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ABSTRACT

This is the first mitochondrial phylogeography of the common dormouse, Muscardinus avellanarius, a
hibernating rodent strictly protected in Europe (Habitat Directive annex IV, Bern convention annex
III). The 84 individuals of M. avellanarius, sampled throughout the distributional range of the species,
have been sequenced at the mitochondrial DNA gene (cytochrome b, 704 base pairs). The results
revealed two highly divergent lineages with an ancient separation 7.7 Myr ago. Lineage 1 occurs in
Western Europe (France, Belgium, Switzerland) and Italy and Lineage 2 in Central-North Europe
(Poland, Germany, Latvia, Lithuania), on the Balkan Peninsula and in Turkey. These two lineages
were further subdivided into five allopatric sub-lineages.

Therefore, the Lineage 1 branches into two further sub-lineages (Western European and Italian) while
the Lineage 2 contained three sub-lineages (Central-North European, Turkish and a Balkan). These
different sub-lineages should be regarded as independently evolving units that have high conservation

significance.

ADDITIONAL KEYWORDS: Gliridae — Europe — Glacial refugia — conservation- cytochrome b.
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INTRODUCTION

Climatic oscillations during the Pleistocene have greatly affected the pattern of distribution of many
species in the Western Palaearctic region, as well as their demographic history and patterns of
population genetic differentiation (Avise 2000; Hewitt 2004). Three main peninsular refugia have been
deduced from phylogenetic studies for most temperate species in Europe, namely Iberia, Italy, and the
Balkans (Hewitt 1999, 2001; Taberlet et al., 1998; Michaux et al., 2003; Krystufek, Bryja, Buzan,
2009). Increasing evidence suggests that the well-studied European southern and eastern refugia for
thermophilous animal and plant taxa were supplemented by cryptic refugia in more northern Europe
during the Late Pleistocene (Stewart & Lister, 2001). Since its publication, this hypothesis has
received significant support revealing northern refugia in small mammals (Brunhoff ez al., 2003;
Jaarola & Searle, 2002, 2004; Deffontaine et al., 2005; Kotlik ez al., 2006). In addition, some studies
pointed out the role of Mediterranean refugia as sites of endemism (Bilton ez al., 1998; Stewart 2003;
Provan & Bennett, 2008; Bhagwat & Willis, 2008; Grill et al., 2009; Krystufek et al., 2009, Buzan et
al., 2010).

Nonetheless all these studies concern and give detailed phylogeographic patterns of species within the
Muroid superfamily, whereas phylogeographic studies on Gliridae are almost inexistent despite the
interest of this group. Gliridae are one of the most ancient rodent family, emerging in the Eocene
(between 54-53 and 38-37 Mya) (Nadachowski & Daoud, 1995). They are small to medium size
rodents, mostly arboreal, and were restricted throughout their history to Europe, Asia and Africa
(Wilson & Reeder, 2005). The diversification of the Gliridae which began in the early Eocene
continued during the Oligocene and culminated in the Late Early Miocene of Europe, where they
appear to have occupied many ecological niches. The decline of this family becomes apparent during
the Late Middle Miocene (Vallesian). Casanovas - Vilar et al. (2005) suggested that the diversity of
forest-adapted rodents decreased significantly not only in coincidence with the climatic Vallesian
crisis, but also with the entry and widespread of Muridae. Most of the 28 species contained in the
family Gliridae (Holden, 2005) are now regarded as rare or endangered, attracting conservation-related
research and active habitat management to assist their survival (Morris, 2003).

A recent phylogeographical study on the edible dormouse, Glis glis (Hurner er al., 2010) showed a
very low genetic variability throughout the northern part of its range which may have important
implication for conservation strategies of this species.

In this context, we feel that a clear understanding of the evolutionary history of other members of the
Gliridae family, obtained by comparative phylogeography, would allow the identification of
biodiversity hotspots and increase awareness in conservation policies. In temperate regions glirids are
characterized by hibernation during winter, a behavior that has earned them a popular reputation for
perpetual sleepiness (Numone et al., 2007). The thermal dependence during hibernation can constrain
the biogeography of species and therefore could imply other evolutionary history especially during the

Quaternary glaciations.
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The target of our study is the common dormouse, Muscardinus avellanarius (Linnaeus, 1758), a
Gliridae protected in Europe (Habitat Directive Annex IV, Bern Convention Annex III) and included
in national Red Lists of many countries. The common dormouse occurs in Europe and northern Asia
Minor (Turkey) (Fig.1). In continental Europe, it is fairly widespread, although it is absent from Iberia,
South-West France, and boreal forests of majority of Fennoscandia and Russia. It is also absent from
steppic landscape in eastern Ukraine and southern Russia. Island populations occur in southern Britain
and on Corfu and Sicily (Morris, 1999; Rossolimo et al., 2001). It is generally a lowland or mid-
mountain species although the highest record of M. avellanarius were at the altitude of 1980 m a.s.l. in
Macedonia (KryStufek & Petkowski, 1990) and up to 1920 m a.s.l. in the Austrian Alps (Spitzenberger
& Bauer 2001; Juskaitis, 2008).

