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Many families of function spaces play a central role in analysis, in particular, in signal processing
(e.g., wavelet or Gabor analysis). Typical are Lp spaces, Besov spaces, amalgam spaces, or
modulation spaces. In all these cases, the parameter indexing the family measures the behavior
(regularity, decay properties) of particular functions or operators. It turns out that all these space
families are, or contain, scales or lattices of Banach spaces, which are special cases of partial inner
product spaces (PIP-spaces). In this context, it is often said that such families should be taken as
a whole and operators, bases, and frames on them should be defined globally, for the whole
family, instead of individual spaces. In this paper, we will give an overview of PIP-spaces and
operators on them, illustrating the results by space families of interest in mathematical physics
and signal analysis. The interesting fact is that they allow a global definition of operators, and
various operator classes on them have been defined.

1. Motivation

In the course of their curriculum, physics and mathematics students are usually taught the
basics of Hilbert space, including operators of various types. The justification of this choice
is twofold. On the mathematical side, Hilbert space is the example of an infinite-dimensional
topological vector space that more closely resembles the familiar Euclidean space and thus it
offers the student a smooth introduction into functional analysis. On the physics side, the fact
is simply that Hilbert space is the daily language of quantum theory; therefore, mastering it
is an essential tool for the quantum physicist.

However, the tool in question is actually insufficient. A pure Hilbert space formulation
of quantum mechanics is both inconvenient and foreign to the daily behavior of most
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physicists, who stick to the more suggestive version of Dirac, although it lacks a rigorous
formulation. On the other hand, the interesting solutions of most partial differential equations
are seldom smooth or square integrable. Physically meaningful events correspond to changes
of regime, which mean discontinuities and/or distributions. Shock waves are a typical
example. Actually this state of affairs was recognized long ago by authors like Leray or
Sobolev, whence they introduced the notion of weak solution. Thus it is no coincidence that
many textbooks on PDEs begin with a thorough study of distribution theory [1–4].

All this naturally leads to the introduction of Rigged Hilbert Spaces (RHS) [5]. In a
nutshell, a RHS is a triplet:

Φ ↪→ H ↪→ Φ×, (1.1)

where H is a Hilbert space, Φ is a dense subspace of the H, equipped with a locally convex
topology, finer than the norm topology inherited from H, and Φ× is the space of continuous
conjugate linear functionals on Φ, endowed with the strong dual topology. By duality, each
space in (1.1) is dense in the next one and all embeddings are linear and continuous. In
addition, the space Φ is in general required to be reflexive and nuclear. Standard examples of
rigged Hilbert spaces are the Schwartz distribution spaces over R or R

n, namely S ⊂ L2 ⊂ S×

or D ⊂ L2 ⊂ D× [5–8].
The problem with the RHS (1.1) is that, besides the Hilbert space vectors, it contains

only two types of elements: “very good” functions in Φ and “very bad” ones in Φ×. If one
wants a fine control on the behavior of individual elements, one has to interpolate somehow
between the two extreme spaces. In the case of the Schwartz triplet, S ⊂ L2 ⊂ S×, a well-
known solution is given by a chain of Hilbert spaces, the so-called Hermite representation of
tempered distributions [9].

In fact, this is not at all an isolated case. Indeed many function spaces that play a
central role in analysis come in the form of families, indexed by one or several parameters
that characterize the behavior of functions (smoothness, behavior at infinity, . . .). The typical
structure is a chain or a scale of Hilbert spaces, or a chain of (reflexive) Banach spaces (a
discrete chain of Hilbert spaces {Hn}n∈Z

is called a scale if there exists a self-adjoint operator
B � 1 such that Hn = D(Bn), for all n ∈ Z, with the graph norm ‖f‖n = ‖Bnf‖. A similar
definition holds for a continuous chain {Hα}α∈R

.). Let us give two familiar examples.

(i) First, consider the Lebesgue the Lebesgue Lp spaces on a finite interval, for example,
I = {Lp([0, 1], dx), 1 � p � ∞}:

L∞ ⊂ · · · ⊂ Lq ⊂ Lr ⊂ · · · ⊂ L2 ⊂ · · · ⊂ Lr ⊂ Lq ⊂ · · · ⊂ L1, (1.2)

where 1 < q < r < 2. Here Lq and Lq are dual to each other (1/q + 1/q = 1), and
similarly are Lr, Lr (1/r +1/r = 1). By the Hölder inequality, the (L2) inner product

〈
f | g
〉
=
∫1

0
f(x)g(x)dx (1.3)

is well defined if f ∈ Lq, g ∈ Lq. However, it is not well defined for two arbitrary
functions f, g ∈ L1. Take, for instance, f(x) = g(x) = x−1/2 : f ∈ L1, but fg = f2 /∈L1.
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Thus, on L1, (1.3) defines only a partial inner product. The same result holds for any
compact subset of R instead of [0,1].

(ii) As a second example, take the scale of Hilbert spaces built on the powers of a
positive self-adjoint operator A � 1 in a Hilbert space H0. Let Hn be D(An), the
domain of An, equipped with the graph norm ‖f‖n = ‖Anf‖, f ∈ D(An), for n ∈ N

or n ∈ R
+, and Hn := H−n = H×

n (conjugate dual)

D∞(A) :=
⋂

n

Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H1 ⊂ H2 · · · ⊂ D∞(A) :=
⋃

n

Hn. (1.4)

Note that, in the second example (ii), the index n could also be taken as real, the link between
the two cases being established by the spectral theorem for self-adjoint operators. Here again
the inner product of H0 extends to each pair Hn,H−n, but on D∞(A) it yields only a partial
inner product. The following examples are standard:

(i) (Apf)(x) = (1 + x2)f(x) in L2(R, dx),

(ii) (Amf)(x) = (1 − d2/dx2)f(x) in L2(R, dx),

(iii) (Aoscf)(x) = (1 + x2 − d2/dx2)f(x) in L2(R, dx).

(The notation is suggested by the operators of position, momentum and harmonic oscillator
energy in quantum mechanics, resp.). Note that both D∞(Ap) ∩ D∞(Am) and D∞(Aosc)
coincide with the Schwartz space S(R) of smooth functions of fast decay, and D∞(Aosc)
with the space S×(R) of tempered distributions (considered here as continuous conjugate
linear functionals on S). As for the operator Am, it generates the scale of Sobolev spaces
Hs(R), s ∈ Z or R.

However, a moment’s reflection shows that the total-order relation inherent in a
chain is in fact an unnecessary restriction; partially ordered structures are sufficient, and
indeed necessary in practice. For instance, in order to get a better control on the behavior
of individual functions, one may consider the lattice built on the powers of Ap and Am

simultaneously. Then the extreme spaces are still S(R) and S×(R). Similarly, in the case of
several variables, controlling the behavior of a function in each variable separately requires a
nonordered set of spaces. This is in fact a statement about tensor products (remember that
L2(X × Y ) � L2(X) ⊗ L2(Y )). Indeed the tensor product of two chains of Hilbert spaces,
{Hn} ⊗ {Km}, is naturally a lattice {Hn ⊗Km} of Hilbert spaces. For instance, in the example
above, for two variables x, y, that would mean considering intermediate Hilbert spaces
corresponding to the product of two operators, (Am(x))

n(Am(y))
m.

Thus the structure to analyze is that of lattices of Hilbert or Banach spaces, interpolating
between the extreme spaces of an RHS, as in (1.1). Many examples can be given, for instance,
the lattice generated by the spaces Lp(R, dx), the amalgam spaces W(Lp, �q), the mixed-norm
spaces Lp,qm (R, dx), and many more. In all these cases, which contain most families of function
spaces of interest in analysis and in signal processing, a common structure emerges for the
“large” space V , defined as the union of all individual spaces. There is a lattice of Hilbert or
reflexive Banach spaces Vr , with an (order-reversing) involution Vr ↔ Vr , where Vr = V ×

r (the
space of continuous conjugate linear functionals on Vr), a central Hilbert space Vo � Vo, and a
partial inner product on V that extends the inner product of Vo to pairs of dual spaces Vr, Vr .

Moreover, many operators should be considered globally, for the whole scale or lattice,
instead of on individual spaces. In the case of the spaces Lp(R), such are, for instance,
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operators implementing translations (x �→ x − y) or dilations (x �→ x/a), convolution
operators, Fourier transform, and so forth. In the same spirit, it is often useful to have a
common basis for the whole family of spaces, such as the Haar basis for the spaces Lp(R), 1 <
p < ∞. Thus we need a notion of operator and basis defined globally for the scale or lattice
itself.

This state of affairs prompted A. Grossmann and one of us (the first author) to
systematize this approach, and this led to the concept of partial inner product space or PIP-
space [10–13]. After many years and various developments, we devoted a full monograph
[14] to a detailed survey of the theory. The aim of this paper is to present the formalism of
PIP-spaces, which indeed answers these questions. In a first part, the structure of PIP-space
is derived systematically from the abstract notion of compatibility and then particularized
to the examples listed above. In a second part, operators on PIP-spaces are introduced
and illustrated by several operators commonly used in Gabor or wavelet analysis. Finally
we describe a number of applications of PIP-spaces in mathematical physics and in signal
processing. Of course, the treatment is sketchy, for lack of space. For a complete information,
we refer the reader to our monograph [14].

2. Partial Inner Product Spaces

2.1. Basic Definitions

The basic question is how to generate PIP-spaces in a systematic fashion. In order to answer,
we may reformulate it as follows: given a vector space V and two vectors f, g ∈ V , when
does their inner product make sense? A way of formalizing the answer is given by the idea
of compatibility.

Definition 2.1. A linear compatibility relation on a vector space V is a symmetric binary relation
f#g which preserves linearity:

f#g ⇐⇒ g#f, ∀ f, g ∈ V,

f#g, f#h =⇒ f#
(
αg + βh

)
, ∀ f, g, h ∈ V, ∀α, β ∈ C.

(2.1)

As a consequence, for every subset S ⊂ V , the set S# = {g ∈ V : g#f, for all f ∈ S} is a vector
subspace of V and one has

S## =
(
S#
)#

⊇ S, S### = S#. (2.2)

Thus one gets the following equivalences:

f#g ⇐⇒ f ∈
{
g
}# ⇐⇒

{
f
}## ⊆

{
g
}#

⇐⇒ g ∈
{
f
}# ⇐⇒

{
g
}## ⊆

{
f
}#
.

(2.3)

From now on, we will call assaying subspace of V a subspace S such that S## = S and denote by
F(V, #) the family of all assaying subsets of V , ordered by inclusion. Let F be the isomorphy
class of F, that is, F is considered as an abstract partially ordered set. Elements of F will be
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denoted by r, q, . . ., and the corresponding assaying subsets by Vr, Vq, . . .. By definition, q � r
if and only if Vq � Vr . We also write Vr = V #

r , r ∈ F. Thus the relations (2.3) mean that f#g if
and only if there is an index r ∈ F such that f ∈ Vr, g ∈ Vr . In other words, vectors should not
be considered individually, but only in terms of assaying subspaces, which are the building
blocks of the whole structure.

It is easy to see that the map S �→ S## is a closure, in the sense of universal algebra,
so that the assaying subspaces are precisely the “closed” subsets. Therefore one has the
following standard result.

Theorem 2.2. The family F(V, #) ≡ {Vr, r ∈ F}, ordered by inclusion, is a complete involutive
lattice, that is, it is stable under the following operations, arbitrarily iterated:

(i) involution: Vr ↔ Vr = (Vr)
#,

(ii) infimum: Vp∧q ≡ Vp ∧ Vq = Vp ∩ Vq, (p, q, r ∈ F),

(iii) supremum: Vp∨q ≡ Vp ∨ Vq = (Vp + Vq)
##.

The smallest element of F(V, #) is V # =
⋂
r Vr and the greatest element is V =

⋃
r Vr . By

definition, the index set F is also a complete involutive lattice; for instance,

(
Vp∧q
)# = Vp∧q = Vp∨q = Vp ∨ Vq. (2.4)

Definition 2.3. A partial inner product on (V, #) is a Hermitian form 〈· | ·〉 defined exactly
on compatible pairs of vectors. A partial inner product space (PIP-space) is a vector space V
equipped with a linear compatibility and a partial inner product.

