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ABSTRACT. Starting from a previous model for thdftsimechanics of
rubber belt variators, this lecture elaborates tmralcdesign formulas for
the torque and the axial thrust making use of #rg elose resemblance of
the belt path to a linear spiral of Archimedes glanlarge part of the arc
of contact. In addition, as an alternative to thedern calculus tools, it is
shown how the drive variables can be equally cated applying some
propositions of Archimedes' classical treatis@ ‘clikwv (On Spirals).

INTRODUCTION

The usual operation of the continuously variabdémsmissions (CVT) for
vehicles or motorcycles consists in a random coptils change of the
speed ratio, where a gross radial motion of the toelard the inside or
outside of the groove is superimposed to the arcoiotion. Only a few
approaches to the CVT transient mechanics can lredfin the literature
(see references in [1,2]) and a practical formulianstill missing. The
present paper resumes the theory of [1] and casistruseful design
formulas for the torque and the axial thrust. Thk équation system is
strongly non linear and its exact solution requioesnplex numerical
procedures. Attempts at approximate solutions wareed out for some
applicative cases [2], achieving a very fine agreeiwith experiments.
Here, a much simpler formulation will be developtaking advantage of
the Archimedean spiral shape of the instantaneeludite.

The involvement of Archimedes in the mechanics efthines was
quite relevant and several ingenious devices abe t@scribed to him, both
for the civil and military application, though suaiventions arose more
from practical occasional requirements than frosihtimate disposition
to this kind of activity [3,4]. Among many othertémests, he was also
concerned with the cable and belt mechanics andef@mple, his
compound-pulley tackles¢looracra) for the launch of very big ships are
recorded by the historians. Nevertheless, he pexfethe speculative
aspects of the theoretical mechanics and the iigati®in on several
mathematical and geometrical problems regardingepknd solid figures
[3-7]. His treatise on spirals, though charactefibg a limited divulgation



in the past, may be recognized of a great modeaftgr more than two
thousand years and may still yield alternative mdshfor the solution of
today’s mechanical problems, as will be shown adgbe following.

The history of belt mechanics is traced by Gerberef. [8]. Despite
the extensive use of cable and rope devices iantiguity, the theoretical
analysis of the belt drives originates only in r@ceenturies, starting from
the well known capstan formula of Euler-Eytelwemdgroceeding with
the fundamental distinction made by Grashof betwidsenadhesive arc
(Ruhebogenand the sliding arcGleitbogen. The V-shaped belts were
introduced by John Gates at the beginning of th® @ntury. Their
analysis and their use in variable speed drives flam more recent times
(Lutz, Worley, Dittrich, Gerbert) and also the autlof the present paper
has been working in this research area duringasieykars.

BELT-PULLEY COUPLING

A scheme of the belt element with the wall forcesepresented in Fig. 1a,

while Fig. 1b shows some details about the geongetdykinematics of the

belt path. These figures may be used as a refefent®e notation.
Putting &= &t) andr = r[t,4t)] along the trajectory of a belt element,

one hagr/dt =r + &r', where dots and primes indicate the differentratio
with respect ta and & respectively. Moreover, letting = (r. —r) /r., be
the dimensionless elastic penetration of the bdigrer,, is the nominal
radius for infinite transverse stiffness of the tpdhe self-evident
geometrical relationship = — r tany gives

X =(1-x)tany (1)

The above formulas give rise to the relationskmo = vcosdtany — r
while the triangle of velocities points out thabsd — ar — vsindtany = 0,
and such two relationships yieldosd(1 — tamytany) = ar(l — ptany),
wherep =1 /(o) OF, /() is the dimensionless shift speed. Therefore,
if p=tary, thenvcosd = ar andvsind = 0, i. e. there is adhesion
between the belt and the pulley and onexhas(1 - x)o by Eg. (1), so that
the belt has the shape of a logarithmic spiral.exheless, ag << 1, the
instant path can be confused with a linear spirédirohimedes.

