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Implementation of the Gibbs sampler for estimating the accuracy of multiple binary diagnostic tests in one
population has been investigated. This method, proposed by Joseph, Gyorkos and Coupal, makes use of a
Bayesian approach and is used in the absence of a gold standard to estimate the prevalence, the sensitivity
and specificity of medical diagnostic tests. The expressions that allow this method to be implemented for
an arbitrary number of tests are given. By using the convergence diagnostics procedure of Raftery and
Lewis, the relation between the number of iterations of Gibbs sampling and the precision of the estimated
quantiles of the posterior distributions is derived. An example concerning a data set of gastro-esophageal
reflux disease patients collected to evaluate the accuracy of the water siphon test compared with 24 h
pH-monitoring, endoscopy and histology tests is presented. The main message that emerges from our
analysis is that implementation of the Gibbs sampler to estimate the parameters of multiple binary diagnostic
tests can be critical and convergence diagnostic is advised for this method. The factors which affect the
convergence of the chains to the posterior distributions and those that influence the precision of their
quantiles are analyzed.

Keywords: Gibbs sampler; Bayesian analysis; convergence diagnostics; diagnostic tests; gastro-
esophageal reflux disease

1. Introduction

Diagnostic tests based on clinical observations or measurements of biological quantities relevant
to the infection status of a subject are frequently used in epidemiology. Diagnostic tests are also
important in medicine because they form the basis of screening programs for early diagnoses
of diseases. However, tests are imperfect tools because healthy subjects are often mistakenly
classified as diseased while truly diseased subjects are classified as non-diseased.
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1336 F. Principato et al.

A common practice in many diagnostic accuracy studies is to evaluate a novel test by using
an imperfect standard as if it were a gold standard. The effect of this is to obtain strongly biased
test accuracy estimates: if the test and the imperfect gold standard are conditionally independent,
then the sensitivity and the specificity of the new test will be underestimated. By contrast, if they
are highly correlated, given the condition status, then the test and the gold standard will tend to
misclassify the same patients and the accuracy of the tests will be overestimated accordingly [25].

In order to correct imperfect standard bias, the latent class analysis approach has been proposed
as a probabilistic model for the relation between the novel diagnostic test, one or more imperfect
reference tests and the latent, unobserved disease status [4,26]. However, there are some problems
with this method: firstly, the method can proceed without any clinical definition of the disease,
but prevalence and test accuracy parameters have a doubtful clinical meaning; secondly, severe
bias occurs when the conditional independence assumption is violated; finally, the estimation
algorithm can converge to a local maximum solution and strategies must be adopted to avoid
this [20].

As an alternative, the Bayesian method has been proposed to estimate accuracy parameters of
the tests by first imposing a prior distribution over all unknown parameters [15]. Bayesian inference
about a parameter is made using the posterior distribution which is computed by combining the
likelihood function of the observed data with the prior distribution. The advantage of Bayesian
analysis for diagnostic test evaluation is to incorporate prior scientific information about the
sensitivities and specificities of the tests and prior information about the prevalence of the sampled
populations.

The Bayesian approach considers uncertainties associated with all unknown quantities, whether
they are observed or unobserved. Inference is drawn by constructing the joint probability distribu-
tion of all unobserved quantities based on everything that is known about them. This knowledge
incorporates previous information about the phenomena under study and is also based on values
of observed quantities, when available. In this case, the distribution of the unknown but observable
data is called the posterior distribution because it is obtained after the data have been observed [8].
In [15] the Gibbs sampler was used to find the parameters of two diagnostic tests and one sam-
ple of data without a gold standard. In [14] this method was used to estimate the prevalence of
osteoarthritis in three diagnostic tests. The method has the main advantage of drawing inference
from diagnostic tests in the absence of a gold standard. User-friendly software implementing the
Gibbs sampler of [15] for up to three diagnostic test data is available from the web page [14].
However, the computational aspects of implementing the algorithm in this method are scarcely
considered.