Note that the partial inner product is not required to be positive definite.
The partial inner product clearly defines a notion of orthogonality: f ⊥ g if and only if

f#g and 〈f | g〉 = 0.

Definition 2.4. The PIP-space (V, #, 〈· | ·〉) is nondegenerate if (V #)⊥ = {0}, that is, if 〈f | g〉 = 0
for all f ∈ V # implies that g = 0.

We will assume henceforth that our PIP-space (V, #, 〈· | ·〉) is nondegenerate. As
a consequence, (V #, V ) and every couple (Vr, Vr), r ∈ F, are dual pairs in the sense of
topological vector spaces [15]. We also assume that the partial inner product is positive
definite.

Now one wants the topological structure to match the algebraic structure, in particular,
the topology τr on Vr should be such that its conjugate dual be Vr : (Vr[τr])

× = Vr, for all r ∈
F. This implies that the topology τr must be finer than the weak topology σ(Vr, Vr) and
coarser than the Mackey topology τ(Vr, Vr):

σ(Vr, Vr) � τr � τ(Vr, Vr). (2.5)

From here on, we will assume that every Vr carries its Mackey topology τ(Vr, Vr). This choice
has two interesting consequences. First, if Vr[τr] is a Hilbert space or a reflexive Banach space,
then τ(Vr, Vr) coincides with the norm topology. Next, r < s implies that Vr ⊂ Vs, and the
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embedding operator Esr : Vr → Vs is continuous and has dense range. In particular, V # is
dense in every Vr .

2.2. Examples

2.2.1. Sequence Spaces

Let V be the space ω of all complex sequences x = (xn) and define on it (i) a compatibility
relation by x#y ⇔

∑∞
n=1 |xnyn| <∞ and (ii) a partial inner product 〈x | y〉 =

∑∞
n=1 xnyn.

Then ω# = ϕ, the space of finite sequences, and the complete lattice F(ω, #) consists of
Köthe’s perfect sequence spaces [15, § 30]. Among these, typical assaying subspaces are the
weighted Hilbert spaces

�2(r) =

{

(xn) :
∞∑

n=1

|xn|2r−2
n <∞

}

, (2.6)

where r = (rn), rn > 0, is a sequence of positive numbers. The involution is �2(r) ↔ �2(r) =
�2(r)×, where rn = 1/rn. In addition, there is a central, self-dual Hilbert space, namely, �2(1) =
�2(1) = �2, where 1 = (1).

2.2.2. Spaces of Locally Integrable Functions

Let now V be L1
loc(R, dx), the space of Lebesgue measurable functions, integrable over

compact subsets, and define a compatibility relation on it by f#g ⇔
∫
R
|f(x)g(x)|dx < ∞

and a partial inner product 〈f | g〉 =
∫
R
f(x)g(x)dx.

Then V # = L∞c (R), the space of bounded measurable functions of compact support.
The complete lattice F(L1

loc, #) consists of Köthe function spaces [16, 17]. Here again, typical
assaying subspaces are weighted Hilbert spaces

L2(r) =
{
f ∈ L1

loc(R, dx) :
∫

R

∣∣f(x)
∣∣2r(x)−2dx <∞

}
, (2.7)

with r, r−1 ∈ L2
loc(R, dx), r(x) > 0 a.e. The involution is L2(r) ↔ L2(r), with r = r−1, and the

central, self-dual Hilbert space is L2(R, dx).

2.2.3. Nested Hilbert Spaces

This is the original construction of Grossmann [18] for finding an “easy” substitute to
distributions, and actually one of the motivations for introducing PIP-spaces. And indeed
the two are closely related; see [14, Section 2.4.1]

2.2.4. Rigged Hilbert Spaces

This is the simplest example of PIP-space, but it is a rather poor one. Indeed, in the RHS
(1.1), two elements are compatible if both belong to H, or one of them belongs to Φ. Thus the
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three defining spaces are the only assaying subspaces. The partial inner product is, of course,
simply that of H, provided the sesquilinear form that puts Φ and Φ× in duality has been
correctly normalized.

3. Lattices of Hilbert or Banach Spaces

From the previous examples, we learn that F(V, #) is a huge lattice (it is complete!) and that
assaying subspaces may be complicated, such as Fréchet spaces, nonmetrizable spaces, and
so forth. This situation suggests to choose an involutive sublattice I ⊂ F, indexed by I, such
that

(i) I is generating:

f#g ⇐⇒ ∃ r ∈ I such that f ∈ Vr, g ∈ Vr, (3.1)

(ii) every Vr, r ∈ I, is a Hilbert space or a reflexive Banach space,

(iii) there is a unique self-dual assaying subspace Vo = Vo, which is a Hilbert space.

In that case, the structure VI := (V,I, 〈· | ·〉) is called, respectively, a lattice of Hilbert spaces
(LHS) or a lattice of Banach spaces (LBS). Both types are particular cases of the so-called
indexed PIP-spaces [14]. Note that V #, V themselves usually do not belong to the family
{Vr, r ∈ I}, but they can be recovered as

V # =
⋂

r∈I
Vr , V =

∑

r∈I
Vr . (3.2)

In the LBS case, the lattice structure takes the following forms:

(i) Vp∧q = Vp ∩ Vq, with the projective norm

∥∥f
∥∥
p∧q =

∥∥f
∥∥
p +
∥∥f
∥∥
q , (3.3)

(ii) Vp∨q = Vp + Vq, with the inductive norm

∥∥f
∥∥
p∨q = inf

f=g+h

(∥∥g
∥∥
p + ‖h‖q

)
, g ∈ Vp, h ∈ Vq. (3.4)

These norms are usual in interpolation theory [19]. In the LHS case, one takes similar
definitions with squared norms, in order to get Hilbert norms throughout.

In the rest of this section, we will list a series of concrete examples of LHS/LBSs.
Some more examples, which are of particular interest in signal processing, will be given in
Section 6.2. For simplicity, we will restrict ourselves to one dimension, although most spaces
may be defined on R

n, n > 1, as well.
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3.1. Chains of Hilbert or Banach Spaces

Typical are the two examples described in Section 1.

(1) The chain of Lebesgue spaces on a finite interval I = {Lp([0, 1], dx), 1 < p < ∞}.
The chain (1.2) is a (totally ordered) lattice. The corresponding lattice completion
is obtained by adding “nonstandard” spaces such as

Lp− =
⋂

1<q<p

Lq (non-normable Fréchet), Lp+ =
⋃

p<q<∞
Lq (nonmetrizable).

(3.5)

(2) The scale (1.4) of Hilbert spaces {Hn, n ∈ Z} built on powers of A = A∗ � 1.
The lattice completion is similar to the previous one, introducing analogous
“nonstandard” spaces [14, Section 5.1].

3.2. Sequence Spaces

3.2.1. A LHS of Weighted �2 Spaces

In ω, with the compatibility # and the partial inner product defined in Section 2.2.1, we may
take the lattice I = {�2(r)} of the weighted Hilbert spaces defined in (2.6), with lattice
operations:

(i) infimum: �2(p ∧ q) = �2(p) ∧ �2(q) = �2(r), rn = min(pn, qn),

(ii) supremum: �2(p ∨ q) = �2(p) ∨ �2(q) = �2(s), sn = max(pn, qn),

(iii) duality: �2(p ∧ q) ↔ �2(p ∨ q), �2(p ∨ q) ↔ �2(p ∧ q).

As a matter of fact, the norms above are equivalent to the projective and inductive norms,
respectively. Then, it is easy to show that the lattice I = {�2(r)} is generating in F(ω, #).

3.2.2. Köthe Perfect Sequence Spaces

We have already noticed that the complete lattice F(ω, #) consists precisely of all Köthe
perfect sequence spaces. Indeed, these are defined as the assaying subspaces corresponding
to the compatibility #, which is called α-duality [15]. Among these, there is an interesting class,
the so-called �φ spaces associated to symmetric norming functions.

Definition 3.1. A real-valued function φ defined on the space ϕ of finite sequences is said to
be a norming function if

(n1) φ(x) > 0 for every sequence x ∈ ϕ, x /= 0,

(n2) φ(αx) = |α|φ(x), for all x ∈ ϕ, for all α ∈ C,

(n3) φ(x + y) � φ(x) + φ(y), for all x, y ∈ ϕ,

(n4) φ(1, 0, 0, 0, . . .) = 1.
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A norming function φ is symmetric if

(n5) φ(x1, x2, . . . , xn, 0, 0, . . .) = φ(|xj1 |, |xj2 |, . . . , |xjn |, 0, 0, . . .),

where j1, j2, . . . , jn is an arbitrary permutation of 1, 2, . . . , n.

From property (n5), it is clear that a symmetric norming function φ is entirely
determined by its values on the set [ϕ] of finite, positive, nonincreasing sequences. Hence,
from conditions (n2) and (n4), we deduce that

φ∞(x) � φ(x) � φ1(x), ∀x ∈ ϕ, (3.6)

where φ∞(x) = maxi=1,...,n|xi| and φ1(x) =
∑n

i=1 |xi|.
To every symmetric norming function φ, one can associate a Banach space �φ as

follows. Given a sequence x ∈ ω, define its nth section as x(n) = (x1, x2, . . . , xn, 0, 0, . . .). Then
the sequence (φ(x(n))) is nondecreasing, so that one can define

�φ =
{
x ∈ ω : sup

n
φ
(
x(n)
)
<∞
}

(3.7)

and then extend the norming function φ to the whole of �φ by putting φ(x) = limnφ(x(n)).
This relation defines a norm φ on �φ, for which it is complete, hence, a Banach space. In other
words, we can also say that �φ = {x ∈ ω : φ(x) < ∞} is the natural domain of definition of
the extended norming function φ. Clearly, one has �φ∞ = �∞ and �φ1 = �1. Similarly, �p = �φp ,

where φp(x) = (
∑

n |xn|
p)1/p. Thus every space �φ contains �1 and is contained in �∞.

In addition, the set of Banach spaces �φ constitutes a lattice. Given two symmetric
norming functions φ and ψ, one defines their infimum and supremum, exactly as for the
general case:

(i) φ ∧ψ := max{φ, ψ}, which defines on the space �φ∧ψ := �φ ∩ �ψ a norm equivalent to
φ(x) + ψ(x),

(ii) φ ∨ ψ := min{φ, ψ}, which defines on the space �φ∨ψ := �φ + �ψ a norm equivalent to
infx=y+z{φ(y) + ψ(z)}, x ∈ �φ + �ψ, y ∈ �φ, z ∈ �ψ .

It remains to analyze the relationship of the spaces �φ with the PIP-space structure of
ω. Define, for any finite, positive, nonincreasing sequence y ∈ [ϕ],

φ
(
y
)

:= max
x∈[ϕ]

〈x | y〉
φ(x)

. (3.8)

The function φ thus defined is a symmetric norming function; hence, it can be extended to the
corresponding Banach space �φ. The function φ is said to be conjugate to φ and the space �φ is

the conjugate dual of �φ with respect to the partial inner product, that is, �φ = (�φ)
#. Clearly

one has φ = φ; hence, �
φ
= (�φ)

## = �φ.

In addition, it is easy to show that �φ∧ψ = �φ∨ψ and �φ∨ψ = �φ∧ψ. In other words, one
gets the following result.
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Proposition 3.2. The family of Banach spaces �φ, where φ is a symmetric norming function, is an
involutive sublattice of the lattice F(ω, #) and a LBS.

Actually, since every φ satisfies the inclusions �1 ⊂ �φ ⊂ �∞, the family {�φ} is also
an involutive sublattice of the lattice F(�∞, #) obtained by restricting to �∞ the PIP-space
structure of ω.

These spaces {�φ} may be generalized further to what is called the theory of Banach
ideals of sequences. See [14, Section 4.3] for more details.