Indicating the longitudinal elongation with= T/S, T andS being the
belt force and the longitudinal stiffness, the usarder of magnitude af,
X, € and p is of a few thousandths. Then, combining the Hatemand
Lagrangian formulations of the mass conservatiordition with reference
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Fig.1b Control volume. Triangle of velocities.
NOTATION
dF,and fdR = normal and frictionaklementary wall forces
a = groove half-angleg = belt velocity angley = belt penetration angle

y=sliding angle in plane of rotatiory,= sliding angle on pulley walttany, =
cosa tany)

r = belt radius, 8= angular coordinate

v = belt velocity,vsj, = slip velocity in rotation planegg = dimensionless shift
speedw= pulley angular velocity



to the dihedral control volume of Fig. 1b and negiteg small terms, it is
possible to arrive, as in [1], at the relationship

£’
u'=@1+u) —+tanyldl-x')|- 2
( )[1”, Al )()}p )
whereu is the dimensionless slip velocity in the circurefgial direction:

Vaip .
u=—2-siny=

tany-p
wlt

1-tanytany (3a.b)

tany - tany=,—
Joov - = e

Neglecting small terms, equilibrium yield3y(i,)' + F'w O 0O,
whereTg = T - /w2 is a "dynamic” belt forcey the belt mass per
unit length, /v? the momentum flux along the belt afd, the
resultant wall force per unit angle. Likewise,gtpossible to define
the "dynamic" elongationgg = Tg4/S. Splitting the vectorial
equilibrium equation in the directions tangentiadanormal to the
belt, defining the transverse elastic moduliysand the transverse
stiffness paramete® = 2taroEhr.” /w (h andw: belt height and
width), formulating a transverse constitutive eguatone gets as a
whole

Sdg = 2[sinasin y + f (cosy, cosasin y +siny, cosy)| dF, 4)
S&(l+y)dE= 2[sinacosX + f (cosyW COSa Cos) —siny,, sin)()] dF, (5)
dF, = (cosa - f cosy, sina) dF, = Sx(1 —x) d@/cosy (6)

Eliminating dF, from Eqs. (4-5) and introducing the belt elastic
parametek = 2 tary S/ S, the momentum balance leads to

. _ ki x(tang + tany)

& _ tang 7)
cos atany
o kx{1- x)(1- tanStany) 1
( tan J (8)
gl1-———F
cos atany

where tag=f siny/(f cosy+ sina\/1+tarn’ acos y ).

We have thus collected four brder differential equations, (1), (2),
(7), (8), and one parametric equation, (3 a oirb)he five variables, &,



X, uandy, where the first four are very small, whilanay range between
- and +7 This differential system is "degenerescent", &s drder
"degenerates” from four to three when neglectinig sahaller terms,
including ¥ in Eq. (8). The problem is then of the boundagetaype, so
that a rather smooth variation of the variablesxisected along most of the
contact, but with sharp gradients near the bouadadnd the equations
must be applied in their unabridged form to matitb@undary conditions.
The numerical solution shows a short "seating" aegat the contact
entrance, where the belt slides inwagd({0), and a short "unseating"
region at the exit, where it slides outwapdi+7). The belt force is nearly
constant in both of them by Eq. (7), but the etagénetration is subject to
rapid changes, together with the belt curvaturétiriguy ] 0 at the seating
region exit, one may obtai, U &, /k; by Eq. (8), wherdy = k tan(a +
arctarf) / tana and this expression &f, gives a good approximation for the
penetration at the start of the inner main regibcootact.

ADHESIVE SUBREGION. As proven in [1], a wide adhesive region where
tany = p must develop inside the arc of contact of theiotppulleys p >

0), both driver and driven, next to the seatingaegnd bounded by the
endpointsU and D (Upstream andownstream). Here, all the previous
relationships hold, except thaimust be replaced by a variable adhesion
factorf, < fs, wherefs is the coefficient of static friction, andby the angle

)4 of the resultant adhesion force in the plane tdtion. The adherence
limit is reached whe, = f,. The adhesive conditions, tar o, u = 0,
imply the constancy of the belt force, &s= 0 by (2), while Eq. (1) gives
X=(ro=1) /1, =1~ (1-xy) exp[-0 (8 - &)], wherexy O&n/ky,. Then, at

a fixed time instant, the belt coils along a lotgariic spiral, which, since
and p| are << 1, may be roughly confused with a linepiras of
Archimedes

xUxy+p(@-84) - rUry-r.p(6-4) 9)

This spiral develops very slightly inward in the toa direction aso > 0
andp << 1, but the belt radius increases at each farmagllar position due
to the pulley rotation.

