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Optimization of Long-Run Average-Flow Cost in
Networks With Time-Varying Unknown Demand

Dario Bauso, Franco Blanchini, and Raffaele Pesenti

Abstract—We consider continuous-time robust network flows
with capacity constraints and unknown but bounded time-varying
demand. The problem of interest is to design a control strategy
off-line with no knowledge of the demand realization. Such a
control strategy regulates the flow on-line as a function of the
realized demand.

We address both the case of systems without and with buffers.
The main novelty in this work is that we consider a convex cost
which is a function of the long-run average-flow and average-de-
mand. We distinguish a worst-case scenario where the demand is
the worst-one from a deterministic scenario where the demand has
a neutral behavior. The resulting strategies are called min-max
or deterministically optimal respectively. The main contribution
are constructive methods to design either min-max or determin-
istically optimal strategies. We prove that while the min-max op-
timal strategy is memoryless, i.e., it is a piece-wise affine function of
the current demand, deterministically optimal strategy must keep
memory of the average flow up to the current time.

Index Terms—Average flow cost, flow control, gradient-based
control, min-max optimality, uncertain demand.

I. INTRODUCTION

W E frame this work within the several recent attempts to
apply the tools of robust optimization to network flows

[1], [2], [10], [11], [18], [23], [24].
Network flows describe flows of materials between different

production/distribution sites (see, e.g., [25]). The problem is to
design a strategy that returns the controlled flow as a function
of the uncertain and time-varying demand.

Robust optimization is a relatively recent technique that
describes uncertainty via sets and optimizes the worst-case cost
over those sets (see, e.g., the introduction to the special issue
[6]). Generally speaking, robust optimization aims at achieving
the best cost under the worst uncertainty conditions. Some of
the existing works (in particular [2], [11]) are centered around
the idea of “adjusting” some of the variables to the outcome
of the uncertainty. In other words some variables are decided
before the uncertainty realization while the rest are decided
after the uncertainty realization. Such a problem formulation
is known under different names such as “Adjustable Robust
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Counterpart” (ARC) problem, “Two-stage Robust optimization
with recourse”. In many cases the adjustable variables are ex-
pressed affinely on the uncertainty and the problem is renamed
“Affinely Adjustable Robust Counterpart” (AARC) problem.
ARC and AARC formulations are currently a hot topic in
the mathematical programming and operations research field.
There are interesting connections between this paper and the
notions of “adjustable variables” in ARC, AARC. For instance,
the flow plays the role of the adjustable variables in the ARC
set up and in most cases the strategy is affine in the uncertainty
as in AARC problems.

In this paper, we address both the cases of networks without
buffers and networks with buffers. If no buffers are present, in-
coming and outcoming flow at each site are equal since there is
no stored inventory. In this case we also say that the flow bal-
ances the demand. In the case of networks with buffers, inven-
tory accumulate at the production sites as result of the discrep-
ancy between incoming and outcoming flows. According to ex-
isting works in the control literature [13]–[17], [21], buffers’ dy-
namics is described by linear continuous-time differential equa-
tions.

In our model there are two types of flows, the controlled one
and the uncontrolled one. For brevity, we will use the terms
“flow” to mean the controlled one and “demand” to mean un-
controlled one, although there are many realistic situations in
which an uncontrolled flow is not a demand. We assume that
both flow and demand lie in pre-defined polytopes.

The basic problem is that of designing off-line a strategy,
namely a control law for the flow. The flow will be computed
on-line, on the basis of the measured buffer levels (if any) and
demand by means of the provided strategy. The actual realiza-
tion of the demand is not available in the design stage. In net-
works with buffers, we impose the buffer level to reach a pre-
scribed level in finite time up to an assigned tolerance .
The associated strategy is called -stabilizing (this problem is
also know as “target set reachability” see [8], [9]).

We consider causal strategies of different types. Precisely we
consider the case in which the flow is i) a function of the current
demand (memoryless strategy), ii) a function of the current and
past demand (strategy with memory), iii) a function of the buffer
levels and past demand (feedback strategy), and iv) a function
of the buffer levels (memoryless feedback strategy).