3.3. Spaces of Locally Integrable Functions

3.3.1. A LHS of Weighted L2 Spaces

In L1
loc(R, dx), we may take the lattice I = {L2(r)} of the weighted Hilbert spaces defined in

(2.7), with

(i) infimum: L2(p ∧ q) = L2(p) ∧ L2(q) = L2(r), r(x) = min(p(x), q(x)),

(ii) supremum: L2(p ∨ q) = L2(p) ∨ L2(q) = L2(s), s(x) = max(p(x), q(x)),

(iii) duality: L2(p ∧ q) ↔ L2(p ∨ q), L2(p ∨ q) ↔ L2(p ∧ q).

Here too, these norms are equivalent to the projective and inductive norms, respectively.

3.3.2. The Spaces Lp(R, dx), 1 < p <∞

The spaces Lp(R, dx), 1 < p < ∞ do not constitute a scale, since one has only the inclusions
Lp ∩ Lq ⊂ Ls, p < s < q. Thus one has to consider the lattice they generate, with the following
lattice operations:

(i) Lp ∧ Lq = Lp ∩ Lq, with projective norm,

(ii) Lp ∨ Lq = Lp + Lq, with inductive norm.

For 1 < p, q < ∞, both spaces Lp ∧ Lq and Lp ∨ Lq are reflexive Banach spaces and their
conjugate duals are, respectively, (Lp ∧ Lq)× = Lp ∨ Lq and (Lp ∨ Lq)× = Lp ∧ Lq.

It is convenient to introduce the following unified notation:

L(p,q) =

⎧
⎨

⎩

Lp ∧ Lq, if p � q,

Lp ∨ Lq, if p � q.
(3.9)

Then, for 1 < p, q <∞, L(p,q) is a reflexive Banach space, with conjugate dual L(p,q).
Next, if we represent (p, q) by the point of coordinates (1/p, 1/q), we may associate

all the spaces L(p,q) (1 � p, q � ∞) in a one-to-one fashion with the points of a unit square
J = [0, 1] × [0, 1] (see Figure 1). Thus, in this picture, the spaces Lp are on the main diagonal,
intersections Lp ∩ Lq above it and sums Lp + Lq below.

The space L(p,q) is contained in L(p′,q′) if (p, q) is on the left and/or above (p′, q′). Thus
the smallest space is

V #
J = L(∞,1) = L∞ ∩ L1 (3.10)
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1/q

L(∞,1) = L∞ ∩ L1

L∞ ∩ Lq

Lp ∩ L1 L1

Lp ∧ Lq = L(p,q) Lq
L(1,q) = L1 + Lq

L2

Lp

Lp ∨ Lq = L(q,p)

Lp̄∨Lq̄ = (Lp∧Lq)×

L∞ L(p,∞) = Lp + L∞ L(1,∞) = L1 + L∞
1/p

Figure 1: The unit square describing the lattice J.

and it corresponds to the upper-left corner, while the largest one is

VJ = L(1,∞) = L1 + L∞, (3.11)

corresponding to the lower-right corner. Inside the square, duality corresponds to (geometri-
cal) symmetry with respect to the center (1/2,1/2) of the square, which represents the space
L2. The ordering of the spaces corresponds to the following rule:

L(p,q) ⊂ L(p′,q′) ⇐⇒
(
p, q
)

�
(
p′, q′
)
⇐⇒ p � p′, q � q′. (3.12)

With respect to this ordering, J is an involutive lattice with the operations

(
p, q
)
∧
(
p′, q′
)
=
(
p ∨ p′, q ∧ q′

)
,

(
p, q
)
∨
(
p′, q′
)
=
(
p ∧ p′, q ∨ q′

)
,

(p, q) =
(
p, q
)
,

(3.13)

where p ∧ p′ = min{p, p′}, p ∨ p′ = max{p, p′}. It is remarkable that the lattice J generated by
I = {Lp} is obtained at the first “generation”. One has, for instance, L(r,s) ∧ L(a,b) = L(r∨a,s∧b),
both as sets and as topological vector spaces.

3.3.3. Mixed-Norm Lebesgue Spaces Lp,qm

An interesting class of function spaces, close relatives to the Lebesgue Lp spaces, consists
of the so-called LP spaces with mixed norm. Let (X, μ) and (Y, ν) be two σ-finite measure
spaces and 1 � p, q � ∞ (in the general case, one considers n such spaces and n-tuples
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P := (p1, p2, . . . , pn)). Then, a function f(x, y) measurable on the product space X × Y is said
to belong to L(p,q)(X × Y ) if the number obtained by taking successively the p-norm in x and
the q-norm in y, in that order, is finite (exchanging the order of the two norms leads in general
to a different space). If p, q <∞, the norm reads

∥
∥f
∥
∥
(p,q) =

(∫

Y

(∫

X

∣
∣f
(
x, y
)∣∣pdμ(x)

)q/p
dν
(
y
)
)1/q

. (3.14)

The analogous norm for p or q = ∞ is obvious. For p = q, one gets the usual space Lp(X × Y ).
These spaces enjoy a number of properties similar to those of the Lp spaces: (i) each

space L(p,q) is a Banach space and it is reflexive if and only if 1 < p, q < ∞; (ii) the conjugate
dual of L(p,q) is L(p,q), where, as usual, p−1+p−1 = 1, q−1+q−1 = 1; thus the topological conjugate
dual coincides with the Köthe dual; (iii) the mixed-norm spaces satisfy a generalized Hölder
inequality and have nice interpolation properties.

The caseX = Y = R
d with Lebesgue measure is the important one for signal processing

[20, Section 11.1]. More generally, one can add a weight function m and obtain the spaces
L
p,q
m (Rd) (we switch to a notation more suitable for the applications):

∥∥f
∥∥p,q
m =

(∫

Rd

(∫

Rd

∣∣f(x,ω)
∣∣p m(x,ω)pdx

)q/p
dω

)1/q

. (3.15)

Here the weight function m is a nonnegative locally integrable function on R
2d, assumed to

be v-moderate, that is,m(z1+z2) � v(z1)m(z2), for all z1, z2 ∈ R
2d, with v a submultiplicative

weight function, that is, v(z1 + z2) � v(z1)v(z2), for all z1, z2 ∈ R
2d. The typical weights are

of polynomial growth: vs(z) = (1 + |z|)s, s � 0.
The space L

p,q
m (R2d) is a Banach space for the norm ‖ · ‖p,qm . The duality property is,

as expected, (Lp,qm )× = L
p,q

1/m. Of course, things simplify when p = q: Lp,pm (R2d) = L
p
m(R2d), a

weighted Lp space.
Concerning lattice properties of the family of Lp,qm spaces, we cannot expect more than

for the Lp spaces. Two Lp,qm spaces are never comparable, even for the same weight m, so one
has to take the lattice generated by intersection and duality.

A different type of mixed-norm spaces is obtained if one takes X = Y = Z
d, with

the counting measure. Thus one gets the space �
p,q
m (Z2d), which consists of all sequences

a = (akn), k, n ∈ Z
d, for which the following norm is finite:

‖a‖�p,qm :=

⎛

⎝
∑

n∈Zd

(
∑

k∈Zd

|akn|p m(k, n)p
)q/p
⎞

⎠

1/q

. (3.16)

Contrary to the continuous case, here we do have inclusion relations: if p1 � p2, q1 � q2 and
m2 � Cm1, then � p1,q1

m1 ⊆ � p2,q2
m2 .

Discrete mixed-norm spaces have been used extensively in functional analysis and
signal processing. For instance, they are key to the proof that certain operators are bounded
between two given function spaces, such as modulation spaces (see below) or �p spaces.
In general, a mixed-norm space will prove useful whenever one has a signal consisting
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of sequences labeled by two indices that play different roles. An obvious example is time-
frequency or time-scale analysis: a Gabor or wavelet basis (or frame) is written as {ψj,k, j, k ∈
Z}, where j indexes the scale or frequency and k the time. More generally, this applies
whenever signals are expanded with respect to a dictionary with two indices.

3.3.4. Köthe Function Spaces

The mixed-norm Lebesgue spaces Lp,qm are special cases of a very general class, the so-called
Köthe function spaces. These have been introduced (and given that name) by Dieudonné [16]
and further studied by Luxemburg-Zaanen [21]. The procedure here is entirely parallel to
that used in Section 3.2.2 above for introducing the sequence spaces �φ.

Let (X, μ) be a σ-finite measure space and M+ the set of all measurable, non-negative
functions on X, where two functions are identified if they differ at most on a μ-null set. A
function norm is a mapping ρ : M+ → R such that

(i) 0 � ρ(f) � ∞, for all f ∈M+ and ρ(f) = 0 if and only if f = 0,

(ii) ρ(f1 + f2) � ρ(f1) + ρ(f2), for all f1, f2 ∈M+,

(iii) ρ(af) = aρ(f), for all f ∈M+, for all a � 0,

(iv) f1 � f2 ⇒ ρ(f1) � ρ(f2), for all f1, f2 ∈M+.

A function norm ρ is said to have the Fatou property if and only if 0 � f1 � f2 � . . . , fn ∈M+

and fn → f pointwise implies that ρ(fn) → ρ(f).
Given a function norm ρ, it can be extended to all complex measurable functions on

X by defining ρ(f) = ρ(|f |). Denote by Lρ the set of all measurable f such that ρ(f) < ∞.
With the norm ‖f‖ = ρ(f), Lρ is a normed space and a subspace of the vector space V of
all measurable μ-a.e. finite, functions on X. Furthermore, if ρ has the Fatou property, Lρ is
complete, that is, a Banach space.

A function norm ρ is said to be saturated if, for any measurable set E ⊂ X of positive
measure, there exists a measurable subset F ⊂ E such that μ(F) > 0 and ρ(χF) < ∞ (χF is the
characteristic function of F).

Let ρ be a saturated function norm with the Fatou property. Define

ρ′
(
f
)
= sup

{∫

X

∣∣fg
∣∣dμ : ρ

(
g
)

� 1
}
. (3.17)

Then ρ′ is a saturated function norm with the Fatou property and ρ′′ ≡ (ρ′)′ = ρ. Hence, Lρ′ is
a Banach space. Moreover, one has also

ρ′
(
f
)
= sup

{∣∣∣∣

∫

X

fg dμ

∣∣∣∣ : ρ
(
g
)

� 1
}
. (3.18)

For each ρ as above, Lρ is a Banach space and Lρ′ = (Lρ)
#, that is, each Lρ is assaying. The pair

〈Lρ, Lρ′ 〉 is actually a dual pair, although 〈V #, V 〉 is not. The space Lρ′ is called the Köthe dual
or α-dual of Lρ and denoted by (Lρ)

α.
However, Lρ′ is in general only a closed subspace of the Banach conjugate dual

(Lρ)
×; thus, the Mackey topology τ(Lρ, Lρ′) is coarser than the ρ-norm topology, which is
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τ(Lρ, (Lρ)
×). This defect can be remedied by further restricting ρ. A function norm ρ is called

absolutely continuous if ρ(fn) ↘ 0 for every sequence fn ∈ Lρ such that f1 � f2 � . . . ↘ 0
pointwise a.e. on X. For instance, the Lebesgue Lp-norm is absolutely continuous for 1 � p <
∞, but the L∞-norm is not! Also, even if ρ is absolutely continuous, ρ′ need not be. Yet, this is
the appropriate concept, in view of the following results:

(i) Lρ′ = (Lρ)
α = (Lρ)

× if and only if ρ is absolutely continuous;

(ii) Lρ is reflexive if and only if ρ and ρ′ are absolutely continuous and ρ has the Fatou
property.

Let ρ be a saturated, absolutely continuous function norm on X, with the Fatou property
and such that ρ′ is also absolutely continuous. Then 〈Lρ, Lρ′ 〉 is a reflexive dual pair of
Banach spaces. In addition, the set J of all function norms with these properties is an
involutive lattice with respect to the following partial order: ρ1 � ρ2 if and only if ρ1(f) �
ρ2(f), for every measurable f . The lattice operations are the following:

(i) (ρ1 ∨ ρ2)(f) = max{ρ1(f), ρ2(f)},
(ii) (ρ1 ∧ ρ2)(f) = inf{ρ1(f1) + ρ2(f2); f1, f2 ∈M+, f1 + f2 = |f |},
(iii) involution : ρ ↔ ρ′.