As with all Markov chain Monte Carlo (MCMC) methods, the Gibbs sampler implementation
may be complicated by the potential difficulty of quantitatively assessing convergence of the
Markov chains to target distributions, for which purpose several methods have been proposed for
convergence diagnostics [3]. Raftery and Lewis (R&L) [21,22] provide a method which allows
the number of iterations of the Gibbs sampler required to estimate the quantiles of the posterior
distribution to be determined in advance. This method, which applies more generally to MCMC
schemes besides the Gibbs sampler, also determines the spacing between iterations retained for
the final analysis and the number of initial burn-in iterations discarded. The number of iterations
after the burn-in stage depends on the precision of the estimates of quantiles of interest of the
posterior distribution, which has to be known.

The objective of this work is to assess computational implementation of the Gibbs sampler
in the method proposed in [15], used to estimate the parameters of diagnostic tests without a
gold standard, by using the technique proposed by R&L. For this purpose, we first generalize the
procedure proposed in [15] to the case of N diagnostic tests and one population by writing
the analytical expressions of the model. We then consider the question relating to the choice of
the number of iterations of the Gibbs sampler needed to summarize the information through the
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posterior medians and their credibility intervals with known precision. The relation between the
number of iterations and the precision of the estimated quantiles, which depends on the form
of the posterior distribution, is derived for the case of the beta distribution, which is the target
distribution of the Gibbs sampler for the considered model.

As an example of the procedure proposed here, we evaluate the accuracy of four diagnostic tests
used in the case of the gastro-esophageal reflux disease (GERD). In particular, we evaluate the
accuracy of the water-siphon test (WST) associated with a barium study compared with another
three frequently used imperfect reference tests, i.e. 24 h pH monitoring, endoscopy and histology.

We present the extension of the method proposed in [15] to N diagnostic tests and one population
in Section 2. We determine the number of burn-in and sub-sequential iterations needed to obtain
the estimate of the medians and 95% of credibility intervals of the diagnostic test parameters with
a known precision in Section 3. In Section 4, we introduce an example of a data set of GERD
patients collected to evaluate the accuracy of the WST compared with other, more extensively
investigated 24 h pH monitoring, endoscopy and histology tests. Finally, the results are discussed
in Section 5.

2. Gibbs sampler to estimate the parameters of multiple binary tests
in a single population

In this section, we consider the model proposed by Joseph et al. for Bayesian estimation of the
parameters of diagnostic tests, presented in [15] for two diagnostic tests and applied in [16] for
three diagnostic tests. Here, we give the expressions valid for an arbitrary number N of diagnostic
binary tests in one population.

Let tn = 1 and tn = 0 denote the positive and negative result, respectively, from the test n,
with n = 1, . . . , N and let D be the true status of the subject, with D = 1 and D = 0 when the
subject is diseased and non-diseased, respectively. With N tests there are 2N different test results.
Denoting with IN = {1, . . . , 2N } the set of the index test patterns, the ith result of the tests is
indicated with the vector ti = (t i1, . . . , t

i
N ), with i ∈ IN . With this notation ti is the binary digit

of the number i − 1. For example, for N = 4 we have 16 different test patterns and for i = 3 we
find that t3 = (0, 0, 1, 0).

The sensitivity of the nth test is defined as Sen = P(tn = 1|D = 1) and its specificity is Spn =
P(tn = 0|D = 0), where P(A|B) denotes the conditional probability of A given B. Let π denote
the disease prevalence of the population. Let Se and Sp denote the vectors with N components
of the sensitivity and the specificity of the N tests, respectively.

Let Oi denote the number of subjects that shows the test pattern ti . If Ns is the number of
subjects in the population under observation, then

Ns =
∑
i∈IN

Oi.

With Yi , with i ∈ IN , we denote the number of truly diseased subjects that shows the test pattern
as ti . Hence, Yi is the latent variable when there is no gold standard. With Y and O we indicate
the vectors with 2N components of the latent and observed data, respectively.