Population trends vary in different parts of the range: in some north-western areas (e.g., UK, the
Netherlands, Denmark, Belgium) populations are declining due to the interplay between the species’
complex biological requirements and habitat loss and fragmentation (Foppen, Verheggen, Boonman,
2002; Bright, Morris, Mitchell-Jones, 2006; Verbeylen 2006; Mortelliti et al., 2010). In others parts of
the range, like Sweden and Lithuania, the species is considered stable (Wretenberg & Berglund, 2009;
Juskaitis, 2008). It is likely an excellent model for studying the effects of habitat fragmentation,
climatic shifts and climatic stochasticity (Bright & Morris, 1996). In addition, the common dormouse
exhibits differences in hibernation in different ecogeographical conditions confirming the peculiar link
between climate and hibernation length (Panchetti et al., 2004; Sara, Casamento, Spinnato, 2001).
Fossil data suggests that the Miocene/Pliocene boundary led to the diversification of the genus
Muscardinus into several lineages based on different body size and dental morphology (Garcia - Alix
et al., 2008; Aguilar, 1982; Aguilar & Lazzari, 2006; Nadachowski & Daoud, 1995; Storch, 1978).
Toward the end of the Pliocene, most of these lineages vanished and since the Middle Pleistocene only
the extant species, M. avellanarius survived in the European faunas (Nadachowski & Daoud, 1995).
Incisive biological conservation of mammals or terrestrial vertebrates in Europe needs detailed data on
specie’s phylogeography, the genetic diversity and structure of population, as well as on the dynamic
of past populations (Randi, 2003). The detection of phylogeographic structuring is important because
it helps identifying long-isolated populations that might have distinct gene pools and local adaptations;
thus the conservation concern for the common dormouse makes it an excellent candidate for such
studies. We therefore defined subsequently the phylogeographic structure of the species, never tackled
so far. In particular we tried to answer to the following questions: i) Is the common dormouse
structured phylogeographically? If so, ii) Are the mitochondrial sequences geographically structured,?
iii) How many distinct genetic lineages of M. avellanarius exist? Next issues concerned historical
process: iv) Did postglacial recolonization of Central Europe steams from the traditional of
Mediterranean refugia or from elsewhere? v) Did the Miocene/Pliocene boundary lead to the
diversification of the genus Muscardinus? vi) Our final issue was the implication of our results for the

species’ conservation?
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MATERIAL AND METHODS

SAMPLE COLLECTION AND DNA EXTRACTION

We gathered a total of 83 sample tissues of Muscardinus avellanarius from 28 localities (1-12 samples
per population) spread throughout the specie’s geographical range (Tablel; Fig.1). These specimens
were obtained from the authors and field collaborators (see acknowledgements). Tissues and hairs
were preserved in 96% Ethanol until DNA extraction. An additional sequence from Switzerland was
downloaded from the GenBank database (Bentz & Montgelard, 1999).Total DNA was extracted using
the DNeasy Tissue kit (Qiagen Inc., Valencia, California) following the manufacturer’s instructions.
DNA samples were extracted and amplified in a separate room solely dedicated to DNA extractions.
PCR AMPLIFICATION AND mtDNA SEQUENCING

A fragment of 704 base pairs was sequenced from the cytochrome b of the mitochondrial DNA gene
(mtDNA). PCR amplifications were carried out using primers designed by Andrea Grill specifically
for M. avellanarius modified from Bentz & Montgelard (1999) : LMA14255 (5-
TGGTGGAATTTCGGTTCTCT-3’) and RMA15192 (5’-GTTGGCCTCCAATTCATGTT -3°).

DNA isolated in some samples was highly degraded and therefore the amplifications of the entire
portion of the cyt b gene (>700 pb) was unsuccessful. In order to recover this material, two further
intern specific primers were designed by fragment alignment:

MUSCAR_RINTERN (5’-AAGGTGAACTATTACTAGGGC-3’) and MUSCAR_LINTERN (5’-
ACCCTAGTAGAATGAATCTGA-3’). Those specific primers amplified two small overlapping cyt b
fragments (300-400 bp), which were then aligned to give a 704 bp sequence.

Amplifications were carried out following the protocol of Michaux et al. (2003) and performed in a
Labover PTC100 thermal cycler employing 40 cycles (30-45s/94°, 30-45s/50°, 45s-1min30s/72°) with
a final extension at 72°C (10 minutes). Products were visualized on an agarose gel to verify the
success of amplification. All the sequencing procedures were performed by Macrogen Inc. (Seoul,
Korea). The sequences were edited and then aligned using ClustalW algorithm with the 7.0.9.0 version
BIOEDIT program (Hall, 1999).

PHYLOGENETIC AND PHYLOGEOGRAPHIC ANALYSIS

The model of nucleotide substitution that best fits the data set was identified with the web application
FindModel developed from ModelTest (Posada & Crandall, 1998) and Weighbor (Bruno, Socci,
Halpern, 2000) with the initial tree built with PHYML program (Guidon & Guascuel, 2003). The
robustness of the trees was assessed by bootstrap resampling (Felsenstein, 1985).