For the corresponding Banach spaces, we have the relations

L(ρ1∨ρ2) =
(
Lρ1 ∩ Lρ2

)
proj, L(ρ1∧ρ2) =

(
Lρ1 + Lρ2

)
ind. (3.19)

Consider now the usual space V = L1
loc(X, dμ), with the compatibility and partial inner

product defined in Section 2.2.2, so that V # = L∞c (X, dμ). Then the construction outlined
above provides L1

loc(X, dμ) with the structure of a LBS. Indeed, one has the following result.

Proposition 3.3. Let J be the set of saturated, absolutely continuous function norms ρ on X, with
the Fatou property and such that ρ′ is also absolutely continuous. Let I denote the set I := {Lρ : ρ ∈
J and Lρ ⊂ L1

loc}. Then I is a LBS, with the lattice operations defined above.

More general situations may be considered, for which we refer to [14, Section 4.4].

4. Comparing PIP-Spaces

The definition of LBS/LHS given in Section 3 leads to the proper notion of comparison
between two linear compatibilities on the same vector space. Namely, we shall say that a
compatibility #1 is finer than #2, or that #2 is coarser than #1, if F(V, #2) is an involutive cofinal
sublattice of F(V, #1) (given a partially ordered set F, a subset K ⊂ F is cofinal to F if, for any
element x ∈ F, there is an element k ∈ K such that x � k).

Now, suppose that a linear compatiblity # is given on V . Then, every involutive cofinal
sublattice of F(V, #) defines a coarser PIP-space, and vice versa. Thus coarsening is always
possible, and will ultimately lead to a minimal PIP-space, consisting of V # and V only, that is,
the situation of distribution spaces. However, the operation of refining is not always possible;
in particular there is no canonical solution, a fortiori no unique maximal solution. There
are exceptions, however, for instance, when one is given explicitly a larger set of assaying
subspaces that also form, or generate, a larger involutive sublattice. To give an example, the
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weighted L2 spaces of Section 3.3.1 form an involutive sublattice of the involutive lattice I of
Köthe function spaces of Section 3.3.4; thus, I is a genuine refinement of the original LHS.

In the case of a LHS, refining is possible, with infinitely many solutions, by use of
interpolation methods or the spectral theorem for self-adjoint operators, which are essentially
equivalent in this case. In particular, one may always refine a discrete scale of Hilbert spaces
into a (nonunique) continuous one. Indeed, for the scale described in Section 1, Example (ii),
one has, by definition, Hn = D(An), the domain of An, equipped with the graph norm ‖f‖n =
‖Anf‖, f ∈ D(An), for n ∈ N. Then, for each 0 � α � 1, one may define

Hn+α :=
{
f ∈ H0 :

∫∞

1
s2n+2α d

〈
f | E(s)f

〉
<∞
}
, (4.1)

where {E(s), 1 ≤ s < ∞} is the spectral family of A. With the inner product

〈
f | g
〉
n+α=

〈
An+αf | An+αg

〉
, f, g ∈ Hn+α, (4.2)

Hn+α is a Hilbert space and one has the continuous embeddings

Hn+1 ↪→Hn+β ↪→Hn+α ↪→Hn, 0 � α � β � 1. (4.3)

One may go further, as follows. Let ϕ be any continuous, positive function on [1,∞) such that
ϕ(t) is unbounded for t → ∞, but increases slower than any power tα (0 < α 1). An example
is ϕ(t) = log t (t � 1). Then ϕ(A) is a well-defined self-adjoint operator, with domain

D
(
ϕ(A)

)
=
{
f ∈ H0 :

∫∞

1

(
1 + ϕ(s)

)2
d
〈
f | E(s)f

〉
<∞
}
. (4.4)

With the corresponding inner product

〈
f | g
〉
ϕ =
〈
f | g
〉
+
〈
ϕ(A)f | ϕ(A)g

〉
, (4.5)

D(ϕ(A)) becomes a Hilbert spaceHϕ. For every α, 0 < α � 1, one has, with proper inclusions
and continuous embeddings,

Hα ↪→Hϕ ↪→H0. (4.6)

This can be continued as far as one wants, with the result that every scale of Hilbert spaces
possesses infinitely many proper refinements which are themselves chains of Hilbert spaces
[14, Chapter 5].

Another type of refinement consists in refining a RHS Φ ⊂ H ⊂ Φ×, by inserting
a number of intermediate spaces, called interspaces, namely, spaces E such that Φ ↪→ E ↪→
Φ× (which implies that the conjugate dual E× is also an interspace). Upon some additional
conditions, the most important of which being that Φ be dense in E ∩ F with its projective
topology, for any pair E,F of interspaces, one obtains in that way a proper refining of the
original RHS. With this construction, which goes under the name of multiplication framework,
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one succeeds, for instance, in defining a valid (partial) multiplication between distributions.
A thorough analysis may be found in [14, Section 6.3].

5. Operators on PIP-Spaces

5.1. General Definitions

As already mentioned, the basic idea of (indexed) PIP-spaces is that vectors should not be
considered individually, but only in terms of the subspaces Vr (r ∈ F or r ∈ I), the building
blocks of the structure; see (3.1). Correspondingly, an operator on a PIP-space should be
defined in terms of assaying subspaces only, with the proviso that only bounded operators
between Hilbert or Banach spaces are allowed. Thus an operator is a coherent collection of
bounded operators. More precisely, one has the following.

Definition 5.1. Given a LHS or LBS VI = {Vr, r ∈ I}, an operator on VI is a map A : D(A) → V ,
such that

(i) D(A) =
⋃
q∈d(A) Vq, where d(A) is a nonempty subset of I,

(ii) for every q ∈ d(A), there exists a p ∈ I such that the restriction of A to Vq is linear
and continuous into Vp (we denote this restriction by Apq),

(iii) A has no proper extension satisfying (i) and (ii).

The linear bounded operator Apq : Vq → Vp is called a representative of A. In terms of
the latter, the operator A may be characterized by the set j(A) = {(q, p) ∈ I × I : Apq exists}.
Thus the operator A may be identified with the collection of its representatives:

A �
{
Apq : Vq −→ Vp :

(
q, p
)
∈ j(A)

}
. (5.1)

By condition (ii), the set d(A) is obtained by projecting j(A) on the “first coordinate” axis.
The projection i(A) on the “second coordinate” axis plays, in a sense, the role of the range of
A. More precisely,

d(A) =
{
q ∈ I : there is a p such that Apq exists

}
,

i(A) =
{
p ∈ I : there is a q such that Apq exists

}
.

(5.2)

The following properties are immediate see the (see Figure 2):

(i) d(A) is an initial subset of I: if q ∈ d(A) and q′ < q, then q′ ∈ d(A), and Apq′ =
ApqEqq′ , where Eqq′ is a representative of the unit operator (this is what we mean by
a ‘coherent’ collection),

(ii) i(A) is a final subset of I: if p ∈i(A) and p′ > p, then p′ ∈i(A) and Ap′q = Ep′pApq.

(iii) j(A) ⊂d(A)×i(A), with strict inclusion in general.

We denote by Op(VI) the set of all operators on VI . Of course, a similar definition may be
given for operators A : VI → YK between two LHSs or LBSs.

Since V # is dense in Vr, for every r ∈ I, an operator may be identified with a separately
continuous sesquilinear form on V # × V #. Indeed, the restriction of any representative Apq
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p′ > p

j(A)

q′ < q

I

(q, p)

d(A) qmax

I

q

pmin

i(A)

p

Figure 2: Characterization of the operator A, in the case of a scale.

to V # × V # is such a form, and all these restrictions coincide. Equivalently, an operator may
be identified with a continuous linear map from V # into V (continuity with respect to the
respective Mackey topologies).

But the idea behind the notion of operator is to keep also the algebraic operations on
operators; namely, we define the following operations:

(i) Adjoint: Every A ∈ Op(VI) has a unique adjoint A× ∈ Op(VI), defined by the
relation

〈
A×x | y

〉
=
〈
x | Ay

〉
, fory ∈ Vr, r ∈ d(A), x ∈ Vs, s ∈ i(A), (5.3)

that is, (A×)rs = (Asr)
∗ (usual Hilbert/Banach space adjoint). ¡list-item¿¡label/¿

It follows that A×× = A, for every A ∈ Op(VI): no extension is allowed, by the
maximality condition (iii) of Definition 5.1.

(ii) Partial Multiplication: The product AB is defined if and only if there is a q ∈ i(B) ∩
d(A), that is, if and only if there is a continuous factorization through some Vq:

Vr
B−→ Vq

A−→ Vs, that is, (AB)sr = AsqBqr . (5.4)

It is worth noting that, for a LHS/LBS, the domain D(A) is always a vector subspace of V
(this is not true for a general PIP-space). Therefore, Op(VI) is a vector space and a partial
∗-algebra [22].

The concept of PIP-space operator is very simple, yet it is a far-reaching generalization
of bounded operators. It allows indeed to treat on the same footing all kinds of operators,
from bounded ones to very singular ones. By this, we mean the following, loosely speaking.
Take

Vr ⊂ Vo � Vo ⊂ Vs
(
Vo = Hilbert space

)
. (5.5)
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Three cases may arise:

(i) if Aoo exists, then A corresponds to a bounded operator Vo → Vo,

(ii) if Aoo does not exist, but only Aor : Vr → Vo, with r < o, then A corresponds to an
unbounded operator, with domain D(A) ⊃ Vr ,

(iii) if no Aor exists, but only Asr : Vr → Vs, with r < o < s, then A corresponds to a
singular operator, with Hilbert space domain possibly reduced to {0}.

5.2. Special Classes of Operators on PIP-Spaces

Exactly as for Hilbert or Banach spaces, one may define various types of operators
between PIP-spaces, in particular LBS/LHSs. We discuss briefly the most important
classes, namely, regular operators, homomorphisms and isomorphisms, unitary operators,
symmetric operators, and orthogonal projections. Further details may be found in the
monograph [14].

5.2.1. Regular and Totally Regular Operators

An operator A on a nondegenerate PIP-space VI , with positive-definite partial inner product,
in particular, a LBS/LHS, is called regular if d(A) = i(A) = I or, equivalently, if A : V # →
V # and A : V → V continuously for the respective Mackey topologies. This notion depends
only on the pair (V #, V ), not on the particular compatibility #. The set of all regular operators
VI → VI is denoted by Reg(VI). Thus a regular operator may be multiplied both on the left
and on the right by an arbitrary operator. Clearly, the set Reg(VI) is a ∗-algebra and can often
be identified with an O ∗-algebra [22, 23].

We give two examples.

(1) If V = ω, V # = ϕ, then Op(ω) consists of arbitrary infinite matrices and Reg(ω) of
infinite matrices with finite rows and finite columns.

(2) If V = S×, V # = S, then Op(S×) consists of arbitrary tempered kernels, while
Reg(S×) contains those kernels that can be extended to S× and map S into itself.
A nice example is the Fourier transform.

An operator A is called totally regular if j(A) contains the diagonal of I × I, that is, Arr

exists for every r ∈ I or A maps every Vr into itself continuously.

5.2.2. Homomorphisms

Let VI, YK be two LHSs or LBSs. An operator A ∈ Op(VI, YK) is called a homomorphism if

(i) j(A) = I ×K and j(A×) = K × I,

(ii) f #I g implies that Af #KAg.
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We denote by Hom(VI, YK) the set of all homomorphisms from VI into YK. The following
properties are easy to prove:

(i) A ∈ Hom(VI, YK) if and only if A× ∈ Hom(YK, VI),

(ii) ifA ∈ Hom(VI, YK), then j(A×A) contains the diagonal of I×I and j(AA×) contains
the diagonal of K ×K.