The small variablex, &, y andu are obviously continuous when
entering/leaving the adhesion region, while and f are always
discontinuous withy andf, atD, but are continuous &t if f(U) =f.
ADHESIVE-LIKE SUB-REGION. No adhesive contact may develop in the
opening pulleys, but the growth of sufficiently darregions of contact
requires the presence of adhesive-like regions, raviibe adhesion
condition tary = p is just approachethut not fulfilled. Here, the slip



velocity vgip, and the sliding anglgare rather small, whence we gt p
—tany O constant andy Okx by Egs. (2) and (8). Moreover, as the trend
of y appears rather flat inside the adhesive-like regithre second
derivative ' must tend to vanish as well. Then, differentiatigy (8) and
retaining only the dominant terms, it is possildeget ¥* [ [tany — (0 —
tany) /k;] / x 00, whence tan [l p /(1 +k;) and the approximate gradients
X' Opl(1 +k) andéy Uk /(1 +k;) are obtainable. These results permit
constructing approximate solutions for the adheBkeesub-regions:

-1o-(6-6,)

“fuin . P (g_g =t
X= + (0 Hln) - r=ry 1+k1

k,  1+k
(10a,b)
Eg=&gint 1k_ipk (H_Qn)
1

Summing up, spiral-shaped paths grow up in theirdoand opening
shift phases. In the former ones, the belt forcepkeconstant due to
adhesion, while a slight tension variation occurghie last ones due to a
small creep motion. Moreover, it is noteworthy ththe sum of the
gradients ofx and & is roughly equal tq in both the shift operations.
Figure 2 shows two belt paths schematically foni& sp and a shift down
phase respectively. The belt velocity vectors aichghat the belt radius
increases or decreases in the closing or openithgypespectively.

NUMERICAL RESULTS

The shift model can be dealt with as an initialueaproblem, starting the
integration from one of the contact endpoints,.g¢hg exit pointe, where

of course the belt penetratiep must be zero, and moving backward until
X vanishes again and a complete solution has bdgavad. A great care
must be put in the control of the integration steggucing its width on
approaching the adhesive or adhesive-like regi@ansavoid numerical
instability. An iterative procedure must be folladye correcting
successively the starting values by a sort of shgdechnique, until all
the external boundary conditions are fulfillede.i.for the contact widti®

Lxit — Gentrance the applied torquesf exit — &entrancd S F» and the axial
thrust F, = dF,. Moreover, in the case of a closing pulley, the

backward integration proceeds until the conditianyt= o is attained at
the downstream adhesion bound@rycontinues along the adhesive arc,
according to the previous adhesive model until ¢beditionf, = f is
attained, assuming equal coefficients of static dialihg friction, and goes
on upstream in the seating region. In gdnelp a decrease of the exit

J.me arc
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Fig. 2. Examples of shift-up and shifbtwn phases with magnified spi
shape of the belt pathog| U |on| 00.05, kg Oky n 00.5. Subscripts R an
N: driveR and driveN pulleys.

angle xg, which is always negative, produces an increastefcontact
width; 2) a small increase of the sliding anglewhich must be very close
to £77 tends to change the pulley behaviour from driteemriver; 3) an
increase of the belt elongatiagg: produces an increase of the axial thrust.

Figures 3 to 6 show examples of numerical resoltshfe four possible
operative conditions of a pulley: driver/driven, eong/closing. The
solutions were obtained fixing the shift-to-peripglespeed ratiqo, the
"centrifugal eIongation',ZNbZ/S and the exit values gk and g = (Tg —
,uvbz)/S, whereTg is the belt tension in the free strand downstre@he
third initial value xz (< 0) was corrected systematically to get a pxedi
wrap width.