The Bayesian phylogeny reconstruction (Yang & Rannala, 1997) was implemented in MRBAYES
3.1.1 (Huelsenbeck et al., 2001). Bayesian posterior probabilities were picked from the 50% majority
rule consensus of trees sampled every 1000 generations, discarding the trees obtained before the
chains reached stationary distribution (“burn in”, empirically determined by checking of likelihood

values). A 50% Majority-rule consensus tree was generated in PAUP v4.0b10 (Swofford, 2000).
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A minimum spanning haplotype network was constructed using the MINSPNET algorithm available
in the ARLEQUIN 3.0 software (Schneiders, Roessli, Excoffier, 2000) in order to more effectively
portray the relationships among sequences for populations with low sequence diversity (Crandall &
Templeton, 1993). To infer the relationships between haplotypes a Median-Joining Network was also
constructed with the same combined sequence dataset using the software NETWORK v 4.5 (Bandelt,
Forster, R6hl,1999).

ANALYSIS OF GENETIC DIVERSITY AND DIFFERENTIATION

Haplotype (h), nucleotide (w) diversities (Nei, 1987), and their standard deviations (Tajima, 1989),
gene flow and genetic differentiation (using population pairwise Fst) between the two major lineages
and sub-lineages were estimated using DnaSP v. 5 (Librado & Rozas, 2009). Net distance between
groups and average distances within groups were calculated in MEGA 4 (Tamura et al., 2007).

The genetic structure of populations was examined using an analysis of molecular variance (AMOVA)
performed in ARLEQUIN 3.0. AMOVA was conducted at three hierarchical levels of population
subdivisions: among genetic groups (corresponding to the two lineages), among populations within
each genetic group (corresponding to the sub-lineages) and within each population. The significance
of these parameters was estimated by 10 000 random permutations of the distance matrix.
DIVERGENCE TIME

Relative-rate tests and an approximate time of divergence between the observed mtDNA lineages were
calculated as explained in Michaux et al. (2003). The divergence time between Eliomys quercinus and
E. melanurus (7 £ 0.9 Myr; Montgelard, Matthee, Robinson, 2003) was used as a calibration point.
Another estimate of the divergence time of the main lineages of M.avellanarius used a Bayesian
approach implemented in the software BEAST v. 1.5.4 (Drummond & Rambaut, 2007). We used the
Eliomys quercinus/E. melanurus divergence as a fossil point calibration. We included the entire set of
mitochondrial sequence for the Muscardinus group as well as two sequences of Eliomys melanurus
(GenBank Accession number xxxx-xxxx) and two sequences of Eliomys quercinus (GenBank
Accession number xxxx-xxx). Analyses were performed under the GTR + G substitution model
parameter (previously estimated by FindModel), an uncorrelated lognormal molecular clock and a
Bayesian Skyline plot demographic model (Drummond ez al., 2005). All other settings were the
default provided by BEAST. Two independent runs were performed, with 80 000 000 Markov Chain
Monte Carlo (MCMC) sampling every 1000"™ generation. Results were visualized using TRACER
vl.5.

ANALYSIS OF DEMOGRAPHIC HISTORY

The hypothetical presence of glacial refugia was checked by searching for the possibility of population
expansion. To avoid biased conclusion, we examined only the sub lineages including more than 15
samples. We inferred past demographic trend for three sub lineages: the Western, the Central-North
and the Italian. As the Italian sub-lineage is well structured in three groups, we decided to infer also

the past trend for the Central Italian group (n >15). Coalescent-based Tajima’s D (Tajima, 1989) was

6
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calculated to test for selective neutrality (calculation using the total number of mutations) and
population history was also inferred by testing departure from neutrality using R, (Ramos-Onsins &
Rozas, 2002) and Fu’s Fs (Fu, 1996) in DnaSP v.5 (Librado & Rozas, 2009). Strobeck’s S statistic
(Strobeck, 1987) is the probability of having an equal number or fewer haplotypes than observed
based on the gene frequency distribution derived from the inferred mutation rate 6. High S probability
values (0.9-1.0) indicate deviation from neutrality due to either selection or population expansion.
Strobeck’s S statistic was also calculated using DnaSP v. 5 (Librado & Rozas, 2009). A Bayesian
Skyline reconstruction performed in Tracer v1.5. allowed us to examine the historical demography of
each lineage. We checked that the settings were able to capture well the model parameters. For
example, an estimate of effective sample size (ESS) higher than 200 would indicate a good
convergence of MCMC within chains as suggested by Drummond & Rambaut (2007). The
demographic histories of the sub-lineages of M. avellanarius were examined also using mismatch
distribution of pairwise nucleotide differences estimated in DnaSP v.5 (Librado & Rozas, 2009) only
for populations including more than 15 samples. Multimodal mismatch distributions would correspond
to a condition of demographic stability, whereas sudden population expansions would generate
unimodal patterns (Slatkin & Hudson, 1991). The overall validity of the estimated demographic model
was tested by obtaining the distribution of a test statistic SSD (the sum of squared differences)
between observed and expected mismatch distributions. A significant SSD value is considered as the
evidence of departure from the estimated demographic model of a sudden population expansion using
Arlequin 3.0. Furthermore, we calculated the raggedness index (Harpending, 1994) of the observed
mismatch distribution for each of populations according to the population expansion model
implemented in Arlequin 3.0. Small raggedness values represent a population which experienced
sudden expansion whereas higher values of the raggedness index suggest stationary or bottleneck

populations.