The homomorphism M ∈ Hom(WI, YK) is a monomorphism if MA = MB implies
that A = B, for any two elements of A,B ∈ Hom(VI,WL), where VI is any PIP-space.
Typical examples of monomorphisms are the inclusion maps resulting from the restriction
of a support. Take for instance, L1

loc(X, dμ), the space of locally integrable functions on a
measure space (X, μ). Let Ω be a measurable subset of X and Ω′ its complement, both of
nonzero measure, and construct the space L1

loc(Ω, dμ), which is a PIP-subspace of L1
loc(X, dμ)

(see Section 5.2.5). Given f ∈ L1
loc(X, dμ), define f (Ω) = fχΩ, where χΩ is the characteristic

function of χΩ. Then we obtain an injection monomorphismM(Ω) : L1
loc(Ω, dμ) → L1

loc(X, dμ)
as follows:

(
M(Ω)f (Ω)

)
(x) =

⎧
⎨

⎩

f (Ω)(x), ifx ∈ Ω,

0, ifx /∈Ω,
f (Ω) ∈ L1

loc

(
Ω, dμ

)
. (5.6)

If we consider the lattice of weighted Hilbert spaces {L2(r)} in this PIP-space, then the
correspondence r ↔ r(Ω) = rχΩ is a bijection between the corresponding involutive lattices.

The homomorphism A ∈ Hom(VI, YK) is an isomorphism if there exists a homomor-
phism B ∈ Hom(YK, VI) such that BA = 1V , AB = 1Y , where 1V , 1Y denote the identity
operators on VI, YK, respectively.

For instance, the Fourier transform is an isomorphism of the Schwartz RHS S ⊂ L2 ⊂
S× onto itself and, similarly, of the Feichtinger triplet (6.16) onto itself. In both cases, the
property extends to several scales of lattices interpolating between the two extreme spaces,
for instance, the Hilbert chain of the Hermite representation of tempered distributions.

5.2.3. Unitary Operators and Group Representations

The operator U ∈ Op(VI, YK) is unitary if U×U and UU× are defined and U×U = 1V ,UU× =
1Y . We emphasize that unitary operators need not be homomorphisms ! In fact, unitarity is a
rather weak property and it is insufficient for group representations.

Thus a unitary representation of a group G into a PIP-space VI is defined as a
homomorphism of G into the unitary isomorphisms of VI . Given such a unitary representation
U of G into VI , where the latter has the central Hilbert space H0, consider the representative
U00(g) of U(g) in H0. Then g �→ U00(g) is a unitary representation of G into H0, in the usual
sense.

To give an example, let VI be the scale built on the powers of the operator
(Hamiltonian) H = −Δ + v(r) on L2(R3, dx), where Δ is the Laplacian on R

3 and v is a
(nice) rotation invariant potential. The system admits as symmetry group G = SO(3) (the
full symmetry group might be larger; for instance, the Coulomb potential admits SO(4) as
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symmetry group for its bound states.) and the representationU00 is the natural representation
of SO(3) in L2(R3):

[
U00
(
ρ
)
ψ
]
(x) = ψ

(
ρ−1x
)
, ρ ∈ SO(3). (5.7)

Then U00 extends to a unitary representation U by totally regular isomorphisms of VI .
Angular momentum decompositions, corresponding to irreducible representations of SO(3),
extend to VI as well. In addition, this is a good setting also for representations of the Lie
algebra so(3). Notice that the representation U is totally regular, but this need not be the case.
For instance, if the potential v is not rotation invariant, U will no longer be totally regular,
although it is still an isomorphism.

5.2.4. Symmetric Operators

An operator A ∈ Op(VI) is symmetric if A× = A. Since one has A×× = A, no extension
is allowed, by the maximality condition. Thus symmetric operators behave essentially like
bounded self-adjoint operators in a Hilbert space. Yet, they can be very singular, as indicated
above, for a chain

V # ⊂ · · · ⊂ Vr ⊂ Vo = Vo ⊂ Vs ⊂ · · · ⊂ V. (5.8)

In this case, the question is whether a symmetric operator A ∈ Op(VI) has a self-adjoint
restriction to the central Hilbert space Vo. In a Hilbert space context, an answer is given by the
celebrated KLMN theorem (KLMN stands for Kato, Lax, Lions, Milgram, Nelson). Actually,
this classical result already has a distinct PIP-space flavor. Thus is not surprising that the
KLMN theorem has a natural generalization to a LHS or a PIP-space with positive-definite
partial inner product and central Hilbert space Vo = Vo, and a quadratic form version as well
[14, Section 3.3.5].

An interesting application is a correct description of very singular Hamiltonians in
quantum mechanics, typically with δ or δ′ interactions. For instance, one can treat in this way
the Kronig-Penney crystal model, which consists of a δ potential at each node of a lattice, in
one, two, or three dimensions [24, 25].

5.2.5. Orthogonal Projections, Bases, Frames

An operator P on a nondegenerate PIP-space V , respectively, a LBS/LHS VI , is an orthogonal
projection if P ∈ Hom(VI) and P 2 = P = P×. It follows immediately from the definition that
an orthogonal projection is totally regular, that is, j(P) contains the diagonal I × I, or still
that P leaves every assaying subspace invariant. Equivalently, P is an orthogonal projection
if P is an idempotent operator (that is, P 2 = P) such that {Pf}# ⊇ {f}# for every f ∈ V and
〈g | Pf〉 = 〈Pg | f〉 whenever f#g. We denote by Proj(V ) the set of all orthogonal projections
in V and similarly for Proj(VI).

These projection operators enjoy several properties similar to those of Hilbert space
projectors. Two of them are of special interest in the present context.

(i) Given a nondegenerate PIP-space V , there is a natural notion of subspace,
called orthocomplemented, which guarantees that such a subspace W of V is
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again a nondegenerate PIP-space with the induced compatibility relation and
the restriction of the partial inner product. There are equivalent topological
conditions, so that orthocomplemented subspaces are the proper PIP-subspaces
[26]. Then the basic theorem about projections states that a subspace W of V is
orthocomplemented if and only if W is the range of an orthogonal projection P ∈
Proj(V ), that is, W = PV . Then V =W ⊕Z, where Z is another orthocomplemented
subspace.

(ii) An orthogonal projection P is of finite rank if and only if W = RanP ⊂ V # and
W ∩ W⊥ = {0} (this condition is, of course, superfluous when the partial inner
product is positive definite).

There is a natural partial order on the set of projections:

PW ≤ PY if and only if W ⊆ Y, (5.9)

but the lattice properties of Proj(V ) are unknown. Thus we expect that quantum logic may
be reformulated in a PIP-space language only under additional restrictions on V .

Property (ii) has important consequences for the structure of bases. First we recall
that a sequence {en, n = 1, 2, . . .} of vectors in a Banach space E is a Schauder basis if, for
every f ∈ E, there exists a unique sequence of scalar coefficients {ck, k = 1, 2, . . .} such that
limm→∞‖f −

∑m
k=1 ckek‖ = 0. Then one may write

f =
∞∑

k=1

ckek. (5.10)

The basis is unconditional if the series (5.10) converges unconditionally in E (i.e., it keeps
converging after an arbitrary permutation of its terms).

A standard problem is to find, for instance, a sequence of functions that is an
unconditional basis for all the spaces Lp(R), 1 < p < ∞. In the PIP-space language, this
statement means that the basis vectors must belong to V # =

⋂
1<p<∞ L

p(R). Also, since (5.10)
means that f may be approximated by finite sums, the property (ii) of orthogonal projections
implies that all the basis vectors must belong to V #. Some examples are given in Section 6.2.5.

Actually, in the context of signal processing, orthogonal (in the Hilbert sense) bases are
not enough; one needs also biorthogonal bases and, more generally, frames. We recall that a
countable family of vectors {ψn} in a Hilbert space H is called a frame if there are two positive
constants m, M, with 0 < m � M <∞, such that

m
∥∥f
∥∥2 �

∞∑

n=1

∣∣〈ψn | f
〉∣∣2 � M

∥∥f
∥∥2
, ∀ f ∈ H. (5.11)

The two constants m, M are called frame bounds. If m = M, the frame is said to be tight. Consider
the analysis operator C : H → �2 defined by C : f �→ {|〈ψn | f〉|} and the frame operator
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S = C∗C. Then the vectors ψ̃n = S−1ψn also constitute a frame, called the canonical dual frame,
and one has the (strongly converging) expansions

f =
∞∑

n=1

∣
∣〈ψn | f

〉∣∣ψ̃n =
∞∑

n=1

∣
∣〈ψ̃n | f

〉∣∣ψn. (5.12)

Then the considerations made above for bases should apply to frame vectors as well, that is,
the vectors ψn, ψ̃n should also belong to V #.

6. Applications of PIP-Spaces

6.1. Applications in Mathematical Physics

PIP-spaces have found many applications in mathematical physics, mostly in quantum
physics. We will sketch a few of them in this section. Most of what follows is described in
detail in [14].

6.1.1. Dirac Formalism in Quantum Mechanics

The mathematical description of a quantum system rests on three basic principles: (i) The
superposition principle, which implies that the set of states of the system has a linear structure;
(ii) The notion of transition amplitude, given by an inner product: A(ψ1 → ψ2) = 〈ψ2 | ψ1〉,
which yields transition probabilities by P(ψ1 → ψ2) = |〈ψ2 | ψ1〉|2; and (iii) The probabilistic
interpretation, which requires that 〈ψ | ψ〉 = ‖ψ‖2 > 0, whenever ψ /= 0.

Combining these basic principles implies that the set of states of the system is a
positive-definite inner product space Φ, that is, a pre-Hilbert space. On this basis, Dirac
developed a formalism for quantum physics with great computational capacity and broad
predictive power. The essential features of Dirac’s formalism are the following.

(i) Physical observables are represented by linear operators in the space Φ and these
operators form an algebra. Therefore, it makes sense to arbitrarily add and multiply
operators to form new operators.

(ii) For a given quantum physical system, there exist complete systems of commuting
observables (CSCO) in the algebra of observables. The system of eigenvectors for
a chosen CSCO provides a basis for the space Φ, that is, every vector φ ∈ Φ can be
expanded into the eigenvectors of the CSCO.

In the simplest case, a CSCO consists of only one observable A, with a mixed spectrum
consisting of discrete eigenvalues {λn} = σp(A) and a continuous part {λ} = σc(A). The
corresponding eigenvectors, written as |λn〉, |λ〉, respectively, obey “orthogonality” relations

〈λm | λn〉 = δmn, 〈λ | λn〉 = 0,
〈
λ | λ′

〉
= δ
(
λ − λ′

)
. (6.1)

Then every φ ∈ Φ can be expanded as

φ =
∑

n

|λn〉
〈
λn | φ

〉
+
∫

σc(A)
dλ|λ〉

〈
λ | φ
〉
. (6.2)
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Clearly the eigenvectors |λ〉 cannot belong to the pre-Hilbert space Φ, nor to its completion
H. Thus Dirac’s formalism, while extremely practical and used by physicists on a daily basis,
is not mathematically well defined.

For that reason, von Neumann formulated a rigorous version of quantum mechanics,
in a pure Hilbert space language. His formulation consists in the following two axioms: (i)
Pure states are represented by rays (i.e., one-dimensional subspaces) in a Hilbert space H;
and (ii) Observables are represented by self-adjoint operators in H. This formulation is well
defined mathematically, but too restrictive. Nonnormalizable eigenvectors, corresponding
to points of a continuous spectrum, cannot belong to H, yet they are extremely useful
and often have a clear physical meaning (plane waves, for instance). Observables may
be unbounded, so that domain considerations must be taken into account. In particular,
unbounded operators may not always be multiplied. Thus it is understandable that the large
majority of physicists stay with Dirac’s formalism.