Let pi denote the probability that a subject is diseased assuming that shows the ith test pattern,
i.e. P(D = 1|ti ). From Bayes theorem, we obtain

pi = P(ti |D = 1)P (D = 1)

P (ti )
. (1)

Here, we assume that the test outcomes for a given subject are independently conditional on the
disease status of the subject. Hence, the probability that one subject shows the test pattern ti
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1338 F. Principato et al.

assuming it is diseased is

P(ti |D = 1) =
N∏

n=1

(Se
tin
n (1 − Sen)

(1−t in)), (2)

and the probability that one subject shows the test pattern ti regardless of its true status is

P(ti ) = π

N∏
n=1

(Se
tin
n (1 − Sen)

(1−t in)) + (1 − π)

N∏
n=1

(Sp
(1−t in)
n (1 − Spn)

tin ). (3)

Noting that P(D = 1) = π and substituting Equations (2) and (3) in Equation (1) we obtain

pi = π
∏N

n=1(Se
tin
n (1 − Sen)

(1−t in))

π
∏N

n=1(Se
tin
n (1 − Sen)

(1−t in)) + (1 − π)
∏N

n=1(Sp
(1−t in)
n (1 − Spn)

tin )
. (4)

Each latent variable Yi representing the number of true positive subjects out of Oi in the ith
category of the observed test results follows the Binomial distribution

Yi ∼ Binomial(Oi, pi). (5)

The likelihood function over the observed and latent data from the N test model is indicated
with l(O,Y|π, Se, Sp) and is constructed by generalizing the procedure present in [15]. More
specifically, for each test result ti the subject can be either diseased or non-diseased, so there are
2N+1 possible combinations of observed and latent data. For the ith test result, the contribution

to the likelihood is π
∏N

n=1 Se
tin
n (1 − Sen)

(1−t in) if the individual is truly infected, otherwise it is

(1 − π)
∏N

n=1(1 − Spn)
tinSp

(1−t in)
n . In order to write the expression of the likelihood function, we

introduce the following set of indices relating to the nth test

Cn = {i ∈ IN : t in = 1} and C̄n = {i ∈ IN : t in = 0},
with IN = Cn ∪ C̄n. With this set we can write the likelihood function of the augmented data
(O,Y) for the N test model

l(O,Y|π, Se, Sp) = π
∑

i∈IN
Yi (1 − π)

(Ns−∑
i∈IN

Yi )

×
N∏

n=1

(Se

∑
i∈Cn

Yi

n (1 − Sen)
∑

i∈C̄n
Yi Sp

∑
i∈C̄n

(Oi−Yi )

n (1 − Spn)
∑

i∈Cn
(Oi−Yi )). (6)

Hence, our case is a consequence of the more general result that applies to dichotomic diagnostic
tests, i.e. the probability model used is the Binomial. In the Bayesian approach, the problem
is to know the correct prior distribution. We assume that all test parameters π , Sen and Spn

follow Beta(α, β) prior distribution. So by considering conditionally independent tests, the joint
multivariate prior distribution is

f (π, Se, Sp) ∝ Beta(απ , βπ)

N∏
n=1

Beta(αSen
, βSen

)Beta(αSpn
, βSpn

). (7)

The posterior distribution f is obtained from Bayes’ theorem using the expression (6) of the
likelihood function

f (π, Se, Sp|O,Y) ∝ l(O,Y|π, Se, Sp)f (π, Se, Sp). (8)

The joint posterior distribution f (π, Se, Sp|O,Y) is given by the product of 2N + 1 beta distri-
butions, with unknown parameters α and β functions of the observed and the latent data. Indeed,
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the form of the observational model (6) preserves the form of the posterior with respect to the
prior (conjugacy) [8]. From the posterior joint distribution of f and from the distribution (5) of the
latent variables, we obtain the following full conditional distributions for all unknown variables