We deal with both a worst-case (call it also min-max) and a
deterministic scenario. In the min-max (pessimistic) approach
the realization maximizes the value of the given cost. In the de-
terministic scenario, the demand is just any arbitrary realiza-
tion. Depending on the approach, the resulting strategy is said
min-max or deterministically optimal respectively.

0018-9286/$26.00 © 2009 IEEE
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The main novelty of this work is that we aim at optimizing a
convex cost function of the long-run average-flow and demand
[19]. To be more clear, in contrast with most existing literature,
we are not considering the average cost of the flow (see for in-
stance [26]) but the cost of the average flow. Clearly there is
no distinction between the two concepts cost-of-the-average and
average-cost in the case of linear functionals (see, e.g., [4]).

Motivations of this choice may derive from technical reasons,
contracts or agreements. For instance, technical reasons or con-
tracts may establish the long-run exploitation level of the ma-
chineries. So, over or under-exploitation of machineries can be
tolerated only temporarily and not persistently. In a different sit-
uation, long-term agreements may establish privileged sources
for each destination. So, a mismatch between privileged sources
and destinations is acceptable only in critical and rare cases.

As a basic result we provide a constructive method to de-
sign a piecewise affine strategy which is min-max optimal. The
method is based on the fact that the min-max problem arising
when flow and demand are time-varying is equivalent to the
min-max problem in which flow and demand are constant vec-
tors (one-shot decisions) and not functions of time.

The obtained strategy is memoryless and such a result allows
us to conclude that memory is not required when min-max op-
timality is considered. We initially derive these results for net-
works without buffers, and then extend them to networks with
buffers.

In the second part of the work, we show that the provided
min-max optimal strategy is not deterministically optimal, that
is, it does not return the minimal cost for any given realization
of the demand. Actually we show that static strategies are not
deterministically optimal at all (even for networks without
buffers). The second main contribution of the paper is to
show that, under some smoothness assumptions on the cost
functional, an easily implementable deterministically optimal
strategy can be derived. Such a strategy is achieved by keeping
memory of the average flow (from the initial to the current
time) and by choosing, among the admissible inputs, the in-
stantaneous minimizer of the Lyapunov derivative of the cost
of the average computed up to the current time.

The structure of the paper is as follows. In Section II, we de-
scribe the problem for a network without buffers. In Section III,
we determine a min-max optimal strategy. In Section IV, we ex-
tend the study to networks with buffers. In Section V, we design
a deterministically optimal strategy under proper assumptions
on the cost. In Section VI we provide some numerical illustra-
tions. Finally, in Section VII we draw some conclusions.

II. PROBLEM DESCRIPTION

Consider a network where at each time period the flow bal-
ances the demand. Both the flow and the demand are bounded
in assigned polytopes. A simple description of such a system is

(1)

(2)

(3)

where is the full-row rank matrix representing the network
topology, is the (controlled) flow and is the demand
(uncontrolled flow) and and are assigned
polytopes for and respectively. To let system (1)–(3) be
feasible, that is to admit at least a flow for any realization
of , we must assume that (see [5] for details) the following
condition holds:

Given a piecewise-continuous function we
denote by

and

the finite-horizon and infinite-horizon average values. The sim-
pler notation will be often preferred where the meaning is
clear from the context. In a similar way, given a sequence

, we denote by . We
assume that, for any function considered in the rest of the paper,
the average is defined. We generically denote by a strategy of
the form

(4)

where the missing argument represents any set of auxiliary
variables. For instance, we admit strategies of the form

(5)

where is the controller state vector. We do not assume any
special requirement for the domain of which can be any func-
tional space and can be any operator. The following assump-
tion clarifies the information available to the network manager.

Assumption 1:
• The value is available on-line at time without delay.
• The realization is not known in advance so the strategy

can rely on the memory of the past values , , but
there is no forecast about the future.

We will focus our attention to the simple case of static strategies
according to the next definition.

Definition 1: The strategy is called memoryless if it is
a function of the current demand only,

. Otherwise, the strategy is called with
memory.