This had prompted several authors [27–31] to propose a rigorous version in terms of
a RHS Φ ⊂ H ⊂ Φ×. In this scheme, the space Φ is constructed from the basic observables
(labeled observables) of the system at hand and is interpreted as the space of all physically
preparable states. The conjugate dual Φ× contains idealized states (probes), identified with
measurement devices. In that context, let A be an observable, represented by a self-adjoint
operator in H such that A : Φ → Φ continuously. Then A may be transposed by duality to a
linear operator A× : Φ× → Φ×, which is an extension of A† := A∗ � Φ, where A∗ is the usual
Hilbert space adjoint operator, namely,

〈
φ | A×F

〉
=
〈
Aφ | F

〉
, ∀φ ∈ Φ, F ∈ Φ×. (6.3)

For such an operator, the vector ξλ ∈ Φ× is called a generalized eigenvector ofA, with eigenvalue
λ ∈ C, if it satisfies

〈
φ | A×ξλ

〉
:= A×ξλ

(
φ
)
= λ ξλ

(
φ
)
≡ λ
〈
φ | ξλ

〉
, ∀φ ∈ Φ. (6.4)

Then the spectral theorem of Gel’fand-Maurin [5, 6] states that A possesses in Φ× a complete
orthonormal set of generalized eigenvectors ξλ ∈ Φ×, λ ∈ R. This means that, for any two
φ, ψ ∈ Φ, one has (we split again into the discrete and the continuous part of the spectrum of
A)

〈
φ | ψ
〉
=
∑

n

〈
φ | λn

〉〈
λn | ψ

〉
+
∫
〈
φ | λ
〉〈
λ | ψ
〉
ρ(λ)dλ, (6.5)

where ρ is a non-negative integrable function. In that way one recovers essentially Dirac’s
bra-and-ket formalism. This approach is based on a RHS, but the construction is such that a
PIP-space version is easily obtained—and is in fact closer to Dirac’s spirit. For more details,
see [14, Section 7.1.1].

6.1.2. Symmetries, Singular Interactions in Quantum Mechanics

Several other topics in quantum mechanics can be advantageously formulated in a RHS or
PIP-space language, for instance, the implementation of symmetries, with the two dual points
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of view, the active one and the passive one [32]. A symmetry group is represented by a
unitary representation in H that extends to a unitary representation U in the enveloping
PIP-space, in the sense defined in Section 5.2.3. Then, in accordance with the physical
interpretation given above, the active point of view corresponds to the action of U in V # ≡ Φ,
the passive one to the action on V ≡ Φ×.

Another problem is a correct definition of a Hamiltonian with a singular interaction,
already mentioned in Section 5.2.4. In the simplest case, the standard definition is H =
−(Δ/2m) + V , where the interaction V is given by some reasonable function (potential).
However, there are cases where a singular interaction is needed, for instance when V is
replaced formally by a δ function or a δ′ function, with support in a point (or several) or a
manifold of lower dimension. Then the usual formulation is based on von Neumann’s theory
of self-adjoint extensions of symmetric operators, sometimes coupled with Krein’s formula
[33]. But here the PIP-space approach is a convenient substitute to that approach, as shown
in [24, 25] and [14, Section 7.1.3].

6.1.3. Quantum Scattering Theory

In scattering theory, it is common to use scales of Hilbert spaces built on the powers of
A1 := (1 + |x|2) or A2 := (1 + |p|2), and the LHS obtained by combinations of both. This
example contains the Sobolev spaces (the scale built on A2), the weighted spaces L2

s (the
scale built on A1), and spaces of mixed type. In particular, operators of the form f(x)g(p),
for suitable functions f, g, play an essential role in the so-called phase-space approach to
scattering theory and they may be controlled by this LHS. For instance, their trace ideal
properties may be derived in this way and they are used for proving the absence of singular
continuous spectrum by the limiting absorption principle.

On the other hand, the Weinberg-van Winter (WVW) formulation of scattering theory
[34–36] has a very natural interpretation in terms of a LHS, whose components, including the
extreme ones, are Hilbert spaces consisting of functions analytic in a sector; thus the indexing
parameter is the opening angle of that sector. This technique has allowed to show that the
WVW formalism is a particular case of the Complex Scaling Method [14, Section 7.2.3], a
result hitherto unknown.

6.1.4. Quantum Field Theory

Mathematically rigorous formulations of QFT rely heavily on a RHS or a PIP-space approach,
primarily Wightman’s axiomatic formulation. There, indeed, a quantum field is defined as an
operator-valued distribution, which is customarily written in terms of an unsmeared field
(field at a point) A(x), as

A
(
f
)
=
∫

R4
A(x)f(x)dx, f ∈ S

(
R

4). (6.6)

Under quite reasonable assumptions, the unsmeared field can be defined as a map fromS(R4)
into Op(V ), where V is a conveniently chosen PIP-space. This allows to give the previous
formula a rigorous mathematical meaning [14, Section 7.3.1].
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Another PIP-space version of QFT is the Fock construction (tensor algebra) over the
RHS

S(V+
m) ↪→ L2(V+

m, dμ
)
↪→ S×(V+

m), (6.7)

where V+
m denotes the forward mass shell V+

m = {p ∈ R
4 : p2 = m2, p0 > 0} and dμ the Lorentz

invariant measure d3p/p0 on it. Write Φ1 = S(V+
m), the space of “good” one-particle states.

Then define

Φn = Φ
⊗

sn

1 , (6.8)

where the right-hand side denotes the symmetrized tensor product of n copies of Φ1,
corresponding to n-boson states. Again Φn is reflexive, complete, and nuclear with respect
to its natural topology, and it can be described as the end space of a scale of Hilbert spaces.
Finally, define

Φ =
∞⊕

n=0

Φn, (6.9)

that is, the topological direct sum of the component spaces. Elements of Φ are finite sequences
f = {f0, f1, . . . , fn, . . .}, f0 ∈ C, fn ∈ Φn, that is, totally symmetric functions of Schwartz type.
The space Φ is reflexive, complete, and nuclear with respect to the direct sum topology. Its
dual is the topological product

Φ× =
∞∏

n=0

Φ×
n. (6.10)

Thus we get a suitable RHS, in which the central Hilbert space H is Fock space, that is, the
tensor algebra Γ(Φ1) over Φ1.

Other examples are the construction of QFT via the Borchers algebra, Nelson’s
Euclidean field theory, or the precise treatment of unsmeared fields (fields at a point). See
[14, Section 7.3] for a detailed presentation.

6.1.5. Representations of Lie Groups and Lie Algebras

Let us return to the situation described in Section 5.2.3. We start with a strongly continuous
unitary representation U00 of a Lie group G in a Hilbert space H0 and seek to build a
PIP-space VI , with H0 being its central Hilbert space, such that U00 extends to a unitary
representation U into VI .

The solution of this problem is well known from Nelson’s theory of analytic vectors.
Let Δ be the closure of the Nelson operator Δ :=

∑n
j=1 X

2
j , where {Xj, j = 1, . . . , n} are the

representatives under U00 of the elements of a basis of the Lie algebra g of G. Δ is essentially
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self-adjoint on the so-called Gårding domain HG
0 , Δ is self-adjoint, and Δ � 0. Define VI :=

{Hn, n ∈ Z} as the canonical scale of Hilbert spaces generated by the operator (Δ + 1):

V # := D∞
(
Δ
)
↪→H0 ↪→ V := D∞

(
Δ
)
. (6.11)

First, one has D∞(Δ) =
⋂∞
n=1 D(Δ

n
) = H∞

0 , the space of C∞-vectors of U00. Next, for every
g ∈ G, U00(g) leaves each Hn, n ∈ N, invariant and its restriction Unn(g) : Hn → Hn is
continuous; thus it can be transposed to a continuous map Unn(g−1) : Hn → Hn. It follows
that U00 extends to a unitary representation U in the LHS VI . Corresponding to the triplet
(6.11), we have three representations of G, namely, U00, its restriction U∞∞, and the dual
U∞∞ of the latter, which is an extension of the first two. All three are continuous. Moreover, if
one of the three is topologically irreducible (i.e., there is no proper invariant closed subspace),
so are the other two.

In addition to the representations of the group G, the scale VI is the natural tool
for studying the properties of the operators representing elements of the Lie algebra g

or the universal enveloping algebra U(g) of G. For every element x ∈ g or L ∈ U(g),
the representative U(x), respectively U(L), originally defined on HG

0 , extends to a regular
operator on VI . These regular operators have in general no {0, 0}-representative, since x and
L are represented in H0 by unbounded operators. As in the case of the group G, one gets
three ∗-representations of the enveloping algebra U(g), and in particular of the Lie algebra g,
in the three spaces of the triplet (6.11). Namely, one has, for every L, L1, L2 ∈ U(g),

U(L1)U(L2) = U(L1L2),

U(L+) = U(L)×,
(6.12)

where L ↔ L+ is the involution on U(g). These representations have the same irreducibility
properties as the corresponding ones of the group. See [14, Section 7] for further details.

6.2. Applications in Analysis and Signal Processing

Many families of function spaces of interest in analysis or signal processing are, or contain,
lattices of Banach spaces. To quote a few: amalgam spaces, modulation spaces, Besov spaces,
α-modulation spaces, coorbit spaces, which contain many of the previous cases. We shall
describe them briefly in succession. For further information about those spaces, we refer to
our monograph [14, Chapters 4 and 8].

6.2.1. Amalgam Spaces

A situation intermediate between the mixed-norm spaces Lp,q(R2d) (for m ≡ 1) and the
spaces � p,q(Z2d) is that of the so-called amalgam spaces. They were introduced specifically
to overcome the inability of the Lp norms to distinguish between the local and the global
behavior of functions. The simplest ones are the spaces W(Lp, �q) of Wiener [37], which
consist of functions on R which are locally in Lp with �q behavior at infinity, in the sense
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that the Lp norms over the intervals (n, n + 1) form an �q sequence. It is a Banach space for
the norm

∥∥f
∥∥
p,q =

⎧
⎨

⎩

∞∑

n=−∞

[∫n+1

n

∣∣f(x)
∣∣pdx

]q/p
⎫
⎬

⎭

1/q

, 1 � p, q <∞. (6.13)

The following inclusion relations, with all embeddings continuous, derive immediately from
those of the Lp and the �q spaces.

(i) If q1 � q2, then W(Lp, �q1) ⊂W(Lp, �q2).

(ii) If p1 � p2, then W(Lp2 , �q) ⊂W(Lp1 , �q).

Thus the smallest space is W(L∞, �1) and the largest space is W(L1, �∞). As for duality, one
has W(Lp, �q)× =W(Lp, �q), for 1 � p, q <∞.

The interesting fact is that, for 1 � p, q � ∞, the set J of all amalgam spaces
{W(Lp, �q)}may be represented by the points (p, q) of the same unit square J as in the example
of the Lp spaces, with the same order structure. However, J is not a lattice with respect to the
order (3.12). One has indeed

W(Lp, �q) ∧W
(
Lp

′
, �q

′
)
⊃W
(
Lp∨p

′
, �q∧q

′
)
,

W(Lp, �q) ∨W
(
Lp

′
, �q

′
)
⊂W
(
Lp∧p

′
, �q∨q

′
)
,

(6.14)

where again ∧ means intersection with projective norm and ∨ means vector sum with
inductive norm, but equality is not obtained. Thus, as in the previous case, one gets chains by
varying either p or q, but not both.

A very useful class of amalgam spaces is the family W(FLp, �q), 1 � p, q � ∞, where
FLp denotes the set of Fourier transforms of Lp functions (one may even add weights on both
spaces). These spaces have, for instance, nice inclusion and convolution properties.

Among these, the most interesting one is S0 = W(FL1, �1), called the Feichtinger
algebra. The space S0 has many interesting properties; for instance, one has the following.

(i) S0 is a Banach space for the norm ‖f‖S0
= ‖Vg0f‖1, and S ↪→ S0 ↪→ L2, with all

embeddings continuous with dense range. Here g0 is the Gaussian and Vgf denotes
the Short-Time Fourier (or Gabor) Transform of f ∈ L2(Rd), given in (6.17) below.

(ii) S0 is a Banach algebra with respect to pointwise multiplication and convolution.

(iii) Time-frequency shifts TxMω are isometric on S0 : ‖TxMωf‖S0
= ‖f‖S0

, where
(Txg)(y) = g(y − x) (translation) and (Mωh)(y) = e2πiyωh(y) (modulation).
S0 is continuously embedded in any Banach space with the same property and
containing g0; thus it is the smallest Banach space with this property.