RESULTS

PHYLOGENETIC AND PHYLOGEOGRAPHIC ANALYSIS

A total of 33 haplotypes was identified among the 84 common dormouse specimens (Table 1).The
total data matrix comprised 33 Muscardinus haplotypes plus three other sequences (2 E. quercinus and
1 G. glis) chosen as outgroups according to a molecular phylogenetic study of Gliridae (Montgelard et
al., 2003). This matrix provided, without the outgroups, 704 base pairs, 120 of which were variable,
102 were parsimoniously informative and 18 were singleton-variable sites. The average
transitions/transversions ratio was 5,935 and the nucleotide frequencies were: 28.2%, 26.6%, 13.7%
and 31.4% for A, C, G and T respectively. The best model of sequence evolution identified in the
program FindModel by the Akaike information criterion was the GTR + G model. The shape

parameter of Gamma distribution equaled 0.250.
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The Maximum Likelihood (ML) and the Bayesian Inference (Bl) phylogenetic trees showed the same
tree topology. The haplotypes segregated into two lineages which gained strong support in ML (97%)
but remained unsupported in BL. The cyt-b net genetic distance between these is very high (7.7%)
(Table 2).

The first lineage (hereafter Lineage 1) split into two well supported (BS: 99%; BP: 100%) sub-lineage,
the first of which encompassed individuals from Western Europe (Belgium, Switzerland, France)
whereas the second comprised all the haplotypes from Italy (including Sicily). The Italian sub-lineage
further diverged into two supported groups (BS: 96%; BP: 100%), the first comprising specimens
from Central Italy and the second specimens from Southern Italy. The latter was further split into two
sub-groups (a Sicilian and a Calabrian), which found support only in BP: 100%.

The second major lineage (hereafter Lineage 2) gathers populations from the remainder of the species
range, in Central-North Europe (Lithuania, Latvia, Germany, Poland), the Balkan Peninsula
(Macedonia, Slovenia, Serbia) and Turkey. A further substructuring was poorly evident in Lineage 2,
however the Balkan samples may hold a sister position against those from Central-North Europe. The
Minimum Spanning Network (MSN) (Fig 3) and the Median Joining Network revealed a clear
geographical partitioning of the haplotypes with a considerable divergence between genomes
occurring in different regions of the species range. They also reproduced exactly the same topology
than ML and BI trees. The two major lineages are separated by 68 mutational steps.

Within the Lineage 1, the Western sub-lineage and the Italian sub-lineage are highly separated with 28
mutational steps and have a genetic net distance of 3.2%.The latter split into three groups
corresponding to Central Italian, Calabrian and Sicilian groups respectively. Identical substructuring
was also recognized in the ML and BI analysis. These groups were separated by 6 mutational steps
between each of them and a net distance of 0.8% and 0.7%, respectively between Central Italian and
Calabrian groups and between Calabrian and Sicilian groups.

Despite the BI analysis did not support the further branching within the Lineage 2,the MSN analysis
evidenced that the Balkans sub-lineage and the single Turkish haplotype steamed from the Central
North European sub-lineage being separated by 17 and 28 mutational steps, respectively (net distances
of 2.6% and 3.3%, respectively).

ANALYSIS OF GENETIC DIVERSITY AND DIFFERENTIATION

The AMOVA analysis showed that 70.43% (p=0.000) of the total mtDNA variation was distributed
among the 2 genetic groups, 26.30% (p=0.000) among populations within groups and 3.26%
(p=0.000) within populations.

Results are summarized in Table 3 and indicate in general a very low level of diversity for the two
lineages (Lineagel and Lineage 2) with a n value of 0.02. The highest nucleotide diversities were
found in the Balkan and the Italian sub-lineages with & values of 0.0067 and 0.006 respectively. Fst
values (Table 4) are very high and significant among all the sub- lineages evidencing low gene flow

among them.
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DIVERGENCE TIME

Relative rate did not show any difference of evolutionary rate among the observed lineages. This
allowed us to apply a molecular clock therefore the approximate time of divergence between the
observed mitochondrial DNA sub-lineages was calculated.

According to the Mean K2P distance between E. quercinus and E. melanurus, the gross estimate of the
evolutionary rate for the Gliridae is around 1% per Myr. The application of this rate to the different
dichotomies obtained within the Muscardinus avellanarius tree, resulted in the following approximate
molecular dating: 7 Mya for the split between Lineage 1 and Lineage 2; 3.2 Mya between the Western
sub-lineage and the Italian sub-lineage and between the Central- North sub-lineage and the Turkish
sample; 2.6 Mya between the Balkan sub-lineage and the Central- North sub-lineage. Finally, the
separation between the Central Italian and the Calabrian group and between the Calabrian and the
Sicilian group should have taken place around 0.8 and 0.7 Mya respectively.