The ratiof, / f is also reported for the adhesive case (closipgm a
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Figg.3-6. Solutions rébm unabridged equations (continuous line)
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k=0.15a=13° f=0.4,0=180° 0= 0.0003;a1, = 0.0001.

3) opening driver p.J¢ = 186°; 4 opening driven p.jt = 182°;

5) closing driver p. & = 186°; 6) closing driven p.jz = 183°.



jump Ayis observable at the downstream boundary, dueetguthp from
fytof.

The belt angley is quite small everywhere, save in the seating and
unseating regions, where it is affected by shargatiee gradients.
Moreover, the sliding anglg/ is close to 0 and tax in these short
boundary regions, where thus the belt tension iarlpeconstant.
Nevertheless, a sharp variation pbccurs when passing from the main
internal region of contact into the unseating ragibherefore, indicating
with the subscripts . and ..o, the ends of the wide inner region, the
previous initial relationshigy, 0 ki, is valid, but a similar relationship
cannot be written at the end.

Observing the diagrams of the closing pulleys, lib# tensionTy is
constant in the adhesive sub-region, where theaielpsnetratiorx varies
in practice linearly withd according to Eq. (9). Likewise, linear trends of
Ty and X may be observed in the adhesive-like regions ofdpening
pulleys, according to Eqgs. (10a,b). This suggggtsaximate solutions.

PRACTICAL FORMULARY

Neglecting the short seating and unseating regibieslinear trend ox in
the adhesive or adhesive-like sub-regions may hearvently used for the
approximate integration of Eq. (6) for the axiatustF, = | dr, O

wrap arc
Iwraparc S Xd 0 "

Considering the driver pulley and observing seve@ltions, this
linear trend may be approximately prolonged ingite downstream main
sliding region as far as its endpoint, both for #ilesing and opening
phases. Since only the area under this plot isitefest and not the exact
shape of the locus, this approximation may giveexnaordinary tool for
the practical calculation of the driver pulley mgrhance:

_ (TT - ,LN&)@R + PrS ROk
2tan(a +arctanf) 2+ k, g[1-sgr(og)]

(11)

z,R

where the subscripts r.and ..y refer to the drivR behaviour and to the
tight strand. Notice that the belt parameters \@duying the shift phase
and, in particularg r andkyr vary with the square of the radius.

As regards the driven pulleys, it is better to diévthe region of contact
in two sub-regions: a first adhesive or adhesike-lsub-region, where
Egs. (9) or (10a) hold, and a second main slidugrregion, where the
solutions may be constructed according to the folig reasoning, based
on the observation that the penetration-to-elongatatiox /& and their



differential ratiodx/dg tend roughly to the same "asymptotic" value on
approaching the endpoirtx,/d&; out — Xout/ Eout — CONStant =m.

Neglectingy, ¥ and putting 1- x 0 1, Equations (7) and (8) change
into ¢'q 0 & tanB Ocoga tany (& — kx) and one may solve fgg, ands'q ou

2.2 1\ _ (12
tany, 0 Ji- £ 2 tar? akym-1)1- k,m)
cosa(1-km)
€y ot 04 o 0y [1- 12 tar? a [kym - 1)(L - k,m) (13)

where the new parametier= k tan(a —arctarf)/tana has been introduced,
which is generally negative for rubber belts. Thadjcating the boundary
point between the two sub-regions w@h(O = D if the first sub-region is
adhesive)lo can be equated to zero because eipér 0 (opening p.) or
tanyo = p (closing p.) and, integrating Eq. (2) frofp to 8and accounting
for Egs. (1) and (3), one obtairsd 0 + [& — &o+ X —Xo — (6 — &)1 /

tany. Hence, considering thaf, = &n /ky and& o + Xo = &in + Xin + 0 (€b

- g,) for both the adhesive and adhesive-like casesiaimg) Eq. (12), one

has
1+m- St (1+ 1J - £ o
&4 out kl &4 out (14)

Ji- 2 tar? aflem-1){1- k,m)