(iv) The Fourier transform is an isometry on S0 : ‖Ff‖S0
= ‖f‖S0

.

As for the (conjugate) dual S×
0 of S0, it is a Banach space with norm ‖f‖S×

0
= ‖Vgf‖∞. The

space S×
0 contains both the δ function and the pure frequency χω(x) = e−2πixω.

In virtue of (i) above, we have

S ↪→ S0 ↪→ L2 ↪→ S×
0 ↪→ S×, (6.15)
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where all embeddings are continuous and have dense range. It turns out that the triplet

S0
(
R
d) ↪→ L2(

R
d) ↪→ S×

0

(
R
d) (6.16)

is the prototype of a Banach Gel’fand triple, that is, a RHS (or LBS) in which the extreme spaces
are (nonreflexive) Banach spaces. This is often a very convenient substitute for Schwartz’
RHS and it is widely used in signal processing.

6.2.2. Modulation Spaces and Gabor Analysis (Time-Frequency Analysis)

Modulation spaces are closely linked to, and in fact defined in terms of, the Short-Time
Fourier (or Gabor) Transform. Given a C∞ window function g /= 0, the Short-Time Fourier
Transform (STFT) of f ∈ L2(Rd) is defined by

(
Vgf
)
(x,ω) =

〈
MωTxg | f

〉
:=
∫

Rd

g(y − x)f
(
y
)
e−2πiyωdy, x,ω ∈ R

d, (6.17)

where, as usual, (Txg)(y) = g(y − x) (translation) and (Mωh)(y) = e2πiyωh(y) (modulation).
Then, given a v-moderate weight function m(x,ω), (see Section 3.3.3) the modulation

space Mp,q
m is defined in terms of a mixed norm of an STFT:

M
p,q
m

(
R
d) =
{
f ∈ S×(

R
d) : Vgf ∈ L

p,q
m

(
R

2d)}, 1 � p, q � ∞. (6.18)

For p = q, one writes Mp
m ≡Mp,p

m . The space Mp,q
m is a Banach space for the norm

∥∥f
∥∥
M

p,q
m

:=
∥∥Vgf

∥∥
L
p,q
m
. (6.19)

Actually, there is a slightly more restrictive definition, which uses the weight function
ms(x,ω) ≡ ws(ω) = (1 + |ω|)s, s � 0, (or, equivalently, m̃s(x,ω) = (1 + |ω|2)s/2 ), so that
the norm reads

∥∥f
∥∥
M

p,q
ws

=

(∫

Rd

(∫

Rd

∣∣〈MωTxg | f
〉∣∣pdx

)q/p
(1 + |ω|)sq dω

)1/q

. (6.20)

Equivalently, one may define a modulation space as the inverse Fourier transform of a Wiener
amalgam space:

M
p,q
ws

= F−1
(
W
(
Lp, �

q
ws

))
. (6.21)

This space is independent of the choice of window g, in the sense that different window
functions define equivalent norms.

The lattice properties of the family {Mp,q
m , 1 � p, q � ∞} are, of course, the same

as those of the mixed-norm spaces Lp,qm . As for duality, one has (Mp,q
m )× = M

p,q

1/m. Inclusion
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relations hold, leading again to a lattice structure: if p1 � p2, q1 � q2, and m2 � Cm1, for
some constant C > 0, then Mp1,q1

m1 ⊆Mp2,q2
m2 . In particular, one has

M1
v ⊆M

p,q
m ⊆M∞

1/v. (6.22)

The class of modulation spaces M
p,q
ws

contains several well-known spaces, such as the
following:

(i) The Bessel potential spaces or fractional Sobolev spaces Hs =M2
m̃s

:

Hs(
R
d) =M2

m̃s

(
R
d) =
{
f ∈ S× :

∫

Rd

∣
∣
∣f̂(t)
∣
∣
∣

2 (
1 + |t|2

)s
dt <∞

}
, s ∈ R. (6.23)

(ii) L2(Rd) =M2(Rd).

(iii) The Feichtinger algebra S0 =M1 and its dual S×
0 =M∞.

By construction, modulation spaces are function spaces well adapted to Gabor analysis,
although they can often be replaced by amalgam spaces. A wealth of information about the
spaces and their application in Gabor analysis may be found in the monograph of Gröchenig
[20]. Here we just indicate a few relevant points, especially those that are of a PIP-space
nature. We consider in particular the action of several types of operators on such spaces.

(i) Translation and Modulation Operators

(a) Every amalgam space W(Lp, �q) and every mixed-norm space L
p,q
m are

invariant under translation, that is, Ty is a totally regular operator in the
corresponding PIP-space.

(b) Every modulation space M
p,q
m is invariant under time-frequency shifts

(translation and modulation), that is, Ty and Mξ are totally regular operators.

(ii) Fourier Transform

(a) For 1 � p, q � 2,F maps W(Lp, �q) into (WLq, �p) continuously, that is, J(F)
contains every pair (p, q), (q, p).

(b) If m(ξ,−x) � Cm(x, ξ), then every space M
p
m is invariant under Fourier

transform.

(iii) Gabor Frame Operators

Given a nonzero window function g ∈ L2(Rd) and lattice parameters α, β > 0, the set
of vectors

G
(
g, α, β

)
=
{
MnβTkαg, k, n ∈ Z

d
}

(6.24)

is called a Gabor system. The system G(g, α, β) is a Gabor frame if there exist two constants m> 0
and M<∞ such that

m
∥∥f
∥∥2 �

∑

k,n∈Zd

∣∣〈MnβTkαg | f
〉∣∣2 � M

∥∥f
∥∥2
, ∀ f ∈ L2(

R
d). (6.25)
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The associated Gabor frame operator Sg,g is given by

Sg,gf :=
∑

k,n∈Zd

〈
MnβTkαg | f

〉
MnβTkαg. (6.26)

The main results of the Gabor time-frequency analysis stem from the following proposition.

Proposition 6.1. If G(g, α, β) is a Gabor frame, there exists a dual window ğ = S−1
ggg such that

G(ğ, α, β) is a frame, called the dual frame. Then one has, for every f ∈ L2(Rd),

f =
∑

k,n∈Zd

〈
MnβTkαg | f

〉
MnβTkαğ =

∑

k,n∈Zd

〈
MnβTkαğ | f

〉
MnβTkαg, (6.27)

with unconditional convergence in L2(Rd).

The outcome of the theory is that the modulation spaces M
p,q
m turn out to be the

natural class of function spaces for Gabor analysis [20]. Define indeed the following operator,
generalizing (6.26) slightly:

Sg,g ′f :=
∑

k,n∈Zd

〈
MnβTkαg | f

〉
MnβTkαg

′, g, g ′ ∈ L2(
R

2d). (6.28)

Then one has the following results (they are highly nontrivial and their proof requires deep
analysis)

(i) If g, g ′ ∈ W(L∞, �1), then the Gabor frame operator Sg,g ′ is bounded on every
Lp(R2d), 1 � p � ∞.

(ii) If g, g ′ ∈ M1
v, then Sg,g ′ is bounded on M

p,q
m for all 1 � p, q � ∞, all v-moderate

weights m, and all α, β.

(iii) If ğ is a dual window of g, that is, Sg,ğ = 1 on L2, then the two expansions in (6.27)
converge unconditionally in Mp,q

m if p, q <∞.

Clearly statements (i) and (ii) can be translated into PIP-space language, by saying that
Sg,g ′ is a totally regular operator in the chain {Lp, 1 � p � ∞}, respectively, any PIP-space
built from modulation spaces.

These results should suffice to convince the reader that the modulation spaces Mp,q
m

are the “natural” spaces for Gabor analysis. Actually, most of this remains true if one
replaces modulation spaces by amalgam spaces W(Lp, �qm). Second, it is obvious that most
of the statements have a distinctly PIP-space flavor: it is not some individual space Mp,q

m or
W(Lp, �qm) that counts, but the whole family, with many operators being regular in the sense
of PIP-spaces.

6.2.3. Besov Spaces and Wavelet Analysis (Time-Scale Analysis)

Besov spaces were introduced around 1960 for providing a precise control on the smoothness
of solutions of certain partial differential equations. Later on, it was discovered that they are
closely linked to wavelet analysis, exactly as the (much more recent) modulation spaces are
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structurally adapted to Gabor analysis. In fact, there are many equivalent definitions of Besov
spaces. We restrict ourselves to a “discrete” formulation, based on a dyadic partition of unity.
Other definitions may be found in the literature quoted in [14], in particular [19, 38–40].

Let us consider a weight function ϕ ∈ S(R) with the following properties:

(i) supp ϕ = {ξ : 2−1 � |ξ| � 2},

(ii) ϕ(ξ) > 0 for 2−1 < |ξ| < 2,

(iii)
∑∞

j=−∞ ϕ(2
−j ξ) = 1 (ξ /= 0).

Then one defines the following functions by their Fourier transform:

(i) ϕ̂j(ξ) = ϕ(2−j ξ), j ∈ Z : high “frequency” for j > 0, low “frequency” for j < 0,

(ii) ψ̂(ξ) = 1 −
∑∞

j=1 ϕ(2
−j ξ) : low “frequency” part.

Given the weight function ϕ, the inhomogeneous Besov space Bspq is defined as

Bspq =
{
f ∈ S× :

∥∥f
∥∥s
pq <∞

}
, (6.29)

where ‖ · ‖spq denotes the norm

∥∥f
∥∥s
pq :=

∥∥ψ ∗ f
∥∥
p +

⎛

⎝
∞∑

j=1

(
2sj
∥∥ϕj ∗ f

∥∥
p

)q
⎞

⎠

1/q

, s ∈ R, 1 � p, q � ∞. (6.30)

The space Bspq is a Banach space and it does not depend on the choice of the weight function
ϕ, since a different choice defines an equivalent norm. Note that Bs22 = Hs, the (fractional)
Sobolev space or Bessel potential space.

For f ∈ Bspq, one may write the following (weakly converging) expansion, known as a
dyadic Littlewood-Paley decomposition:

f = ψ ∗ f +
∞∑

j=1

ϕj ∗ f. (6.31)

Clearly the first term represents the (relatively uninteresting) low-“frequency” part of the
function, whereas the second term analyzes in detail the high-“frequency” component.

Besov spaces enjoy many familiar properties (for more details, we refer to the
literature, e.g., [19, Section 6.2] or [39, Chapter 2]).

(i) Inclusion Relations

The following relations hold, where all embeddings are continuous:

(a) S ↪→ Bspq ↪→ S×,

(b) Bspq ↪→ Lp, if 1 � p, q � ∞ and s > 0,
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(c) for s1 < s2, B
s2
pq ↪→ Bs1

pq (1 � q, p � ∞),

(d) for 1 � q1 < q2 � ∞, Bspq1
↪→ Bspq2

(s ∈ R, 1 � p � ∞),

(e) for s − 1/p = s1 − 1/p1, B
s
pq ↪→ Bs1

p1q1 (s, s1 ∈ R, 1 � p � p1 � ∞, 1 � q � q1 � ∞).

In the terminology of Section 4, the first statement means that the spaces Bspq are interspaces
for the RHS S ↪→ L2 ↪→ S×. The inclusion relations above mean that the family of spaces Bspq
contains again many chains of Banach spaces.

(ii) Interpolation

Besov spaces enjoy nice interpolation properties, in all three parameters s, p, q.

(iii) Duality

One has (Bspq)
× = B−s

p q
(s ∈ R).

(iv) Translation and Dilation Invariance

Every space Bspq is invariant under translation and dilation (the unitary dilation operator in
L2 reads (Daf)(x) = a−1/2f(x/a).)

(v) Regularity Shift

Let Jσ : S× → S× denote the operator Jsf = F−1{(1 + | · |2)s/2Ff}, s ∈ R. Then Jσ is an
isomorphism from Bspq onto Bs−σpq . Thus Jσ is totally regular for σ � 0, but not for σ > 0.