Let be a real-valued function representing a cost. In
this paper we consider different concepts of optimality as speci-
fied next. Henceforth, we use the min-max notation (rather than
inf-sup) as we will prove that the problems of interests always
admit a minimum and a maximum.
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Definition 2: A strategy is min-max optimal (or worst-case
optimal) if it is a solution of the problem

(6)

Definition 3: A strategy is deterministically optimal if, for
any realization of , it is a solution of the problem

(7)

Remark 1: It is easy to observe that deterministically optimal
strategy, if it exists, is also min-max optimal.

Given the scalar values , for we write

so that, given any set of vectors , we write any convex com-
bination as

Consider the following assumption for .
Assumption 2: Function is continuous over the set

and also convex,1 namely, for any finite set
and c.c.

Under the above assumption we consider the following two
problems.

Problem 1: Robust Problem. Determine if it exists a static
min-max optimal strategy.
Problem 2: Deterministic Problem. Determine if it exists
a deterministically optimal strategy.

As we will see both problems are solvable, but the strategy so-
lution of the Deterministic Problem cannot be static.

In the current formulation, the system has no buffers, so no
backlog or surplus is admitted. In Sections IV and V, we gener-
alize the results to networks with buffers.

A. A Motivating Example

Example 1: Consider a resource distribution network whose
graph is represented in Fig. 1, with unknown but bounded de-
mand , , 2, 3 and bounded flow

, . Constraints (1) establish a relation between
demand and flow. In this example, is the 6 12 (i.e.

1the considered concept is often referred to as “joint convexity”; note that we
are not requiring just that � is convex in both arguments separately.

Fig. 1. Network for the example.

and ) incidence matrix of the network with nodes
and (solid) arcs.

It is obvious that a necessary condition for the existence of a
balancing flow for any admissible demand is that the maximum
incoming flow is greater than or equal to
the maximum demand . Assume that
the network manager assigns the privileged source to each
demand , , 2, 3, that is, he wishes that each demand
is supplied in the long run by the corresponding flow . Now,
take for instance, and .

If for a period exceeds the value 6, then is forced to
supply an extra resource. When this occurs, we can say, roughly
speaking, that is over exploited and is under exploited. So,
in general, a peak of demand might require the exploitation
of a flow not directly associated to that demand.

The underlying idea is to find a mechanism to balance the
exploitation of and by charging more than strictly
necessary when is low. This goal can be seen as a long-run
optimization problem with cost

(8)

The additional term is motivated by the fact that we might be
also interested in avoiding high flows in the other arcs, although
our theory works with as well.

III. MIN-MAX OPTIMALITY

In this section, we consider three versions of the robust
problem. The first one is formulated without restrictions on the
type of strategy which can have a Memory (hence the subscript
M)

(9)

In the second version only static strategies are admitted (i.e.,
Memoryless, hence the subscript ML)
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(10)

The third is a pure static one in which and are constant

(11)

The main result of this section is to prove that the problems of
interests always admit a minimum and a maximum, and that

. The static version of the problem will
enable us to determine a min-max optimal strategy. It is intuitive
that the worst-case for the static strategy is assumed on the
vertices. We will show that this is true also for the time-varying
problem, precisely that the worst-case assumes its values
on the vertices.

A. Solution to the Static Version of Problem 1

Let us denote by the set of vertices of and by
the set of indices of the vertices. The static

version of Problem 1 can be easily solved as follows. For each
, solve the following static convex optimiza-

tion problem:

(12)

The first lemma introduces a piecewise-affine function which
will be proved to be min-max optimal. Such a function is ob-
tained by interpolating the pairs .