Yi |Oi, π, Se, Sp ∼ Binomial(Oi, pi), (9)

π |O,Y, απ , βπ ∼ Beta

⎛
⎝∑

i∈IN

Yi + απ, Ns −
∑
i∈IN

Yi + βπ

⎞
⎠, (10)

Sen|Y, αSen
, βSen

∼ Beta

⎛
⎝∑

i∈Cn

Yi + αSen
,
∑
i∈C̄n

Yi + βSen

⎞
⎠, (11)

Spn|O,Y, αSpn
, βSpn

∼ Beta

⎛
⎝∑

i∈C̄n

(Oi − Yi) + αSpn
,
∑
i∈Cn

(Oi − Yi) + βSpn

⎞
⎠. (12)

With the previous expressions for the full conditional distributions of the 1 + 2N + 2N unknown
variables, one for prevalence, 2N for sensitivity and specificity and 2N for the latent variables, it
is possible to apply the Gibbs sampler to obtain a sample of each variable drawn from its posterior
distribution.

With the previous expressions of the full conditional distributions of the 1 + 2N + 2N unknown
variables, one for the prevalence, 2N for the sensitivity and the specificity and 2N for the latent
variables, it is possible to apply the Gibbs sampler to obtain a sample of each variable drawn from
its posterior distribution.

3. The Gibbs sampler implementation

The Gibbs sampler operates by fixing arbitrary starting values of the unknown quantities π(0),
Se(0)

n and Sp(0)
n , n = 1, . . . , N and by using the expressions (9)–(12) to draw new values from the

full conditional distributions. At the j th iteration the new values are obtained through successive
generations by means of the following scheme:

Y
(j)

i ∼ Binomial(Oi, p
(j−1)

i ), (13)

with i = 1, . . . , 2N , and

π(j) ∼ Beta

⎛
⎝∑

i∈IN

Y
(j−1)

i + απ, Ns −
∑
i∈IN

Y
(j−1)

i + βπ

⎞
⎠ (14)

and

Se(j)
n ∼ Beta

⎛
⎝∑

i∈Cn

Y
(j−1)

i + αSen
,
∑
i∈C̄n

Y
(j−1)

i + βSen

⎞
⎠ (15)

Sp(j)
n ∼ Beta

⎛
⎝∑

i∈C̄n

(Oi − Y
(j−1)

i ) + αSpn
,
∑
i∈Cn

(Oi − Y
(j−1)

i ) + βSpn

⎞
⎠, (16)

with n = 1, . . . , N .
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1340 F. Principato et al.

Thus, at each iteration of the Gibbs sampler, 1 + 2N + 2N random generations are performed
from all full conditional distributions. J iterations are performed: the first M iterations ensure
the convergence of all posterior full conditional distributions, whereas the remaining J − M are
used for inference from posterior distributions. From each value of (π, Se, Sp) of the posterior
sample, the positive predictive value (PPVn) and the negative predictive value (NPVn) of each
test are calculated. Expressed in words, the PPV is defined as the probability that an individual
that has tested positive within the diagnostic test is truly diseased, whereas NPV is the probability
that an individual that has tested negative is truly free of disease.

Once convergence has been achieved, the information is summarized by calculating the medians
and the 0.95 credibility intervals of all variables.

3.1 Convergence diagnostic

When implementing the Gibbs sampler, the problem of correctly choosing the values of the number
of burn-in iterations M and the number J − M of sub sequential iterations used for inference from
posterior distributions arises. The choice of M is related to the convergence of Gibbs sampling. To
check the convergence, several methods have been proposed. In [3] a review of the methods used
for the assessment of the convergence of MCMC simulations is presented, with an emphasis on
the theoretical aspects. Some informal convergence monitoring techniques were proposed in [9]
and also presented in [8]. Some of these are based on inspection of the plots of the ergodic average
of the chain as a function of the number of iterations of the Gibbs sampler. Asymptotic behavior
over many successive iterations indicates convergence. In [18] such a method was used by plotting
the ergodic averages of the medians of the prevalence, sensitivity and specificity as a function of
the number of iterations.

