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ABSTRACT. Starting from a previous model for the shift mechanics of 
rubber belt variators, this lecture elaborates practical design formulas for 
the torque and the axial thrust making use of the very close resemblance of 
the belt path to a linear spiral of Archimedes along a large part of the arc 
of contact. In addition, as an alternative to the modern calculus tools, it is 
shown how the drive variables can be equally calculated applying some 
propositions of Archimedes' classical treatise περι ‘ελικων (On Spirals). 
 
INTRODUCTION 
The usual operation of the continuously variable transmissions (CVT) for 
vehicles or motorcycles consists in a random continuous change of the 
speed ratio, where a gross radial motion of the belt toward the inside or 
outside of the groove is superimposed to the circular motion. Only a few 
approaches to the CVT transient mechanics can be found in the literature 
(see references in [1,2]) and a practical formulary is still missing. The 
present paper resumes the theory of [1] and constructs useful design 
formulas for the torque and the axial thrust. The full equation system is 
strongly non linear and its exact solution requires complex numerical 
procedures. Attempts at approximate solutions were carried out for some 
applicative cases [2], achieving a very fine agreement with experiments. 
Here, a much simpler formulation will be developed, taking advantage of 
the Archimedean spiral shape of the instantaneous belt line. 

The involvement of Archimedes in the mechanics of machines was 
quite relevant and several ingenious devices are to be ascribed to him, both 
for the civil and military application, though such inventions arose more 
from practical occasional requirements than from his intimate disposition 
to this kind of activity [3,4]. Among many other interests, he was also 
concerned with the cable and belt mechanics and for example, his 
compound-pulley tackles (πολύσπαστα) for the launch of very big ships are 
recorded by the historians. Nevertheless, he preferred the speculative 
aspects of the theoretical mechanics and the investigation on several 
mathematical and geometrical problems regarding plane and solid figures 
[3-7]. His treatise on spirals, though characterized by a limited divulgation 



 

in the past, may be recognized of a great modernity after more than two 
thousand years and may still yield alternative methods for the solution of 
today’s mechanical problems, as will be shown also in the following. 

The history of belt mechanics is traced by Gerbert in ref. [8]. Despite 
the extensive use of cable and rope devices in the antiquity, the theoretical 
analysis of the belt drives originates only in recent centuries, starting from 
the well known capstan formula of Euler-Eytelwein and proceeding with 
the fundamental distinction made by Grashof between the adhesive arc 
(Ruhebogen) and the sliding arc (Gleitbogen). The V-shaped belts were 
introduced by John Gates at the beginning of the 20th century. Their 
analysis and their use in variable speed drives date from more recent times 
(Lutz, Worley, Dittrich, Gerbert) and also the author of the present paper 
has been working in this research area during the last years. 

 
BELT-PULLEY COUPLING 
A scheme of the belt element with the wall forces is represented in Fig. 1a, 
while Fig. 1b shows some details about the geometry and kinematics of the 
belt path. These figures may be used as a reference for the notation. 

Putting θ = θ(t) and r = r [t,θ(t)] along the trajectory of a belt element, 

one has dr/dt = r& + θ& r', where dots and primes indicate the differentiation 
with respect to t and θ respectively. Moreover, letting x = (r∞ − r) /r∞ be 
the dimensionless elastic penetration of the belt, where r∞ is the nominal 
radius for infinite transverse stiffness of the belt, the self-evident 
geometrical relationship r' = − r tanχ gives 

( ) χtan1 xx −=′  (1)

The above formulas give rise to the relationship vsinδ = vcosδ tanχ − r& , 
while the triangle of velocities points out that vcosδ − ωr − vsinδ tanγ = 0, 
and such two relationships yield vcosδ(1 − tanχtanγ) = ωr(1 − ρtanγ), 
where ρ = r& /(ω⋅r) ≅ ∞r& /(ω⋅r∞) is the dimensionless shift speed. Therefore, 

if χρ tan= , then vcosδ = ωr and vsinδ = 0, i. e. there is adhesion 

between the belt and the pulley and one has x' = (1 − x)ρ by Eq. (1), so that 
the belt has the shape of a logarithmic spiral. Nevertheless, as x << 1, the 
instant path can be confused with a linear spiral of Archimedes. 