It is also useful to consider the homogeneous Besov space Ḃspq, defined as the set of all
f ∈ S× for which ‖f ‖̇spq <∞, where the quasinorm ‖ · ‖̇spq is defined by

˙∥∥f
∥∥s
pq :=

⎛

⎝
∞∑

j=−∞

(
2sj
∥∥ϕj ∗ f

∥∥
p

)q
⎞

⎠

1/q

. (6.32)

(This is only a quasi-norm since ‖f ‖̇spq = 0 if and only if supp f̂ = {0}, i.e., f is a polynomial.)

Note that, if 0/∈ supp f̂ , then f ∈ Ḃspq if and only if f ∈ Bspq.
The spaces Ḃspq have properties similar to the previous ones and, in addition, one has

Bspq = Lp ∩ Ḃspq for s > 0, 1 � p, q � ∞. In particular, every space Ḃspq is invariant under
translation and dilation, which is not surprising, since these spaces are in fact based on the
ax + b group, consisting precisely of dilations and translations of the real line, via the coorbit
space construction (see Section 6.2.4 below).

Besov spaces are well adapted to wavelet analysis, because the definition (6.29)
essentially relies on a dyadic partition (powers of 2). Historically, the connection was made
with the discrete wavelet analysis, for that reason. Indeed, there exists an equivalent definition
given in terms of decay of wavelet coefficients. More precisely, if a function f is expanded
in a wavelet basis, the decay properties of the wavelet coefficients allow to characterize
precisely to which Besov space the function f belongs, as we shall see below. In addition,
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the Besov spaces may also be characterized in terms of the continuous wavelet transform (see
[14, Section 8.4] ).

In order to go into details, we have to recall some basic facts about the wavelet
transform (for simplicity, we restrict ourselves to one dimension). Whereas the STFT is
defined in terms of translation and modulation, the continuous wavelet transform is based
on translations and dilations

(
Wψs
)
(b, a) = a−1

∫∞

−∞
ψ
(
a−1(x − b)

)
s(x)dx, a > 0, b ∈ R, s ∈ L2(R). (6.33)

Note that we use here the so-called L1 normalization. It is more frequent to use the L2

normalization, in which the prefactor is a−1/2 instead of a−1. In this relation, the wavelet ψ
is assumed to satisfy the admissibility condition

cψ :=
∫∞

−∞
dω|ω|−1∣∣ψ̂(ω)

∣∣2 <∞, (6.34)

which implies that
∫∞
−∞ ψ(x)dx = 0. This condition is only necessary, but becomes sufficient

under some mild restrictions, so that it is commonly used as admissibility condition in
practice.

However, discretizing the two parameters a and b in (6.33) leads in general only to
frames. In order to get orthogonal wavelet bases, one relies on the so-called multiresolution
analysis of L2(R). This is defined as an increasing sequence of closed subspaces of L2(R):

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · (6.35)

with
⋂
j ∈ Z

Vj = {0} and
⋃
j ∈ Z

Vj dense in L2(R) and such that

(1) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1,

(2) there exists a function φ ∈ V0, called a scaling function, such that the family
{φ(· − k), k ∈ Z} is an orthonormal basis of V0.

Combining conditions (1) and (2), one sees that {φjk ≡ 2j/2φ(2j ·−k), k ∈ Z} is an orthonormal
basis of Vj . The space Vj can be interpreted as an approximation space at resolution 2j .
Defining Wj as the orthogonal complement of Vj in Vj+1, that is, Vj ⊕ Wj = Vj+1, we see
that Wj contains the additional details needed to improve the resolution from 2j to 2j+1.
Thus one gets the decomposition L2(R) = ⊕j∈ ZWj . The crucial theorem then asserts the
existence of a function ψ, called the mother wavelet, explicitly computable from φ, such that
{ψjk ≡ 2j/2ψ(2j · −k), k ∈ Z} constitutes an orthonormal basis of Wj and thus {ψjk ≡ 2j/2ψ(2j ·
−k), j, k ∈ Z} is an orthonormal basis of L2(R): these are the orthonormal wavelets. Thus the
expansion of an arbitrary function f ∈ L2 into an orthogonal wavelet basis {ψjk, j, k ∈ Z}
reads

f =
∑

j,k∈Z

cjkψjk, with cjk =
〈
ψjk | f

〉
. (6.36)
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Additional regularity conditions can be imposed to the scaling function φ. Given r ∈ N, the
multiresolution analysis corresponding to φ is called r-regular if

∣
∣
∣
∣
dnφ

dxn

∣
∣
∣
∣ � cm

(
1 + |x|m

)
, for alln � r and all integers m ∈ N. (6.37)

Well-known examples include the Haar wavelets, the B-splines, and the various Daubechies
wavelets.

As a result of the “dyadic” definition (6.29)-(6.30), it is natural that Besov spaces can
be characterized in terms of an r-regular multiresolution analysis {Vj}. Let Ej : L2 → Vj be
the orthogonal projection on Vj and Dj = Ej+1 − Ej that on Wj . Let 0 < s < r and f ∈ Lp(R).
Then, f ∈ Bs

pq(R) if and only if ‖Djf‖p = 2−jsδj , where (δj) ∈ �q(N), and one has ( means
equivalence of norms)

∥∥f
∥∥s
pq  
∥∥E0f

∥∥
p +

⎛

⎝
∑

j∈Z

2jsq
∥∥Djf

∥∥q
p

⎞

⎠

1/q

. (6.38)

Specializing to p = q = 2, one gets a similar result for Sobolev spaces: given f ∈ H−r(R) and
|s| < r, f ∈ Hs(R) if, and only if, E0f ∈ L2(R) and ‖Djf‖2 = 2−jsεj , j ∈ N, where (εj) ∈ �2(N).

But there is more. Indeed, modulation spaces and Besov spaces admit decomposition
of elements into wavelet bases and each space can be uniquely characterized by the decay
properties of the wavelet coefficients. To be precise, let {ψjk, j, k ∈ Z} be an orthogonal
wavelet basis coming from an r-regular multiresolution analysis based on the scaling function
φ. Then the following results are typical [41, Chapters II.9 and VI.10].

(i) Inhomogeneous Besov Spaces: f ∈ Bspq(R) if it can be written as

f(x) =
∑

k∈Z

βkφ(x − k) +
∑

j�0,k∈Z

cjkψjk, (6.39)

where (βk) ∈ �p and (
∑

k∈Z
|cjk|p)1/p = 2−j(s+1/2−1/p)γj ,with(γj) ∈ �q(Z).

(ii) Homogeneous Besov Spaces: Let |s| < r. Then, if f ∈ Ḃspq(R), its wavelet coefficients

cjk verify (
∑

k∈Z
|cjk|p)1/p = 2−j(s+1/2−1/p) γj , where (γj) ∈ �q(Z). Conversely, if this

condition is satisfied, then f = g + P , where g ∈ Ḃspq and P is a polynomial.

6.2.4. α-Modulation Spaces, Coorbit Spaces

The α-modulation spaces (α ∈ [0, 1]) are spaces intermediate between modulation and Besov
spaces, to which they reduce for α = 0 and α → 1, respectively. As for coorbit spaces, they are
a far-reaching generalization, based on integrable group representations [42]. They contain
most of the previous spaces, but we will refrain from describing them in detail, for lack of
space.
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6.2.5. Unconditional Bases

We conclude this section with some examples of unconditional wavelet bases, as announced
in Section 5.2.5. Actually, the concept of wavelet basis can be further generalized to
biorthogonal bases, obtained by considering two scales of the type (6.35) and imposing cross-
orthogonality relations [43, Section 8.3]. For precise definitions, we refer to the literature.

(i) The Haar wavelet basis is defined by the scaling function φH = χ[0,1] and the mother
wavelet ψH = χ[0,1/2] − χ[1/2,1]. It is a standard result that the Haar system is an
unconditional basis for every Lp(R), 1 < p <∞.

(ii) The Lemarié-Meyer wavelet basis is an unconditional basis for all Lp spaces,
Sobolev spaces, and homogeneous Besov spaces Ḃspq (1 � p, q <∞) [44].

(iii) There is a class of wavelet bases (Wilson bases of exponential decay) that are
unconditional bases for every modulation space Mp,q

m , 1 � p, q < ∞, but not for
Lp, 1 < p <∞, p /= 2 [45].

7. Conclusion

Most families of function spaces used in analysis and in signal processing come in scales or
lattices and in fact are, or contain, PIP-spaces. The (lattice) indices defining the (partial) order
characterize the properties of the corresponding functions or distributions: smoothness, local
integrability, decay at infinity. Thus it seems natural to formulate the properties of various
operators globally, using the theory of PIP-space operators; in particular the set j(A) of an
operator encodes its properties in a very convenient and visual fashion. In addition, it is often
possible to determine uniquely whether a function belongs to one of those spaces simply by
estimating the (asymptotic) behavior of its Gabor or wavelet coefficients, a real breakthrough
in functional analysis [41].

A legitimate question is whether there are instances where a PIP-space is really
needed, or a RHS could suffice. The answer is that there are plenty of examples, among the
applications we have enumerated in Section 6 (without details, for lack of space). We may
therefore expect that the PIP-space formalism will play a significant role in Gabor/wavelet
analysis, as well as in mathematical physics.

Concerning the applications in mathematical physics, in almost all cases, the relevant
structure is a scale or a chain of Hilbert spaces, which allows a finer control on the behavior
of operators. For instance (all details may be found in our monograph [14]) the following are
considered.

(i) For the singular interactions in quantum mechanics (δ or δ′ potentials), the
approach of Grossmann et al. [18, 24, 25] is definitely the most appropriate; a RHS
would be irrelevant.

(ii) The very formulation of the WVW approach to quantum scattering theory [34–36]
requires a LHS, whose end spaces are in fact Hilbert spaces.

(iii) For quantum field theory, the energy bounds of Fredenhagen and Hertel [46] rely in
an essential way on the scale generated by the Hamiltonian, and so does Nelson’s
approach to Euclidean field theory [47].

As for the applications in signal processing, all families of spaces routinely used
are, or contain, chains of Banach spaces, which are needed for a fine tuning of elements
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(usually, distributions) and operators on them. Such are, for instance, Lp spaces, amalgam
spaces, modulation spaces, Besov spaces, or coorbit spaces, mentioned above. Here again,
a RHS, even with Banach end spaces like the Feichtinger algebra and its conjugate dual, is
clearly not sufficient. The whole Section 6.2 illustrates the statement.
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[29] A. Böhm, “The Rigged Hilbert space and mathematical description of physical systems,” in
Mathematical Methods of Theoretical Physics, W. A. Brittin, et al., Ed., Lectures in Theoretical Physics,
vol. IX A, pp. 255–317, Gordon and Breach, New York, NY, USA, 1967.

[30] J. E. Roberts, “The Dirac bra and ket formalism,” Journal of Mathematical Physics, vol. 7, pp. 1097–1104,
1966.

[31] J. E. Roberts, “Rigged Hilbert spaces in quantum mechanics,” Communications in Mathematical Physics,
vol. 3, no. 2, pp. 98–119, 1966.

[32] J.-P. Antoine, “Symmetries of quantum systems: A partial inner product space approach,” Journal of
Physics A: Mathematical and Theoretical, vol. 41, no. 30, Article ID 304037, 13 pages, 2008.

[33] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics,
Texts and Monographs in Physics, Springer, New York, NY, USA, 1988.

[34] C. van Winter, “Fredholm equations on a Hilbert space of analytic functions,” Transactions of the
American Mathematical Society, vol. 162, pp. 103–139, 1971.

[35] C. van Winter, “Complex dynamical variables for multiparticle systems with analytic interactions. I,”
Journal of Mathematical Analysis and Applications, vol. 47, no. 3, pp. 633–670, 1974.

[36] C. van Winter, “Complex dynamical variables for multiparticle systems with analytic interactions. II,”
Journal of Mathematical Analysis and Applications, vol. 48, no. 2, pp. 368–399, 1974.

[37] J. J. F. Fournier and J. Stewart, “Amalgams of Lp and �q,” Bulletin of the American Mathematical Society,
vol. 13, no. 1, pp. 1–21, 1985.

[38] H. Triebel, Function Spaces I, Birkhäuser, Basel, Switzerland, 1978.
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