We implement the Gibbs sampler with a single chain, by assuming the ergodic property of
Markov chains [8,11]. This approach is different from those used by the authors of the method,
which use several chains processed in parallel [15]. In the software package [14], it is possible to
select up to five chains.

Another problem when implementing the Gibbs sampler arises if the autocorrelation of the chain
is too high. In this case, the sample obtained is not representative of the entire parameter space,
at least if J is not large enough. For this reason, the technique referred to as thinning the chain
is sometimes used, which involves saving the sample at every kth iteration. The lag k between
iterations allows the correlation of the chain to be decreased, although the number of iterations
required to obtain the same sample size increases. The software package [14] implements thinning,
proposing its use when dealing with large sample sizes (e.g. several thousands of subjects).

Here, we use the method proposed by R&L [21,22] to perform convergence diagnostic of the
Gibbs sampling presented above. This method is implemented in BOA [1] software, which is an
R/S-PLUS program for carrying out convergence diagnostics of Monte-Carlo sampling outputs
and also in the Fortran program gibbsit, available free of charge at http://lib.stat.cmu.edu. This
method provides the criteria for choosing M , k and Jprec, the number of iterations successive to
the first M of which every k stored is required to obtain the posterior estimates with a known
precision. This method works when the quantiles q of interest of the parameters obtained from
any MCMC algorithm have to be estimated, as is the case with the Gibbs sampler. In our case,
we consider the following qth quantiles as the parameters for the diagnostic tests: q = 0.50 for
calculating the medians and q = 0.025 and 0.975 for calculating the 0.95 confidence intervals.

This method estimates the values of M , k and Jprec that are sufficient to obtain q with an error
smaller than the required precision ±r and with a confidence s. The estimated quantile q̂ of q

therefore satisfies the condition

P(|q̂ − q| ≤ r) = s.
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Table 1. Minimum number of iterations Jmin required to estimate the quan-
tile q = 0.025 at different values of the precision r , with confidence level
s = 0.95 [21].

r 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.02
Jmin 14982 3748 1665 936 600 416 234

For example, if with the Gibbs sampler we want to estimate the quantile q = 0.025 with the
precision r = 0.0125 and with s = 0.95, the estimated quantile q̂ lies between 0.0125 and 0.0375,
with 95% confidence. It should be noted that the precision r refers to the cumulative distribution
function at the quantile of interest of the investigated parameters. This precision r should not
be confused with the uncertainty of the parameter at the quantile q drawn from the posterior
distribution.

We use the gibbsit to obtain the appropriate values of M , k and Jprec. The method requires the
Gibbs sampler to perform a set of initial pilot samples, one for the sensitivity and the specificity
of each diagnostic test and one for the prevalence, with q, r and s as input parameters. It returns
the values of M , k and Jprec. This algorithm also gives the minimum size Jmin of the initial pilot
sample, i.e. the minimum number of iterations required for the chosen values of q, r and s. The
expression of Jmin as a function of q, r and s is reported in [21,22]. Table 1 shows the minimum
number of iterates Jmin required to estimate the quantile q = 0.025 with confidence level s = 0.95
for some values of r .

In order to check the correlation in the chains, the gibbsit outputs two parameters kthin and kind.
The first is the number of values to be skipped in the sample which will be sufficient to produce a
first-order Markov chain, i.e. when each value of the chain depends only on the previous ones. The
second value is the number of values to be skipped in the sample which will result in independent
values in the Markov chain. Therefore one would always expect kind to be larger than kthin. In any
case, when kthin or kind are greater than one, all Jprec iterations can be used for inference, at the
expense of reduced computational efficiency.