Minding thatx'ou/ €4 0ut = M, the division of Eq. (14) by Eqg. (13) yields

Xout 00+ &4 o COST(L— km)

m{L- 2 tar? o (kym - 1)1~ k,m) =

- P — f2tan? -11-
_5d,outC05a\/(1 2 tar? a J(k,m-1)(L- k,m) + a5

&,
+(1—km){1+ m——2n [1+1J— P 6}
gd,out kl gd,out

which is a sixth degree algebraic equationrmpthat can be easily solved
by a few iterations, in dependence on the driva,dat T, and &.
Expressing the solution fox in the main sliding sub-region by a
simple parabolic fornx = Xout + X'ou @ = Gou)) + X"out (6 — 6’0u[)2/2, one may
impose the exit conditiongy; = M&y ous X'out = ME g oir@Nd the connection at
point O with the upstream adhesive or adhesive-like smhutiith the same
slopex’, = p {1 + 0.%;[1 — sgn()]}. Such continuity conditions yielé,




= bout — 2(r’n"«:‘d,out - XlinQ - Xin) /(Xlout - Xlin)y X"out = (X'out - Xlin)/(eout - 60)
and, using the subscript y.for the drivéN pulleys, the axial thrugg, y O

Jwrapamst xd@ turns out to be
F, .= (TS_/“Ng)QN + Xi'n,NSt,NOEJ +
zN - 2tan(a +arctanf ) 2
2
T —,u\/2 ,
mlr, — )~ T XanGnS (16)
+ 25 1N
3 &' " '
° m d’Ot(TT_"NE)_Xin,NS

d,out

where the rati@y out/& 00t IS given by Eq. (13).

Figures 3 to 6 report the above analytical appretioms by dots.
Their agreement with the solutions of the full dfpras is quite acceptable,
also in consideration that what is more significianthe whole area under
the diagrams and not the local elastic penetrationg the arc of contact.

The last equation for completing the formularyhe torque equation.
Curtailing the torque values on the driver and elmisides of the torque
losses in the bearings if the torque pickups atereal to the housing, and
averaging them in order take into account the simldending stiffness of
the belt, it is possible to write

1(M M
Tr=Ts==| R+ 17
! s 2(rooR r.ooNJ ( )

The given operative data of a V-belt variator amnagally the
transmitted torque, the speed and the axial tlmmigine of the two pulleys,
exerted for example by a spring load. Accordingvtich axial thrust is
given, on the driver or driven side, one has tocisse Eqg. (17) with either
Eq. (11) or Eq. (16) and calculate the unknown foeltesTr andTs on the
tight and slack strands. In the case of known drigad, Equation (11)
gives the tighter tension directly and then Equmti(l7) permits
calculating the slacker tension. If on the contrdmy known axial load is
on the driven side, eliminating one of the two tens, e. gTs, from Egs.
(16-17), one obtains a quadratic equation for theraensionT+:

a(TT —,uv§)2 + b(TT —m§)+c =0, where puttingdT = Ty - Ts, (18)
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and the driven load can be easily treated as well.

AXIAL THRUST CALCULATION USING THE PROPOSITIONS 227
OF ARCHIMEDES' TREATISE I7ERPI EANIKQN'

It is quite interesting that the axial thrust oe fhulley can be alternatively
obtained avoiding the integral calculus and usitg tfindings of
Archimedes about the areas enclosed by the vabmarsches of a spiral
line (see [5,6]). These areas were calculated BySfracusan scientist
through very elaborate procedures based on hisueiba method, as
described in the palimpsest of "The Method" (s¢g [7

According to the Latin version, the proposition24. statesSpatium
comprehensum spirali prima circumactione descrigg linea prima
earum, quae in principio circumactionis sunt, tarpars est circuli primi.
Therefore, ifR = afis the polar equation of the spir®d,= 27ja the value
of the radius after thg" revolution andA the area enclosed by the spiral
branch between the points with angular coordin&e<274j —1) andé@=
275 and by the segment of the axds= 0 between the points with radial
coordinate®k 4, andR, we haved; = 7R,%/3 = 4r°a’/3.