Indicating the longitudinal elongation with ε = T/Sl, T and Sl being the 
belt force and the longitudinal stiffness, the usual order of magnitude of x, 
χ, ε and ρ is of a few thousandths. Then, combining the Eulerian and 
Lagrangian formulations of the mass conservation condition with reference  



 

 

(z) (axial direction) 

 iθ  (circumferential direction) 

 ib (belt line direction) 

γ 

α  

90° 

dFn 
 fdFn 

C 

axis of symmetry of belt element (orthogonal to belt line) 
 

χ 

 

θ 

 r 
 

B 

A 
D 

vslip 

 χ 
 

  90° γw  

 iθ 

α  

  Fig.1a) Belt-pulley interaction. Tetrahedron of rotational (ACD), meridian 
     (ABC), sliding (BCD) and wall-tangent (ABD) planes. 
  Fig.1b) Control volume. Triangle of velocities. 

NOTATION 
dFn and fdFn = normal and frictional elementary wall forces 

α = groove half-angle, δ = belt velocity angle, χ =  belt penetration angle 

γ = sliding angle in plane of rotation, γw = sliding angle on pulley wall (tanγw = 
cosα tanγ) 
r = belt radius, θ = angular coordinate 

v = belt velocity, vslip = slip  velocity in rotation plane, ρ = dimensionless shift 
speed, ω = pulley angular velocity 
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to the dihedral control volume of Fig. 1b and neglecting small terms, it is 
possible to arrive, as in [1], at the relationship 
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where u is the dimensionless slip velocity in the circumferential direction: 
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Neglecting small terms, equilibrium yields (Td ib)' + F'w ≅ 0, 
where Td = T − µvb

2 is a "dynamic" belt force, µ the belt mass per 
unit length, µvb

2 the momentum flux along the belt and F'w the 
resultant wall force per unit angle. Likewise, it is possible to define 
the "dynamic" elongation εd = Td/Sl. Splitting the vectorial 
equilibrium equation in the directions tangential and normal to the 
belt, defining the transverse elastic modulus Ez and the transverse 
stiffness parameter St = 2tanαEzhr∞

2 /w (h and w: belt height and 
width), formulating a transverse constitutive equation, one gets as a 
whole 

Sl dεd = 2 ( )[ ]χγχαγχα cossinsincoscossinsin wwf ++  dFn (4)

Slεd(1+χ')dθ = 2 ( )[ ]χγχαγχα sinsincoscoscoscossin wwf −+  dFn (5)

dFz = (cosα − f cosγw sinα) dFn = St x(1 − x) dθ /cosχ (6)

Eliminating dFn from Eqs. (4-5) and introducing the belt elastic 
parameter k = 2 tanα St / Sl, the momentum balance leads to 
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(8)

where tanβ = f sinγ /(f cosγ + sinα γα 22 costan1+ ). 

We have thus collected four 1st order differential equations, (1), (2), 
(7), (8), and one parametric equation, (3 a or b), in the five variables x, εd, 



 

χ, u and γ, where the first four are very small, while γ may range between 
−π and +π. This differential system is "degenerescent", as its order 
"degenerates" from four to three when neglecting all smaller terms, 
including χ' in Eq. (8). The problem is then of the boundary layer type, so 
that a rather smooth variation of the variables is expected along most of the 
contact, but with sharp gradients near the boundaries, and the equations 
must be applied in their unabridged form to match all boundary conditions. 
The numerical solution shows a short "seating" region at the contact 
entrance, where the belt slides inward (γ ≅ 0), and a short "unseating" 
region at the exit, where it slides outward (γ ≅ ±π). The belt force is nearly 
constant in both of them by Eq. (7), but the elastic penetration is subject to 
rapid changes, together with the belt curvature. Putting γ ≅ 0 at the seating 
region exit, one may obtain xin ≅ εd,in /k1 by Eq. (8), where k1 = k tan(α + 
arctanf) / tanα and this expression of xin gives a good approximation for the 
penetration at the start of the inner main region of contact. 