Lemma 1: Let be the vertices of and
be assigned values, for and let be the dimension of
the set . There exists a partition of into simplices each
having non-empty relative interior2 and each couple of simplices
intersects at most on a -dimensional facet. There also ex-
ists a function which is affine on each and such that

, for each .
For a proof see [20] and [12]. See also Example 2, where a

cube is partitioned into four simplices.
The piecewise affine strategy mentioned in the pre-

vious lemma can be derived as follows. Denote by
the set of the indices associated with the

th simplex . Then for , where ,

(13)

For any simplex the values are uniquely determined, by
the following set of equations

2a simplex in �� is a polytope with � � � vertices; its relative interior is
the interior within the smallest subspace including� ; the dimension � � � of
such a subspace is the dimension of the set�

Fig. 2. Partition of a cube in four simplices.

thus the strategy is well-defined. Note that to compute the func-
tion we need to detect the sector including and then to solve
a linear system. Note that the matrices associated to these system
can be inverted off-line to achieve an explicit expression (see
[7], [12] for further details on this type of strategies).

Example 2: Assume that the demand in Example 1 is
bounded in a parallelepiped, namely , , 2,
3. This box belongs to the subspace , , 5, 6, then
the relative dimension is . Such a box can be partitioned
in 4 simplices as in Fig. 2 (precisely (A-C-D-H), (A-C-F-H),
(A-B-C-F) and (H-C-G-F)). Denote by the optimal
values of in problem (12) corresponding to on the vertices

. Then the interpolating affine function
can be computed as follows. If, for instance, is in the sector
(A-C-D-H), then

where , , and are (uniquely) determined by

Lemma 1 introduces the following theorem concerning the
solution of the static version of Problem 1.

Theorem 1: The cost of (11) is

(14)

Proof: Since the in the static problem (11) can
always be set as a vertex , it is obvious that

(we remind that are
the optimal values).

We show now that . Consider
any point also included in the th simplex of , that
is, . Then, denoting by the subset of indices
identifying the vertices of

Take , the piecewise-affine strategy (13). Then
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with c.c. . Note that the last inequality compares the max-
imum over all vertices of with the maximum over all vertices
of .

An immediate consequence of the above theorem is that the
strategy in (13) is min-max optimal for the static
problem (11) as it guarantees that

where is the worst demand. Note that this strategy is not
unique since all the strategies in the set

(15)

are min-max optimal for the static problem (11). In particular,
the set includes the strategy

(16)

Remark 2: Note that the selected by (16) is deterministi-
cally optimal for the pure static problem only, in the sense that

for all and . How-
ever, the same is, in general, not optimal for the Determin-
istic Problem (Problem 2). Both and are
max-min optimal (in the game-theoretic language the “demand
plays first” [3]), in the sense that the flow is taken as a func-
tion of which, in turn, maximizes the cost
in one of the vertices . So an interpretation of our result is
that to design a min-max optimal strategy off-line we can solve
a max-min problem on-line, i.e., find minimizing flow for given
demand.

B. Main Theorem

We are in a position to prove that the optimal min-max cost
is equal in the three versions (9)–(11) of the Robust Problem.
Basically, we prove that the worst-case demand for the static
problem, namely the value on which the maximum
(14) is assumed, is indeed the worst-case demand for the time-
varying problem that we are considering.

Theorem 2: The following equalities hold:

(17)

Furthermore, as the inf-sup optimal values are achieved with
strategy in all the three problems (9), (10) and (11),
then , and are min-max optimal values and the
static strategy is a min-max optimal strategy.

Proof: The proof splits in two parts.
Proof of the claim . Let

the worst-case demand for the static problem (11), and let
the corresponding (optimal) flow. Let any arbi-
trary memoryless strategy. Assume that the demand is constant

and let . Since and are constant,
the average cost is

by construction, so we have .
We now prove . For arbitrary and

, consider the averages and
the associated cost is

(18)

with c.c. . Note that in (18) the sums are extended to all
vertices of but, at each time period, only the non-zero
are those associated with current “active simplex” , i.e. the
one for which . It is obvious that the numbers

are c.c.. Consider inside the polytope having vertices
. Since is convex, it reaches the maximum on its

vertices then for all

(19)

If we take the limit over an infinite horizon by continuity we
have

or, which is the same, and therefore we can con-
clude that .