Besides the above parameters, the gibbsit outputs I = (M + Jprec)/Jmin. This statistic measures
the increase in the number of iterations due to the dependence in the sequence [21]. Values of
I greater than 1 indicate a high level of dependence in the chain, which may be due to bad
starting values. In [21] changing implementation in the case of values of I greater than about 5 is
suggested.

3.2 How to choose the precision r?

When the estimate x̂q of the posterior quantile xq of the underlying variable x is calculated with the
Gibbs sampler, it is more interesting to evaluate the precision of that estimate, i.e. the difference
x̂q − xq , than the precision of q̂. It should again be noted that the precision r refers to the error of
the cumulative posterior distribution F(x) of x at the quantile q, i.e. q = F(xq). Thus, q̂ lies in
q ± r = F(xq±r ).

Now, we evaluate how the precision r is related to that of xq for the case of the beta posterior
distributions (8). If r is known, the error in xq depends on the cumulative distribution of F(x).
In [21] this error is evaluated by defining

exq
= max

{
xq − xq−r

xq

,
xq+r − xq

xq

}
, (17)

and is calculated for the Normal (light-tailed), t4 (moderate tails) and Cauchy (heavy-tailed) dis-
tributions. It is shown that the error increases going from the light to the heavy-tailed distribution.
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1342 F. Principato et al.

Moreover, when the posterior distribution is unknown, it is suggested that r be fixed by consid-
ering the worst case of heavy-tailed distribution with an error given approximately by that of
Cauchy distribution.

Here, we examine in greater depth the dependence of r on the precision of the estimated quantiles
in the case of the beta distribution. In our case, the estimate parameter x is the prevalence, the
sensitivity and the specificity of each test, which follows the beta distribution with unknown
values of α and β. Hence, the relative error exq

, when q and r are fixed, depends on the values
of α and β of the posterior beta distribution of the parameter x. If exq

is known, we can evaluate
with the gibbsit the number of iterations of the Gibbs sample which guarantees a relative error in
the estimated quantile xq below exq

.
In order to calculate the quantity exq

, we have to deal with the cumulative distribution of the
beta probability density, which is the regularized incomplete beta function

Ix(α, β) =
∫ x

0
tα−1(1 − t)β−1 dt

B(α, β)
, (18)

where B(α, β) is the beta function, and the equation

q = Ixq
(α, β) (19)

has to be solved for xq . This can only be done using numerical methods.An approximate expression
for exq

can be obtained by expanding Ix(α, β) at xq up to the first term, valid when r � q

exq
∼= rB(α, β)

xα
q (1 − xq)β−1

. (20)

It should be noted that for α and β fixed the relative error is higher at the tail quantiles than
at the medians. In particular, the minimum occurs when xq = α/(α + β − 1), which is a good
approximation of the mean value of the beta distribution when α or β are greater than a few units.
Therefore, in the following treatment we will mainly consider the relative error only at the 0.025
and 0.975 quantiles. If we choose q and r and then calculate exq

, the number of iterations of the
Gibbs sampler needed to estimate xq with an error of less than exq

can be determined.
Figure 1 shows the values of the relative error exq

% at the quantile xq for the beta distribution as
a function of α and for β = 1, 4, 20 and 100, calculated with r = 0.005 for the 0.025 (Figure 1(a))
and the 0.975 (Figure 1(b)) quantile. It should be noted that the relative error is greater at the
0.025 than at the 0.975 quantile. In both cases, the error increases as α decreases. For the 0.025
quantile the relative error is less sensitive to β than the relative error at the 0.975 quantile. Figure 1
also shows the values of the relative error calculated with the approximated expression (17). For
different values of r the curves of the relative error as a function of α and β show a similar
behavior, but with higher values at smaller r .

To evaluate how the values of the precision r affect the relative error, we consider the maximum
value of exq

, calculated over α and β, for different values of r . Table 2 displays these maximum
values of exq

. It should be noted that for r = 0.02, which is a value used in the implementations
of the R&L method [6], the values of the error at the lower quantile for the investigated model
can be up to 81.8%.