ADHESIVE SUB-REGION. As proven in [1], a wide adhesive region where 
tanχ = ρ must develop inside the arc of contact of the closing pulleys (ρ > 
0), both driver and driven, next to the seating region and bounded by the 
endpoints U and D (Upstream and Downstream). Here, all the previous 
relationships hold, except that f must be replaced by a variable adhesion 
factor fa ≤ fs, where fs is the coefficient of static friction, and γ by the angle 
γa of the resultant adhesion force in the plane of rotation. The adherence 
limit is reached when fa = fs. The adhesive conditions, tanχ = ρ, u = 0, 
imply the constancy of the belt force, as ε'd = 0 by (2), while Eq. (1) gives 
x = (r∞ − r) / r∞ = 1 − (1 − xU) exp[−ρ (θ − θU)], where xU ≅ εin /k1,. Then, at 
a fixed time instant, the belt coils along a logarithmic spiral, which, since x 
and |ρ| are << 1, may be roughly confused with a linear spiral of 
Archimedes 

x ≅ xU + ρ (θ − θU) →  r ≅ rU − r∞ ρ (θ − θU) (9)

This spiral develops very slightly inward in the motion direction as ρ > 0 
and ρ << 1, but the belt radius increases at each fixed angular position due 
to the pulley rotation. 

The small variables x, εd, χ and u are obviously continuous when 
entering/leaving the adhesion region, while γ and f are always 
discontinuous with γa and fa at D, but are continuous at U if fa(U) = f. 

ADHESIVE-LIKE SUB-REGION. No adhesive contact may develop in the 
opening pulleys, but the growth of sufficiently large regions of contact 
requires the presence of adhesive-like regions, where the adhesion 
condition tanχ = ρ is just approached but not fulfilled. Here, the slip 



 

velocity vslip and the sliding angle γ are rather small, whence we get ε'd ≅ ρ 
− tanχ ≅ constant and εd ≅ k1x by Eqs. (2) and (8). Moreover, as the trend 
of χ appears rather flat inside the adhesive-like region, the second 
derivative χ" must tend to vanish as well. Then, differentiating Eq. (8) and 
retaining only the dominant terms, it is possible to get χ" ≅ [tanχ − (ρ − 
tanχ) /k1] / x ≅ 0, whence tanχ ≅ ρ /(1 + k1) and the approximate gradients 
x' ≅ ρ /(1 + k1) and ε'd ≅ k1ρ /(1 + k1) are obtainable. These results permit 
constructing approximate solutions for the adhesive-like sub-regions: 
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(10a,b)

Summing up, spiral-shaped paths grow up in the closing and opening 
shift phases. In the former ones, the belt force keeps constant due to 
adhesion, while a slight tension variation occurs in the last ones due to a 
small creep motion. Moreover, it is noteworthy that the sum of the 
gradients of x and εd is roughly equal to ρ in both the shift operations. 
Figure 2 shows two belt paths schematically for a shift up and a shift down 
phase respectively. The belt velocity vectors are such that the belt radius 
increases or decreases in the closing or opening pulley respectively. 

 
NUMERICAL RESULTS 
The shift model can be dealt with as an initial value problem, starting the 
integration from one of the contact endpoints, e. g. the exit point E, where 
of course the belt penetration xE must be zero, and moving backward until 
x vanishes again and a complete solution has been achieved. A great care 
must be put in the control of the integration step, reducing its width on 
approaching the adhesive or adhesive-like regions to avoid numerical 
instability. An iterative procedure must be followed, correcting 
successively the starting values by a sort of shooting technique, until all 
the external boundary conditions are fulfilled, i. e. for the contact width Θ 
= θexit − θentrance, the applied torque (εd,exit − εd,entrance) Sl r∞ and the axial 
thrust Fz = ∫ arc  wrap zdF . Moreover, in the case of a closing pulley, the 

backward integration proceeds until the condition tanχ = ρ is attained at 
the downstream adhesion boundary D, continues along the adhesive arc, 
according to the previous adhesive model until the condition fa = f is 
attained, assuming equal coefficients of static and sliding friction, and goes 
on  upstream  in  the  seating  region.  In  general : 1)  a decrease of the exit 



 

angle χE, which is always negative, produces an increase of the contact 
width; 2) a small increase of the sliding angle γE, which must be very close 
to ±π, tends to change the pulley behaviour from driven to driver; 3) an 
increase of the belt elongation εd,E produces an increase of the axial thrust. 

