)‖ ≤ ε.
Trivially, such a value is Θ∗ = ε

δ
where δ = maxv∈Vb |Dv|. Then we have the

following corollary.

Corollary 1 Consider system (Eq. 20) with v(k) as in (Eq. 6). For any ε and corres-
ponding Θ∗, if Θ ≤ min{Θ∗, 1}, then the allocation rule in feedback form

u(k) = −z(k), (23)

is ε-stabilizing.

Proof It is easy to show that

‖z(k)‖ ≤ ‖Dv(t)Θ‖ ≤ ‖Dv(t)Θ∗‖ ≤ max
v∈Vb

|DvΘ∗| ≤ ε.

��
A side effect of ‖z‖ ≤ ε is that also ‖u‖ ≤ ε as u = −z. This means that the smaller

ε the smaller the maximum allocation (in magnitude). Also, observe that the above
results can be extended to the case where v̄ is averaged on-line (see Remark 1), with
the difference that matrix D must be updated iteratively according to Eqs. 12 and 13.

4 Other algorithms in the literature

The idea of ε-stabilizing or shrinking the excess vector can be found, from a different
perspective, also in the algorithms proposed by Cesco (1998), Lehrer (2002) and
Sengupta and Sengupta (1996). Though we have developed our algorithm indepen-
dently from the ones cited above, a-posteriori we recognize that all of them propose an
allocation rule that uses a measure of the extra benefit that a coalition has received up
to the current time by re-distributing the budget among the players. Budget distribution

123



Robust dynamic cooperative games 33

occurs iteratively until the allocation process converges to an element in the core or in
the ε-core if the game is not balanced (in this last case the core is empty). However,
unlike the game in this paper, the games dealt with in Cesco (1998), Lehrer (2002),
Sengupta and Sengupta (1996) are games with complete information in the sense that
the values of the coalitions are known and time invariant. Therefore these dynamic
processes refer to allocations of payments to the players and not to the variation of
the coalitions’ values. Owing to the fact that, in this paper, the values of the coali-
tions vary unknowingly, we have been able to guarantee the convergence to the core
only in the long run. Furthermore, if we look at the game 〈N , v(k)〉, ε-stabilization
implies that the vector of payments belongs to the ε-core of the game at each time
k = 0, 1, . . .

A last comment regards the computational complexity of the algorithm. In this
sense, it must be noted that to compute the matrix D, upon which the allocation rule
is based, the number of constraints of type (Eq. 10) to consider grows exponentially
on the number of players n. We refer the reader to Bauso et al. (2006), Sect. 5, for
a procedure based on constraints generation that returns the matrix D in polynomial
time.

5 The Shapley value as a linear allocation rule

In this section, we study the Shapley value as a special linear allocation rule of the
form (Eq. 14). In particular, we show that there is a matrix Φ that satisfies (Eq. 12).

The Shapley valueφ, introduced in Shapley (1953), is defined byφ= 1
n!

∑
σ∈Π(N )m

σ

where Π(N ) is the set of all permutations of N and mσ is the marginal vector corres-
ponding to the permutation σ : N → N . A marginal vector mσ corresponds to a situa-
tion in which the players enter a room one by one in the order σ(1), σ (2), . . . , σ (n)

and where each player receives the marginal contribution he creates upon entering.
Hence, mσ is the vector in R

n with elements

mσ
σ(1) = v({σ(1)}),

mσ
σ(2) = v({σ(1), σ (2)}) − v({σ(1)}),

...

mσ
σ(k) = v({σ(1), σ (2), . . . , σ (k)}) − v({σ(1), σ (2), . . . , σ (k − 1)}).

Theorem 2 The Shapley value φ is linear in v, i.e., φ = Lv, where the matrix L ∈
R

n×m is defined by

Li j = 1

n! ·
{−µ!(n − (µ + 1))! if i �∈ S

(µ − 1)!(n − µ)! if i ∈ S.
(24)

if column j corresponds to coalition S with µ = |S|.
Proof The proof follows immediately from the definition of the Shapley value in
Shapley (1953). ��
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To emphasize the dependence of φ on v we henceforth write φ(v) instead of φ. Let
s(φ(v)) be the vector of surplus variables when revenues are allocated according to
the Shapley value φ(v). The idea is now to express s(φ(v)) linearly in v.

Theorem 3 The vector of surplus variables is linear in v, i.e.,

s(φ(v)) = Qv, (25)

where Q ∈ R
(m−1)×m has row i associated to a surplus variable (a coalition S ⊂ N ),

column j associated to a coalition M ⊆ N, and generic i j th element

Qi j =
{∑

p∈S L pj if i �= j
∑

p∈S L pj − 1 if i = j.
(26)

Proof First, consider the coalition containing just player 1 and let Li• be the generic
i th row of L . The associated surplus variable is

s1(φ(v)) = φ1 − v({1}) = L1•v − v({1})
= (L11 − 1)v({1}) + L12v({2}) + · · · + L1mv(N ).