Divergence times calculated using the coalescent approach were quite similar to the K2P corrected
distance and are summarized in Fig 4.

ANALYSIS OF DEMOGRAPHIC HISTORY

Neutrality tests of Tajima's D revealed non-significant negatives values in all populations (Table 5).
Furthermore, the R, values fall within the range expected under the model of constant population size,
so accepting the null hypothesis of constant population size in all populations. Non-significant
Strobeck’s S and negative Fu's F's values were obtained for the Western, Italian and Central Italian sub
lineages. However, Fu’s test for neutrality (Fu 1996) and the Strobeck’s S indicated a deviation from
neutrality due to either selection or population expansion for the data set of the Central-North
European lineage (Fu’s Fs=-6,318, p=0.000; S=1, p=0.001).

The Bayesian skyline plot reconstruction showed that the four lineages appear to have experienced a
long period of constant population size, followed by a decline which started around 1 Mya. The
mismatch distribution for the four above clusters also did not show the bell-shaped curve consistent
with the hypothesis of rapid population expansion (Fig.6). The mismatch population test
statistics SSD and raggedness index values were also consistent with constant population sizes (Table

5).

DISCUSSION

GENETIC STRUCTURE AND TIME OF DIVERGENCE OF MUSCARDINUS AVELLANARIUS
Consistently to paleontological data and the resulting 7 Myr time of divergence, we might hypothesize
that the putative ancestor of Muscardinus avellanarius (M hispanicus - M pliocaenicus, Garcia-Alix et
al., 2008) would have split very early and different subsequently by allopatry into two highly
divergent genetic lineages in Europe.

Our mtDNA study suggests that the Late Miocene/Early Pliocene was an important period for the

diversification of European mammals. Several other western and eastern European mammalian taxa

9
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are known to have diverged at about the same time, such as Talpa spp (Colangelo et al., 2010),
Erinaceus europaeus and E. roumanicus (Santucci, Emerson, Hewitt, 1998), or the eastern and
western clade of Cervus elaphus (Ludt et al., 2004). A closer sampling in the possible zones of overlap
between the two ancient lineages could reveal a contact zone as shown in previous studies, e.g.
yellow-bellied and fire-bellied toads (Bombina variegate and B. bombina; Szymura 1993), oaks
(Quercus robur group; Ferris, Oliver, Davy, 1993), shrews (Sorex araneus group; Taberlet, Fumagalli,
Hausser, 1994).

During the Late Pliocene and throughout the Quaternary, a substantial subdivision of extant common
dormouse lineages into more sub-lineages seems to have occurred. Based on the results and on our
estimation of divergence time, Lineage 1 split into a Western European and an Italian sub-lineage
around 3.2 Mya. Lineage 2 split into a Central - Northern European, a Turkish and a Balkanic sub-
lineage around 3.2 Mya and 2.7 Mya respectively. In coincidence with those divergence times, around
3 Mya, at the Pliocene-Pleistocene boundary a further strong climatic deterioration occurred with the
intensification of glaciations and the establishment of the great northern ice sheets in America and in
Europe (Santucci et al., 1998). The Early Pleistocene saw the definitive decline of Tertiary forests in
northwestern Europe (West, 2000) and the disappearance of such rich floristic habitats might have
promoted further isolation of the different M. avellanarius lineages.

PAST DEMOGRAPHY

The generalized Bayesian Skyline reconstruction showed that the sub-lineages have experienced a
long period of constant population size, followed by a general decline which started around 1 Mya.
Contemporary population fragmentation which primarily steamed from the intensification of
glaciations, but possibly also from the accelerated competition with the Muridae family lead to
contraction of the effective size and therefore could explain the demographic decline observed since
Early Pleistocene (1 Mya). This is further evidenced by the neutrality tests, the mismatch analysis, as
no one of the mismatch graphics showed a bell-shaped curve confirming a population expansion. The
straightforward explanation of our results can be misleading, however. The only exception concerns
the central north European sub lineage where the Strobeck’S test, the star-like topology of the network
and the Fu’s Fs, value indicate a signal of population expansion. There is no clear evidence of recent
expansion in the Bayesian plot for the central north European sub lineage as the confidence interval
can reveal either an expansion either a decline.

REFUGIA AND POSTGLACIAL RECOLONIZATIONS

The phylogeographic analysis allowed the reconstruction of refugia for M. avellanarius although in
some cases more sampling and additional analysis is needed (e.g. Central-North European sub-lineage,

Balkan sub-lineage, Turkish specimen).