Figures 3 to 6 show examples of numerical results for the four possible 
operative conditions of a pulley: driver/driven, opening/closing. The 
solutions were obtained fixing the shift-to-peripheral speed ratio ρ, the 
"centrifugal elongation" µvb

2/Sl and the exit values of γE and εd,E = (TE − 
µvb

2)/Sl, where TE is the belt tension in the free strand downstream. The 
third initial value χE (< 0) was corrected systematically to get a pre-fixed 
wrap width. 

The ratio fa / f  is  also  reported for the adhesive case (closing p.) and a 
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Fig. 2. Examples of shift-up and shift-down phases with magnified spiral 
shape of the belt path. |ρR| ≅ |ρN| ≅ 0.05, k1,R ≅ k1,N ≅ 0.5. Subscripts R and 
N: driveR and driveN pulleys. 
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Figg.3-6. Solutions from unabridged equations (continuous line) and 
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k = 0.15, α = 13°, f = 0.4, Θ = 180°, ρ = 0.0003,µvb = 0.0001. 
3) opening driver p., γE = 186°; 4) opening driven p., γE = 182°; 
5) closing driver p., γE = 186°; 6) closing driven p., γE = 183°. 

 



 

jump ∆γ is observable at the downstream boundary, due to the jump from 
fa to f. 

The belt angle χ is quite small everywhere, save in the seating and 
unseating regions, where it is affected by sharp negative gradients. 
Moreover, the sliding angle γ is close to 0 and to ±π in these short 
boundary regions, where thus the belt tension is nearly constant. 
Nevertheless, a sharp variation of γ occurs when passing from the main 
internal region of contact into the unseating region. Therefore, indicating 
with the subscripts …in and …out the ends of the wide inner region, the 
previous initial relationship εd,in ≅ k1xin is valid, but a similar relationship 
cannot be written at the end.  

Observing the diagrams of the closing pulleys, the belt tension Td is 
constant in the adhesive sub-region, where the elastic penetration x varies 
in practice linearly with θ according to Eq. (9). Likewise, linear trends of 
Td and x may be observed in the adhesive-like regions of the opening 
pulleys, according to Eqs. (10a,b). This suggests approximate solutions. 

 
PRACTICAL FORMULARY 
Neglecting the short seating and unseating regions, the linear trend of x in 
the adhesive or adhesive-like sub-regions may be conveniently used for the 
approximate integration  of Eq. (6) for the axial thrust Fz = ∫ arc  wrap zdF  ≅ 

∫ arc wrap θdxSt .  

Considering the driver pulley and observing several solutions, this 
linear trend may be approximately prolonged inside the downstream main 
sliding region as far as its endpoint, both for the closing and opening 
phases. Since only the area under this plot is of interest and not the exact 
shape of the locus, this approximation may give an extraordinary tool for 
the practical calculation of the driver pulley performance: 
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where the subscripts …R and …T refer to the driveR behaviour and to the 
tight strand. Notice that the belt parameters vary during the shift phase 
and, in particular, St,R and k1R vary with the square of the radius. 

As regards the driven pulleys, it is better to divide the region of contact 
in two sub-regions: a first adhesive or adhesive-like sub-region, where 
Eqs. (9) or (10a) hold, and a second main sliding sub-region, where the 
solutions may be constructed according to the following reasoning, based 
on the observation that the penetration-to-elongation ratio x /εd and their 



 

differential ratio dx/dεd tend roughly to the same "asymptotic" value on 
approaching the endpoint: dxout/dεd,out → xout /εd,out → constant = m. 

Neglecting χ, χ' and putting 1 − x ≅ 1, Equations (7) and (8) change 
into ε'd ≅ εd tanβ ≅ cos2α tanγ (εd − k x) and one may solve for γout and ε'd,out 
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where the new parameter k2 = k tan(α − arctanf)/tanα has been introduced, 
which is generally negative for rubber belts. Then, indicating the boundary 
point between the two sub-regions with O (O ≡ D if the first sub-region is 
adhesive), uO can be equated to zero because either γO ≅ 0 (opening p.) or 
tanχO = ρ (closing p.) and, integrating Eq. (2) from θO to θ and accounting 
for Eqs. (1) and (3), one obtains x' ≅ ρ + [εd − εd,O + x − xO − ρ(θ − θO)] / 
tanγ. Hence, considering that xin = εd,in /k1 and εd,O + xO = εd,in + xin + ρ (θO 
− θin) for both the adhesive and adhesive-like cases and using Eq. (12), one 
has 
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Minding that x'out /ε'd,out = m, the division of Eq. (14) by Eq. (13) yields 
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(15)

which is a sixth degree algebraic equation for m, that can be easily solved 
by a few iterations, in dependence on the drive data, Tin, Tout and Θ. 