Proof of the claim . Memoryless strategies are
special cases of the strategies with memory, and cannot do any
better, thus . We only have to show that

. Again we assume that , the worst-case de-
mand. The optimal strategy is, again, to take . Indeed
for each and any

(20)
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where the last inequality comes from the fact that the average
and is optimal by construction. Then

and therefore .
Remark 3: The minimizer in the Robust Problems (9)–(11)

chooses strategies and not flows (the is over and not
) and this justifies the fact that, as the worst demand is on a

vertex, then the optimal flow turns out to be a function which
interpolates the optimal values associated with
the vertices . Clearly need not to be a vertex of .

So far, we have assumed that the average values of the real-
ization of and the flow computed by the strategy always
exist. The following remark points out that we may drop such
an assumption.

Remark 4: In view of (20), it is always possible to prove that

Therefore if we rewrite the Robust Problem in the “lim-sup ver-
sion” we achieve that

is equal to no matter which type of strategy is chosen.
The following remark generalizes the results of this section

to the discrete-time case. It will turn useful later on when we
study networks with buffers.

Remark 5: Theorem 2 still holds if we state problems (9) and
(10) in discrete-time with .

IV. THE CASE OF NETWORKS WITH BUFFERS

The first part of this work is based on the assumption that at
each time period the flow balances the demand. We now drop
such an assumption and assume that the unbalanced flow is
stored at the node buffers. We wish to find a min-max optimal
strategy that steers the buffer levels to an arbitrarily small set in
finite time, and keeps them bounded in the small set from that
time on. Then, the new formulation (network with buffers) is
identical to that of Problem 1 if we replace (9) by

(21)

where the vector describes the buffer levels, the bounding
set is convex and compact and includes the origin as an inte-
rior point, and the arbitrarily small set , with , is the set
within which must be driven in finite time. Henceforth, given
a generic set and being a positive scalar, we denote
by . The strategies considered are of the
form

(22)

again, with no restrictions of the type of domain of the vari-
ables. Before presenting the solution of problem (21), we need
to discuss certain feasibility conditions for it and some technical
assumptions for a “nice” description of the bounding sets .

Problem (21) is feasible if and only if the following condition
holds [14]

(23)

where means the interior part of set . The above
condition is stronger than condition considered in the
first part of this work. We also assume, without restriction, that

(24)

(we can always apply a proper translation to meet this assump-
tion). As an immediate consequence of (23) and (24), we can
affirm that there exists a scalar , such that

Regards to the description of the bounding set , we make the
following assumption.

Assumption 3: There exists a gauge function which is
smooth for and such that

Let us remind that gauge functions are positive definite, convex,
and positively homogeneous of order 1, i.e., such that

for [22]. Special gauge functions are or
more in general with full column rank and integer

. Note that norms of the type may be arbitrarily
closely approximated by for large. Then, non-smooth
polytopic sets of the form , where

defined by functions of the type

where is the th row of , can be approximated by smooth
sets defined by functions of the type

We are now in a position to establish the main result of this
section which says that problem (21) is equivalent to problem
(10) and therefore to problems (9) and (11). It is apparent
that, given the presence of buffers and no constraints on the
initial value of their levels, a strategy memoryless or with
memory as in Definition 1 cannot solve problem (21) since
buffer level feedback is necessary. To this end, let us introduce
the following definitions.

Definition 4: The strategy is of the pure feedback form if
, namely it requires no information about the

current value of . The strategy is of the memoryless pure
feedback form if , namely it is function only of
the current value of the buffer levels .
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The following theorem states that there exist strategies with
a simple structure that solve problem (21).

Theorem 3: The following property holds:

(25)

Furthermore, min-max optimal strategies can be obtained either
adding a memoryless pure feedback component to a static
strategy, that is , or
through a pure feedback strategy .

Proof: We first prove (25) under the assumption that
is known on-line. To do this, consider the following strategy:

where is any static strategy, for instance
, which solves problem (10), and is a

stabilizing term that we define later on. Note that

then if we substitute in the state equation in problem (22)
we get

Now take equal to the continuous function

where is any right inverse of and the saturation function
is defined as follows:

with

Note that this assures that .
Since includes 0 as an interior point we have that the Lya-
punov derivative of is negative for . Indeed, since for
gauge functions holds for , we have

for . Therefore

(see [14] for details). Note that this means that, by continuity,
converges to zero and thus it has zero average. This

also means that

It remains to prove that this strategy solves problem (21).
Consider the average

Then by repeating exactly the same arguments of the previous
section we have that the first part of the theorem is proved.