Italian sub-lineage. The high level of genetic diversity (Table 3) indicates that the Italian region was

one of the refugia for Muscardinus avellanarius. Furthermore, the mismatch analysis and the
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neutrality tests suggest the existence of a stable population in the Italian region. During Quaternary
glaciations, this sub-lineage has been able to survive to the general cooling and to diversify genetically
in different parts of the peninsula. This lead to the appearance of three genetic groups corresponding to
the following regions: Central Italy, Sicily and Calabria. This separation is confirmed by the Fst values
which are very high and significant among the three groups (Table 4). These groups are probably the
result of geographic isolations in three different refugia, associated to the fragmentations of forests that
appeared during Quaternary cold stages (Magri et al., 2006) .The long-term isolation of Sicily and
southern Calabria from the rest of Italy would be also due to marine-flooded graben in central
Calabria, which appeared for most of the Pleistocene, as attested by the presence of several endemic
plants (Pignatti, 1982) and animals in these regions (Malatesta 1985; Caloi, Malatesta, Palombo, 1989;
Santucci, Nascetti, Bullini, 1996; Canestrelli et al., 2010). Our approximate time of divergence, with a
separation between the three groups around 1 Mya, seems to corroborate such biogeographic
scenarios. This result strongly suggests the possible existence of refugia within refugia in the Italian
peninsula as already observed for several other species (Michaux et al.,2003; Canestrelli et al., 2006,
2007, 2008; Castiglia et al.,2007; Grill et al.,2009; Vega et al.,2010).

Western sub-lineage. The high endemism of the Italian sub-lineage strongly suggests that such
population did not contribute to the postglacial recolonization of Western Europe. This implies that M.
avellanarius living in France, Belgium and Switzerland and now grouping in the Western sub-lineage
had other refugia outside from those ‘traditional’. There were areas situated outside the permafrost
during the maximum cooling (Sommer & Nadachowski, 2006) within the current range of the Western
sub-lineage, e.g. the area of the Dordogne in south-western France

Balkan sub-lineage. The high level of genetic diversity (Table 3) indicates the Balkan region was
another glacial refuge for Muscardinus avellanarius. The Balkan Peninsula is topographically the
most diverse landscape in Europe (Reed, Krystufek, Eastwood, 2004) and such variability could have
provided a suitable environment for altitudinal shifts in response to climatic change during glacial-
interglacial oscillations and also for small scale allopatric isolation (Krystufek ez al., 2007). This later
hypothesis could be confirmed by the high number of mutation steps within the Balkan sub-lineages in
the minimum spanning network (Fig 3). Recent studies suggest multiple glacial refugia in the Balkan
Peninsula for different species, such as Dinaromys bogdanovi (Krystufek er al, 2007a), Rana
(Pelophylax) (Lymberakis et al., 2007) and Spermophilus citellus (Krystufek et al., 2009).
Central-North European sub-lineage. The star-like topology in the minimum spanning network, the
Fu’s Fs value and the Strobeck’s S index suggest a rapid expansion/colonization event for the Central-
North European sub-lineage. However, the refugium of this sub-lineage is unclear. All the analysis
(ML, MST, genetic distance analysis, Fst value) showed that the Balkan sub-lineage is highly
divergent from the Central-North European sub-lineage. These results tend to infer that the Balkan
sub-lineage did not contribute to the colonization of the Central-North Europe. As suggested for

several other species (Seddon er al, 2002; Deffontaine er al., 2005, Kotlik er al., 2006), modern
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populations of common dormouse from Central-North Europe could be derived from populations that
survived in the Carpathian region as it was covered with patches of mixed coniferous and deciduous
forests instead of a uniform steppe-like landscape (Willis et al., 2000). Fossil data tend to suggest such
hypothesis. Indeed, numerous fossils records of M. avellanarius have been found during the Late
Vistulian (Pleistocene) period in the Deszczowa Cave in southern Poland (Nadachowski, 1989).
Turkish sub-lineage. The single Turkish specimen is also highly divergent as compared to the Central-
North European specimens. During the last glacial maximum, temperate forest remained in northern
Turkey in a narrow band along the southern shore of the Black Sea, with patchy extension to the
south-west Caucasus (Adams & Faure, 1997). Pollen records indicate that deciduous oak was present
in the southern, and particularly south-western, part of the Caucasus region from at least 12 000 years
BP (Huntley, 1990, 1992). It seems possible therefore that this area of Northern Turkey could be the
site of a glacial refugia (Seddon et al., 2002). This hypothesis would need to be confirmed by a more
extensive sampling of this region.

TAXONOMIC AND CONSERVATION IMPLICATION

The genetic divergence between the Lineage 1 and the Lineage 2 (approximately 7.7%) falls within
the range of inter- and intraspecific cyt b distances observed in Mammals (Bradley & Baker, 2001),
more specifically in the Arvicolinae (Jaarola & Searle, 2002, 2004; Conroy & Cook, 2000; Haynes et
al., 2003) and in the Glirinae (Bentz & Montgelard, 1999). Thus, the West European and Italian
populations could be described under the phylogenetic species concept (Cracraft, 1983) like a
subspecies or even an allo-species separated from a second subspecies formed by the Central-North
European and the Balkan populations. However such phylogenetic approach based on only one genetic
marker is not longer widely accepted (Avise & Ball, 1990). Additional data from genetically
independent loci is required before solid taxonomic conclusions can be made.