The following proposition n. 25 saySpatium comprehensum spirali
secunda circumactione descripta et linea secundaurea quae in
principio circumactionis sunt, ad circulum secundaam habet rationem,
quam 7:12, ..(omissi$. In practice, the result is tha, = 77R,%/12 =
28°a%3 andA, — A, = 6A;, as also ascertained in the discussion of
proposition 27, where the differenég — A is the area enclosed by the
first and the second branches of the spiral lirktanthe segment between
the pointsR; andR, of the axisg= 0.

Furthermore, the proposition 27 stat&patiorum comprehensorum
spiralibus et lineis, quae in circumactione sumtium duplo maius est



secundo, quartum vero triplo maius, quintum veradguplo maius, et
semper deinceps insequens spatium toties multgdiéx gquam spatium
secundum, quoties indicant numeri ordine sequenpesnum autem
spatium sexta pars est secuntdhis means in practice that the areas
enclosed by two subsequent spiral branches anakie@= 0 are given by
the recursion formuld - A_; = ( —1) (A, - A) = 8( - 1)77°a’, which
result is valid starting from= 2.

SummingA; and all the area differences frgmx 2 toj = n, it is thus
possible to calculate the total alkaA,= 47°a9 /3 +2(1 +2 +3 + ... +
n - 1] = 47%a%(1/3 +n?- n). The difference of tha™ circle andA, is a
curved triangular stripe, whose areads, = 477°'n’a® — 4°a*(1/3 +n’ -
n) = 47°a’(n - 1/3) and, for very small slogeand very large, as in the
V-belt winding, this area is approximately equaliy, 0477a’n.

Since the radial width of this curved triangulaea®A,, increases
linearly with the distance from its vertex, thea# a segment of angular
extension@is AA, = 4A,@ %4 0 m@%a*n = R,0%a 2. Considering that
R, Or. and that the spiral slope ds=r,po /[1 + 0.5<k(1 — sgrp)] for the
belt-pulley coupling, nearly in the whole arc ofntact for driver pulleys
and in a large part of it for driven pulleys, we g0 Or.’@2x p/[2 +
ki(1 - sgno)].

Tracing a circle of radiuR, = 4r, wheredr is the radial penetration at
the beginning of the main arc of contact downstredithe small seating
region and the positive or negative signs are védidthe closing or
opening phases respectively, the absolute valuéhefradial distance
between this circumference and the spiral line gyitlee local radial
penetration, variable along the wrap region.

As the axial push per unit length between the aelt the pulley is
obtainable multiplying the radial penetration bye titompression-to-
penetration ratio 2tanand by the axial elastic stiffneEsh/w of the belt,
the total axial thrust is given by the product d&fetabove curved
trapezoidal area, between the spiral and the ciie@mceR, £ 4r, and
these two quantities:

22
F,= 2tancrEZD r,OxAr b LOP (19)
w 2+k(1-sgnp)

Minding that Ar = (Tentrance — ,uvz) r. / (Sky), Equation (19) leads
exactly to the same result of Eq. (11), valid foe driver pulleys. Clearly,
some discrepancy appears in the case of a drivieypwhere a part of
the winding arc is not spiral-shaped.



CONCLUSIONS

A very simple model may be derived from the resufsa previous
analysis of the author on the ratio shift of V-beltiators, whose findings
were characterized by a very fine accordance \uighetkperimental results.

The observation of several numerical solutions fsoiout the
Archimedean spiral shape of the instantaneousplaéit along an extended
part of the winding region, with adhesive or adhedike conditions for
the closing or opening pulleys respectively. Intigafar, the elastic belt
penetration increases in the motion direction far former and decreases
for the latter, independently of the working coraiit of driver or driven
pulley, that may at most affect the trends of thedt Horce, of the
penetration and of the sliding direction in thddwaling sliding portion of
the wrap arc, downstream of the adhesive/adhesigesiub-region. An
easy-to-use formulary has been reported, which beyery useful for
design purposes, permitting the evaluation of tkial dorces exerted by
the pulley walls or else the tension level produbgda given axial thrust
on the loaded half-pulley.

It is shown how these calculation may be workedvdgthout recourse
to the modern integral calculus, by simply usingiegropositions of the
classical Archimedean treatise On Spirals, as eceleof the up-to-
dateness of Archimedes' thought.
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