We now show that a pure feedback robust strategy
exists, i.e., a robust strategy that does not require the

knowledge of the current value of . This can be done by
sampling the system at small intervals. Actually, let and
consider the following equation:

(26)

Let us now introduce the discrete-time variable defined as

(27)

equation (26) yields

where is the average demand in . This
means that we can derive the integral of over
by simply computing and measuring .

The idea is now to apply a piecewise constant flow which
takes on the following constant value within each sampling in-
terval

, where is meant to compensate the past
demand and is a feedback action. In particular, the
term is chosen in such a way that

The above condition is satisfied by

where is any memoryless strategy which solves problem
(10) in its discrete-time version as defined in Remark 5. We just
have to assume that the demand values for
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are equal to for . To specify the term ,
first note that the latter equation together with (27) yields

then, select according to

if
if .

Note that if we use as discrete-time Lyapunov func-
tion, the condition guarantees that

until the rest condition is
reached for some large enough but finite . As a consequence

is ultimately bounded in the set . By
assuming small enough we can drive inside . Given
this, since for any , the feedback strategy

is equal to zero then . Now, con-
sider the average value of

We have just proved that we can choose a strategy such that
where is a memoryless strategy

solution of problem (10). Then, according to Remark 5, we have
that . It is left to prove that , or, which is
the same, . To do this, let us denote by the worst
demand of the static problem (11). Assuming that ,
an optimal strategy for is to take as already
shown by (20) in the proof of Theorem 2.

Remark 6: In the developed theory we assumed that the time
required for state measurements and flow computation is negli-
gible. If these operations introduce a delay , we can provide
a sample-data reformulation of the problem and our results still
hold. In particular, we can guarantee practical stability within
some -ball with depending on .

V. DETERMINISTIC VERSUS MIN-MAX OPTIMALITY

In this section, we tackle the Deterministic Problem where
the demand is a generic one and not the worst one. In particular,
we remind that we wish to find a strategy that for any
realization of the demand solves the problem

(28)

The index D stands for “deterministic”. The main result of
this section is to prove that , and in general

are not deterministically optimal. In particular,
we find a strategy with memory that performs strictly better
than the strategy as in (16) for a simple
counterexample where is a function of only
and is positively homogeneous. Conversely we will present a
theorem which shows that to achieve the deterministic opti-
mality we must resort to strategies with memory, i.e., given by
differential equations, notwithstanding the fact that our model
is described by algebraic equations. We prove our results under
the following assumption.

Assumption 4: Function depends on only and it
is convex and positive semidefinite. Furthermore is contin-
uously differentiable in all points for which .

Before providing the counterexample and the theorem, we
would like to provide the following comments about the pre-
vious assumption.

• Given any convex function which is positive semidefinite,
we can always approximate it by a smooth one over an
arbitrarily large compact set as we have seen in Section IV.

• The requirement that is a function only of is not a
restriction. Indeed, we can make implicitly depend on
by reviewing as additional components of as expressed
below

• We can generalize the cost in a significant way by trans-
lating and considering costs that are positive semidefinite
with respect to a nominal flow satisfying the nominal
demand , namely of the form .

We consider a strategy with memory as
in (22) where and the strategy are defined as

(29)

As a first observation, note that the time derivative of ,
for the current value of , turns out to be

Therefore, is the point-wise minimizer of such a derivative.
The rationale of this choice is that it trivially holds

and therefore, at any time , an approximation of
the cost is available. The approximation is based on
the average up to time rather than on the long run average.
Now, we select a strategy that, at time , chooses among all
possible flows that balance the current demand , the one
that induces a maximum decrease for the approximated cost. We
will refer to this strategy as the Gradient-based strategy (hence
the G in ).