Corbet (1978) tentatively recognized five subspecies of Muscardinus based on the morphological
studies of Witte (1962) and Roesler & Witte (1969): M. avellanarius avellanarius (including anglicus,
corilinum, muscardinus) in Sweden; M. a. kroecki Niethammer & Bohmann, 1950 in Bulgaria; M. a.
pulcher Barrett-Hamilton, 1898 (including niveus and speciosus) in Italy and Sicily; M. a. zeus
Chaworth-Musters, 1932 in Greece; M. a. trapezius Miller, 1910 in Asia Minor. Namely, the
geographic variation has never been assessed throughout the species’ range, and discontinuities in
morphological variation have not been demonstrated. A more recent view observed great
morphological homogeneity among the European populations which does not allow to distinct
different subspecies (Wilson & Reeder, 2005). According to our results, there is no congruence
between our genetic lineages and the 5 previously recognized subspecies. However, the present
genetic study would affirm that common dormouse could be composed of minimum 5 historically
isolated, independently evolving sets of populations. Even if taxonomic conclusions cannot still be
made those lineages could be regarded as independent units for conservation management purposes

(Hillis, Moritz, Mable, 1996; Kocher & Stepien, 1997). The high genetic divergence between all the
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lineages, the ancient separation of the lineages reflects low mobility. The conservation of such
evolutionary significant units (ESU’s) is regarded as an important goal preserving species (Moritz,
1994, 1999). Furthermore, the identification of cryptic refugia has important implications in current

and future periods of global climatic changes (Provan & Bennett, 2008).
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FIGURE LEGENDS

FIG.1. Geographical distribution of the Muscardinus avellanarius in Europe and proximate location of
the sampled population. The shaded zone corresponds to the distribution area of the species. Different
symbols refer to lineages in Fig 2, 3 and 4 and in the Tables 2, 3 and 4 (*+ = West European sub-
lineage, @ = Italian sub-lineage, # = Turkish specimen, a = Central North European sub-lineage, m =
Balkans sub-lineage).
FIG.2. Maximum likelihood tree for the 33 haplotypes of the common dormouse. Numbers indicated
on the branches correspond to bootstrap support obtained in the ML analysis (left) and Bayesian
probabilities (right). Haplotypes origins are indicated in Table 1.
FIG.3. A minimum spanning network constructed using the 33 haplotypes of mitochondrial Cytb gene
sequences. Geographic origins (Table 1) are noted. Numbers correspond to the mutational steps
observed between haplotypes, numbers in parentheses correspond to the number of animals presenting
this haplotype and the size of the circle is proportional to the numbers of haplotypes represented.
FIG.4. Maximum clade probability tree displayed from the Beast analysis. Numbers in bold indicate
the posterior mean estimates of divergence time. Node bars illustrate the width of the 95% Highest
Posterior Density (HPD).
FIG.5. Bayesian skyline plots of historical demography of Muscardinus avellanarius. Time is shown
in million years to present day (= 0). Demographic trends for the Central-North European, Italian and
Western European sub-lineages as well as central Italian group are shown. Solid lines and shaded
areas represent the median estimates and the 95% HPD.
FIG.6. Mismatch distribution of cyt b sequences (704 pb) for the Central North European, the Western
European, the Italian sub-lineages and the central Italian group,

TABLES
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733  TABLE 1. — Map references, geographic locations, corresponding sub lineages, sample symbols,
734  collectors and GenBank accession numbers of M. avellanarius haplotypes used in this study.