The latter equation yields Q1• = [(L11 − 1) L12 . . . L1m], which is in accordance
with Eq. 26.

If we repeat the same reasoning for a generic coalition M ⊂ N , the surplus variable
is

sM (φ(v)) =
∑

i∈M

φi − v(M) =
∑

i∈M

Li•v − v(M).

Remind j is the column associated to coalition M . Then, the latter equation yields
Q jk = ∑

i∈M Lik if k �= j and Q j j = ∑
i∈M Li j − 1 which is in accordance with

Eq. 26. ��
Using the fact that φ(v) and s(φ(v)) are linear in v, we define the allocation vector

associated to the Shapley value by u(φ(v)) = [φ(v)′ s(φ(v))′]′.
Corollary 2 There exists a matrix Φ ∈ R

(n+m−1)×m, defined by Φ = [L ′ Q′]′ such
that u(φ(v)) = Φv. Furthermore Φ is a right inverse of A, i.e., AΦ = I .

Proof From the Theorems 2 and 3 we conclude [φ(v)′ s(φ(v))′]′ = [L ′ Q′]′v. This
finishes the proof of the first part.

To prove that AΦ = I , it suffices to show that Ai•Φ• j = 1 if i = j and zero
otherwise. Observe that row i of A, denoted by Ai• ∈ R

1×(n+m−1), is associated
to a coalition M ⊆ N , whereas column j of Φ, denoted by Φ• j ∈ R

(n+m−1)×1, is
associated to a coalition S ⊆ N . Hence, the condition i = j is equivalent to M = S.

Now consider once again the row vector Ai•. The first n elements of this vector
correspond to players p = 1, . . . , n and the last m − 1 elements correspond to all
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coalitions R ⊂ N (recall the structure of A as described in Eq. 2). Now the structure
of row Ai• may be formulated as:

Ai• =
⎡

⎣. . . 1︸︷︷︸
∀p∈M

. . . . . . 0︸︷︷︸
∀p �∈M

. . . . . . −1︸︷︷︸
R=M

. . . . . . 0︸︷︷︸
∀R �=M

. . .

⎤

⎦ . (27)

Analogously, the first n elements of Φ• j correspond to players p = 1 . . . n, and the
last m − 1 elements correspond to all coalitions R ⊂ N (see Eqs. 24 and 26).

Concluding, if i = j , or M = S, then Ai•Φ• j = ∑
p∈S L pj − (

∑
p∈S L pj −

1) = 1. On the other hand, if i �= j , or M �= S, then Ai•Φ• j = 1
n! [

∑
p∈M L pj −∑

p∈M L pj ]=0. ��

6 Conclusions

Inspired by a joint replenishment application, we studied a dynamic cooperative game
where at each point in time the value of each coalition of players is unknown and
fluctuates within a bounded polyhedron. Under the assumption that the average value of
each coalition in the long run is known with certainty, we have presented a constructive
method to find “robust” allocation rules, i.e., allocation rules that are close to an excess
vector and guarantee a certain average allocation vector.

Appendix

Computation of the matrices C and F

In this appendix, we show how to compute the matrices C and F given the matrices A
and D, as mentioned in Sect. 3. To simplify notation let n + m − 1 = r . Note that the
following conditions follow from Eq. 18: AD = I , AF = 0, C D = 0, and C F = I .
First, we rewrite the matrices A, C, D and F as follows.

– A = [A0 A1] where A0 is a m × (r − m) matrix and A1 is an m × m nonsingular
matrix.

– C = [C0 C1] where C0 is a (r − m) × (r − m) matrix and C1 is an (r − m) × m
matrix.

– D = [D′
0 D′

1]′ where D0 is an (r −m)×m matrix and D1 is an m×m nonsingular
matrix.

– F = [F ′
0 F ′

1]′ where F0 is a (r − m) × (r − m) matrix and F1 is an m × (r − m)

matrix.

Next, we derive the following relations:

– from AF = 0, we obtain A1 F1 = −A0 F0. So F1 = −A−1
1 A0 F0;

– from C D = 0, we obtain C1 D1 = −C0 D0. Thus C1 = −C0 D0 D−1
1 ;

– from C F = I , we obtain C0 F0 = I − C1 F1 = I +C0 D0 D−1
1 F1 = I − C0 D0 D−1

1
A−1

1 A0 F0.
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Imposing, e.g., C0 = I we have F0 = (I + D0 D−1
1 A−1

1 A0)
−1. Consequently,

C = [ I | − D0 D−1
1 ]

F =
[

(I + D0 D−1
1 A−1

1 A0)
−1

−A−1
1 A0(I + D0 D−1

1 A−1
1 A0)

−1

]

.
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