In the case of a non-differentiable we would have to replace
the Lyapunov derivative by the generalized derivative
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Fig. 3. Flow space of � � � for the system of Example 3. The rectangle
� � � � � �� defines the set � .

at the price of a much harder exposition (see for instance [12]).
We provide a simple example showing that the strategy (29)

works better than the which means that static
strategies may be min-max optimal but they are not determinis-
tically optimal in general.

Example 3: Let us consider the simple example proposed
in [5], Example 7, with one node and two arcs. The system is
described by

with flow and demand subject to constraints ,
and .

Fig. 3 displays the flow space of and . The rectangle
defines the set . Let the cost function be

, as we wish to have the same degree of
long-term exploitation of and . All points for which
is zero are described by the dashed line intersecting points
and .

Consider a realization such that for
and for ,

for some dwell time , . In particular, as
the realization is periodic, we can limit ourselves to study the
evolution of the approximate cost in the first period (for ),
the latter including the intervals where
and where . We will show that in
the first interval, we are not able to exploit the and at
the same degree, as any feasible solution is such that works
harder than . In the second interval, the strategy (29) recovers
the mismatch by initially letting working harder than .

To be more precise, in the first interval, where ,
we must have (i.e., the segment in Fig. 3)
and strategy (29) returns and (i.e., the point

, which is the closest one to the dashed line ). During
the interval function and at the end of the first
interval, for , we have .

In the second interval, where , we must have
(i.e., the segment ) and the strategy (29)

returns and (i.e., the point ) in order to
drive the approximate cost to zero as fastest as possible. Let be
the first instant where . We have that for ,
the function . If we impose

in the latter equation we find . In the
remaining interval, namely for , the function takes

on the value and the strategy (29) switches to the
flow (point ).

As in , the above reasoning can be
applied for and so on. We have proved that is
bounded, for all . This means
that for . Since, also
holds, we have shown that and then the strategy
(29) is deterministically optimal for this example. Conversely,
the cost associated to is strictly greater than zero
which means that is not deterministically op-
timal. Actually, when , the strategy
returns and (i.e., the point ), whereas when

, the strategy returns
and (i.e., the point ). On the average we have

The deterministic optimality of (29) is proven next.
Theorem 4: Assume that satisfies Assumption 4. Assume

that the gradient-based strategy (29) produces the average
. Let the average achieved by some arbitrary strategy

such that for all . Then

Proof: To prove that , we first note that
if the result is straightforward since is positive
semidefinite. Therefore assume . Denote by
the evolution of the integral variable with the gradient-based
strategy. Since is the minimizer we must have

(30)

for any other such that .
Assume, by contradiction, that there exists a control

such that and that . Since is
convex, there exists such that

(31)

Since and are the average values, so
that it turns out that for any , no
matter how large, and any there exists such
that

(32)

Consider now the expression

where the last term goes to 0 in view of the continuity of and
the boundedness of and . Then for a proper large enough

in contradiction with (30).
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TABLE I
LOWER BOUNDS LB AND UPPER BOUNDS UB OF DEMAND AND FLOW

Remark 7: If is linear, then is constant and there-
fore variable does not play any role. Then we can consider the
memoryless strategy suggested in [4] for linear costs.

Remark 8: Given the average , the value

(33)

is a lower bound for . To see this, note that
always satisfies as well as , and
therefore is a generic feasible solution of problem
(33). Also, by exploiting the definition of achievable flows
in [5], we can say that if the minimizer of (33) is an achiev-
able flow, then the lower bound is tight in the sense
that . Differently, if the minimizer of
(33) is not an achievable flow, then is not tight as

.
Furthermore, if we assume that is known, then we can adopt

the linear strategy proposed [5].
Let us conclude with a brief comment on the case of network

with buffers. In presence of buffers, we can achieve the same
results discussed in this section. To see this, it suffices to split
the strategy in two parts: the first part assuring stability and the
second part deterministic optimality. Such a procedure has al-
ready been illustrated in Section IV and therefore it will not be
discussed further here.

VI. NUMERICAL EXAMPLE AND SIMULATIONS

Consider again the network displayed in Fig. 1. We provide
a comparison between the piecewise affine strategy (static
min-max optimal strategy) defined in (13) and the
gradient-based strategy (dynamic deterministically optimal
strategy) as in (29). In Table I we
display lower and upper bounds of demand and flow.