Expressing the solution for x in the main sliding sub-region by a 
simple parabolic form x = xout + x'out(θ − θout) + x"out (θ − θout)

2/2, one may 
impose the exit conditions xout = mεd,out, x'out = mε'd,out and the connection at 
point O with the upstream adhesive or adhesive-like solution with the same 
slope x'in = ρ /{1 + 0.5k1[1 − sgn(ρ)]}. Such continuity conditions yield θO 



 

= θout − 2(mεd,out − x'inΘ − xin) /(x'out − x'in), x"out = (x'out − x'in)/(θout − θO) 
and, using the subscript …N for the driveN pulleys, the axial thrust Fz,N ≅ 

∫ arc wrap
θdxSt  turns out to be 
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where the ratio ε'd,out /εd,out is given by Eq. (13). 
Figures 3 to 6 report the above analytical approximations by dots. 

Their agreement with the solutions of the full equations is quite acceptable, 
also in consideration that what is more significant is the whole area under 
the diagrams and not the local elastic penetration along the arc of contact. 

The last equation for completing the formulary is the torque equation. 
Curtailing the torque values on the driver and driven sides of the torque 
losses in the bearings if the torque pickups are external to the housing, and 
averaging them in order take into account the inelastic bending stiffness of 
the belt, it is possible to write 
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The given operative data of a V-belt variator are generally the 
transmitted torque, the speed and the axial thrust on one of the two pulleys, 
exerted for example by a spring load. According to which axial thrust is 
given, on the driver or driven side, one has to associate Eq. (17) with either 
Eq. (11) or Eq. (16) and calculate the unknown belt forces TT and TS on the 
tight and slack strands. In the case of known driver load, Equation (11) 
gives the tighter tension directly and then Equation (17) permits 
calculating the slacker tension. If on the contrary the known axial load is 
on the driven side, eliminating one of the two tensions, e. g. TS, from Eqs. 
(16-17), one obtains a quadratic equation for the other tension, TT: 

( ) ( ) 0222 =+−+− cvTbvTa bTbT µµ  ,   where putting ∆T = TT − TS , (18)
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and the driven load can be easily treated as well. 
 
AXIAL THRUST CALCULATION USING THE PROPOSITIONS 24-27 
OF ARCHIMEDES' TREATISE "ΠΕΡΙ ΕΛΙΚΩΝ" 
It is quite interesting that the axial thrust on the pulley can be alternatively 
obtained avoiding the integral calculus and using the findings of 
Archimedes about the areas enclosed by the various branches of a spiral 
line (see [5,6]). These areas were calculated by the Syracusan scientist 
through very elaborate procedures based on his exhaustion method, as 
described in the palimpsest of "The Method" (see [7]). 

According to the Latin version, the proposition n. 24 states: Spatium 
comprehensum spirali prima circumactione descripta et linea prima 
earum, quae in principio circumactionis sunt, tertia pars est circuli primi. 
Therefore, if R = aθ is the polar equation of the spiral, Rj = 2πja the value 
of the radius after the j th revolution and Aj the area enclosed by the spiral 
branch between the points with angular coordinates θ = 2π(j − 1) and θ = 
2πj and by the segment of the axis θ = 0 between the points with radial 
coordinates Rj−1 and Rj, we have A1 = πR1

2/3 = 4π 3a2/3. 
The following proposition n. 25 says: Spatium comprehensum spirali 

secunda circumactione descripta et linea secunda earum, quae in 
principio circumactionis sunt, ad circulum secundum eam habet rationem, 
quam 7:12, ... (omissis). In practice, the result is that A2 = 7πR2

2/12 = 
28π3a2/3 and A2 − A1 = 6A1, as also ascertained in  the discussion of 
proposition 27, where the difference A2 − A1 is the area enclosed by the 
first and the second branches of the spiral line and by the segment between 
the points R1 and R2 of the axis θ = 0. 