735 Accession numbers with an asterisk were downloaded from the GenBank database.
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Total Genbank
L Sub Samples .
Geographic origin . numbers of Haplotypes | accession
lineages . symbols
animals number
Hazel dormouse (Muscardinus avellanarius)
Macedonia | Mt. Gali¢ica Balkans 5 Mal Hapgé, 04, XXXX
Popova Sapka Balkans 1 Ma?2 Hap05 XXXX
Mt. Pelister Balkans 1 Ma3 Hap05 XXXX
Serbia Mt. Cer Balkans 1 Serl Hap05 XXXX
Slovenia Mt Krim Balkans 2 Slo1 Hap03, 05 XXXX
Pogorelec Mt.
Kocevski Rog Balkans 1 Slo2 Hap02 XXXX
. . e e Central . Hap06,
Lithuania Sakiai district North 12 Litl 07.08. 09 XXXX
. Central Hapll,
Latvia North 3 Letl 1213 XXXX
Central
9
unknown North 1 ) Hap 16 XXXX
Central
Poland North 2 Pol Hap10, 15 XXXX
Central Hap06,
Germany North 3 Gel 14.18 XXXX
Turkey Mt.Ulu dag Turkish 1 Turl Hapl17 XXXX
Switzerland | Canton de Vaud Vest 6 Swil Hap19 XXXX
European
(Bentz & Montgelard, West . "
1999 ) A\Ppean 1 Swi2 Hap22 AJ225117
. West
France Normandie 2 Frl Hap20 XXXX
European
Belgium Mechelen West 6 Bel Hap21 XXXX
European
Italy Tevere Farfa(LLazio) Italian 1 1t10 Hap23 XXXX
Caste.:l di Guido ITtalian 10 It7 Hap24, 27 XXXX
(Lazio)
Arcmazzo Romano Italian 1 1t8 Hap24 XXXX
(Lazio)
Viterbo . Hap24, 26,
(Lazio) Italian 4 It11 73 XXXX
Filettino (Lazio) Italian 1 1t9 Hap25 XXXX
Castelporziano (Lazio) Italian 9 1t6 Hze;p %g ’ XXXX
Perugia (Umbria) Italian 2 1t12 Hap24 XXXX
Calabria Italian 1 It3 Hap29 XXXX
Cosenza (Calabria) Italian 1 1t4 Hap29 XXXX
Catena Costiera .
(Calabria) Italian 1 It5 Hap29 XXXX
High Madonia (Sicily) Italian 3 12 Hapgg, 32, XXXX
Low Madonia ( Sicily) Italian 2 It1 Hap31, 32 XXXX
Outgroups
Garden dormouse (Eliomys quercinus)
(Bentz & Montgelard, 1999) 1 AJ225030*
(Bentz & Montgelard, 1999) 1 FM16427*
1 XXXX
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| 1 XXXX
Asian Garden dormouse (Eliomys
melanurus)
1 XXXX
1 XXXX
Edible dormouse
(Glis glis)
| (Hurner et. al., 2010) | 1 FM16065*
TABLE 2. - Cytochrome b Net Genetic Distance (NGD) between lineages
Balkans | CentralNorthEurope | Western Europe
Central Italy Sicily
Sample size (n)] NGD NGD NGD NGD NGD
All 84 / / / / /
Lineage 2 33 / / / / /
Balkans 11 / / / / /
Turkey 1 4% 3,30% / / /
Central North Europe 21 2,60% / / / /
Lineage 1 51 / / / / /
Western Europe 15 8% 7,70% / / /
Italy 36 / / / / /
central Italy 28 8,60% 8,60% 3,20% / /
Sicily 5 8,10% 8,10% 1% 1,20% /
Calabria 3 8,40% 8,50% 3,40% 0,80% 0,70%

TABLE 3. — Summary of haplotypes (Hd) and nucleotide diversity (Pi) and their standard deviation

observed within the main genetic groups of the common dormouse.

Sample size (n) Pi (£ SD) Hd (£ SD)
All 84 0,05992 £0,00193] 0,921 £0,015
Lineage 2 33 0,0211 £0,00262 | 0,841 £ 0,049
Balkans 11 0,00668 +0,00294| 0,491 +0,175
Turkey 1 / /
Central North Europe 21 0,00337 £0,00707| 0,786 +0,096
Lineage 1 51 0,0225 £0.00 0,844 +0,00124
Western Europe 15 0,00168 +0,00013] 0,705 £0,074
Italy 36 0,006 £ 0,00125 | 0,742 + 0,064
central Italy 28 0,00151 £0,00024| 0,566 +0,079
Sicily 5 0,002 £0,00081 0,7 £0,218
Calabria 3 0,00095 +£0,00045| 0,667 £0,314

TABLE 4. - Pairwise Fst between lineages. * = (p < 0.5)
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Balkans | CentralNorthEurope | Western Europe
Central Ttaly Sicily
Sample size (n) Fst Fst Fst Fst Fst
All 84 / / / / /
Lineage 2 33 / / / / /
Balkans 11 / / / / /
Turkey 1 / / / / /
Central North Europe 21 0.88234 * / / / /
Lineage 1 51 / / / / /
Western Europe 15 0.95963 * 0.97283 * / / /
Italy 36 0.93593 * 0.94808 * 0.88739 * / /
central Italy 28 0.97113 * 0.97843 * 0.96398 * / /
Sicily 5 0.94403 * 0.96967 * 0.96726 * 0.90824 * /
743 Calabria 3 0.94175 * 0.97091 * 0.96487 * 0.87564 *] 0.84239 *
744  TABLES. - Results of neutrality tests (Tajima's D , Fu's Fs, R2) and mismatch analyses for the three
745  sub lineages and the Central Italian group (n>15). *= (p <0.05)
Sanple size (n)| Tajima'sD | FusFs R2  |Stobeck's S|Rageedness index, Rg [Mismatch distribution, SSD
All &4 / / / / / /
Lineage 2 33 / / / / / /
Balkans 11 / / / / / /
Turkey 1 / / / / / /
Central North Europe 21 -0.507 -6.318* 0.107 I* 0.09014 0.03325
Lineage 1 51 / / / / / /
‘Western Europe 15 0.833 0.034 0.193 0.751 0.10204 0.02245
Ttaly 36 0.218 0.634 0.285 0.509 0.093%4 0.04341
central Italy 28 -0.484 -0.552 0.105 0.827 0.240 0.05832
Sicily 5 / / / / / /
746 Calabria 3 / / / / / /
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