The cost to minimize is (8) with . Note that, we can
make function depend only on as required in Assump-
tion 4, by simply replacing demands , and
by three artificial flows , and

. Table II summarizes the optimal balancing
flows on each vertex , . Observe that,
from the network manager point of view, the cost
is maximized in . In other words, the worst demand is not
the maximal demand on each node.

Now, denote the probability of being on vertex , and
consider a number of realizations with increasing probability

from 0 to 1 and
, . Also, let and

be the average costs obtained with strate-
gies and , respectively. For this example, we
can compute and derive

by simulations. In particular, we simulate a set of six real-
izations for from 0 to 500, with , 0.4, 0.6, 0.8, 0.95,
1. Whichever the realization, we expect a better performance of

TABLE II
OPTIMAL FLOW � ON EACH VERTEX � , � � �� � � � � �

TABLE III
COST DIFFERENCE � �� FOR REALIZATIONS WITH DIFFERENT � .

FOR � � � (WORST REALIZATION), THE COST DIFFERENCE IS NULL

(29) as evidenced in Table III, where we display the cost differ-
ence for different realizations (different ).

Note that in correspondence to the worst realization, charac-
terized by , the two strategies and are
equivalently optimal as (they provide the
same cost ).

Furthermore, according to our expectation, we observe that
obtained with strategy (29) always converges to on

the long run. This is evidenced in Fig. 4 where we plot the time
evolution of the error for each one
of the six realizations. We can see that the error tends to zero
for increasing in all of the six plots. Note the straight line in
zero which is associated to the worst realization . In
this case, the demand is the worst one at each and
which also means for all . Note that by
using artificial flows , and , the variable
includes also the average demands up to time .

In Fig. 5, we simulate the gradient-based strategy de-
fined in (29) (dotted) and the piece-wise strategy
defined in (13) (dashed) for a realization of the demand with

. In particular, we plot flows and demands
(solid) for , 2, 3 from top to bottom respectively. Note that

obtained from the piecewise strategy (13) (dashed line,
middle plot) follows the peaks of (solid line, middle plot)
while obtained from the gradient-based strategy
(29) (dotted line, middle plot) does not. This is evident, for in-
stance, in the interval from to . This is due to
the fact that arc 2 is over exploited for about where de-
mand and the flow in arc 2 saturates at its lower
value . The gradient-based strategy (29) keeps
memory of the mis-match between and and for
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Fig. 4. Time plot of the error����� �� ��������� for a set of six realiza-
tions with � � ���, 0.4, 0.6, 0.8, 0.95, 1. The error tends to zero for increasing
�.

Fig. 5. Gradient-based strategy � ��� (30) (dotted) and piece-wise strategy
	 ��� (13) (dashed) with � � ��
. Top: time plot of � ��� (solid) and
� ��� obtained with the gradient-based strategy � ��� (dotted) and with the
piece-wise strategy	 ��� (dashed); middle: time plot of � ��� (solid) and
� ��� (dotted and dashed); bottom: time plot of � ��� (solid) and � ��� (dotted
and dashed).

to the flow (dotted line, middle) is kept
constant even if the demand has some peaks at its highest
value.

VII. CONCLUSION

Network flows have been dealt with under different perspec-
tives both in robust optimization and in control theory. The
present work is an attempt to emphasize connections and analo-
gies between the two contexts.

We have studied how to robust stabilize continuous-time net-
works by controlling the flow with capacity constraints in the
presence of demand which is unknown but bounded within a
polytope. A feature of this work is that the cost is a function of
the long-run average-flow and demand. We have seen that as-
suming for the demand a worst or a neutral behavior leads to

different optimal strategies. In particular, in the first case the re-
sulting strategy is memoryless and can be computed via convex
optimization. On the contrary, in the second case we must re-
sort to strategies with memory. We have proposed a solution
based on a Lyapunov approach, in which the control is selected
on-line, among the feasible flows, as the point-wise minimizer
of the gradient of the cost of the average.
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