Furthermore, the proposition 27 states: Spatiorum comprehensorum 
spiralibus et lineis, quae in circumactione sunt, tertium duplo maius est 



 

secundo, quartum vero triplo maius, quintum vero quadruplo maius, et 
semper deinceps insequens spatium toties multiplex erit, quam spatium 
secundum, quoties indicant numeri ordine sequentes, primum autem 
spatium sexta pars est secundi. This means in practice that the areas 
enclosed by two subsequent spiral branches and the axis θ = 0 are given by 
the recursion formula Aj − Aj−1 = (j − 1) (A2 − A1) = 8(j − 1)π 3a2, which 
result is valid starting from j = 2. 

Summing A1 and all the area differences from j = 2 to j = n, it is thus 
possible to calculate the total area An: An = 4π 3a2[1/3 + 2(1 + 2 + 3 + … + 
n − 1] = 4π 3a2(1/3 + n2 − n). The difference of the nth circle and An is a 
curved triangular stripe, whose area is ∆An = 4π3n2a2 − 4π3a2(1/3 + n2 − 
n) = 4π3a2(n − 1/3) and, for very small slope a and very large n, as in the 
V-belt winding, this area is approximately equal to ∆An ≅ 4π3a2n. 

Since the radial width of this curved triangular area ∆An increases 
linearly with the distance from its vertex, the area of a segment of angular 
extension Θ is ∆AnΘ = ∆AnΘ 2/4π 2 ≅ πΘ 2a2n = RnΘ 2a /2. Considering that 
Rn ≅ r∞ and that the spiral slope is a = r∞ρ /[1 + 0.5×k1(1 − sgnρ)] for the 
belt-pulley coupling, nearly in the whole arc of contact for driver pulleys 
and in a large part of it for driven pulleys, we get ∆AnΘ ≅ r∞

2Θ 2 × ρ /[2 + 
k1(1 − sgnρ)]. 

Tracing a circle of radius Rn ± ∆r, where ∆r is the radial penetration at 
the beginning of the main arc of contact downstream of the small seating 
region and the positive or negative signs are valid for the closing or 
opening phases respectively, the absolute value of the radial distance 
between this circumference and the spiral line gives the local radial 
penetration, variable along the wrap region. 

As the axial push per unit length between the belt and the pulley is 
obtainable multiplying the radial penetration by the compression-to-
penetration ratio 2tanα and by the axial elastic stiffness Ezh/w of the belt, 
the total axial thrust is given by the product of the above curved 
trapezoidal area, between the spiral and the circumference Rn ± ∆r, and 
these two quantities: 
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 Minding that ∆r = (Tentrance − µv2) r∞ / (Slk1), Equation (19) leads 
exactly to the same result of Eq. (11), valid for the driver pulleys. Clearly, 
some discrepancy appears in the case of a driven pulley, where a part of 
the winding arc is not spiral-shaped. 
 



 

CONCLUSIONS 
A very simple model may be derived from the results of a previous 
analysis of the author on the ratio shift of V-belt variators, whose findings 
were characterized by a very fine accordance with the experimental results. 

The observation of several numerical solutions points out the 
Archimedean spiral shape of the instantaneous belt path along an extended 
part of the winding region, with adhesive or adhesive-like conditions for 
the closing or opening pulleys respectively. In particular, the elastic belt 
penetration increases in the motion direction for the former and decreases 
for the latter, independently of the working condition, of driver or driven 
pulley, that may at most affect the trends of the belt force, of the 
penetration and of the sliding direction in the following sliding portion of 
the wrap arc, downstream of the adhesive/adhesive-like sub-region. An 
easy-to-use formulary has been reported, which may be very useful for 
design purposes, permitting the evaluation of the axial forces exerted by 
the pulley walls or else the tension level produced by a given axial thrust 
on the loaded half-pulley. 

It is shown how these calculation may be worked out without recourse 
to the modern integral calculus, by simply using some propositions of the 
classical Archimedean treatise On Spirals, as evidence of the up-to-
dateness of Archimedes' thought. 
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