The values of α and β of the beta posterior distributions depend on those of the prior distribu-
tions, and increase with the sample size Ns. Hence, the error in the estimation of the parameters
of the diagnostic tests with the Gibbs sampler is higher when dealing with scarcely informative a
priori distributions and with small sample size.

In order to avoid grossly overestimating the quantity exq
in the quantile of each parameter,

rather than considering the maximum values of Table 2 when dealing with informative priors, it
is preferable to calculate exq

for the values of α and β used in the prior distributions.
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Figure 1. Plots of the relative error exq
% at the quantile xq for the beta distribution as a function of α and

for β = 1, 4, 20 and 100, calculated with r = 0.005 and (a) with q = 0.025 and (b) with q = 0.975. The
dots (•) represent the values of the relative error calculated with the approximated expression (17).

Table 2. Maximum of the relative percent error of the maxi-
mum error exq

calculated for the quantiles 0.025 and 0.975, for
different values of the precision r .

r ex0.025 % ex0.975 %

0.0025 10.1 2.8
0.0050 20.3 5.9
0.0075 30.5 9.5
0.0100 40.7 13.6
0.0125 50.9 18.4
0.0150 61.2 24.3
0.0200 81.8 42.5
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1344 F. Principato et al.

4. Application of the Bayesian analysis with Gibbs sampler to estimate the parameters of
the WST in GERD

We consider a data set of 172 GERD patients collected to evaluate the accuracy of the WST
associated with a barium study compared with three other frequently used imperfect reference
tests, 24 h pH monitoring, endoscopy and histology. Data were collected and provided for the
analysis by the Esophageal Surgical Unit of the Department of Surgical Oncology of the University
of Palermo.

GERD is one of the most frequent benign diseases of the upper gastrointestinal tract. It develops
when the reflux of gastric content causes troublesome symptoms or complications [23]. The
atypical symptoms are angina-like pain, chronic cough, asthma, hoarseness, protracted hiccups,
globus sensation, dental erosion, ear pain, night sweats and sleep apnea, and water brash. Typical
GERD symptoms include regurgitation, heartburn and dysphagia. As GERD is associated with
numerous different symptoms, not always specific, all the subjects included in the analysis were
symptomatic and the problem was to estimate the diagnostic accuracy of tests used to investigate
whether symptoms might be reflux related. It is therefore difficult to detect the disease condition
of individuals of one population because clinical and anatomical indicators are not equivalent and
must be considered as different tools. For this reason, prevalence is difficult to estimate because
only symptomatic patients are investigated.

The four test outcomes for a given subject can be considered conditionally independent because
they measure different biological processes. In fact, the 24 h pH monitoring test is generally used
for detection of acid gastroesophageal reflux, esophageal endoscopy is usually performed when
severe symptoms are present or when a complication is suspected, and histology is performed to
confirm esophagitis, or to detect Barrett’s esophagus. WST shows reflux as a mechanical event
independently of its chemical composition.

We use the following notation to identify one of the four tests used: WST → Test 1, 24 h pH
monitoring → Test 2, endoscopy → Test 3, histology → Test 4.

The values of the parameters α and β of the beta prior distributions for the prevalence and for
the sensitivity and specificity of each of the four tests are based on expert opinion and a review of
the literature [7,17,19,24]. The parameters of the beta prior for each test parameter are computed,
using the method of the moments [10,15], by matching the mean of the beta distribution with
the mean value x̄ of the data obtained from literature and clinical opinion, as well as its standard
deviation with one quarter of the range Rx of these data,

α = − x̄(16x̄2 − 16x̄ + R2
x)

R2
x

(21)

β = (16x̄2 − 16x̄ + R2
x)(x̄ − 1)

R2
x

. (22)

Table 3 shows the values of the α and β coefficients of the prior distributions. As insufficient
information is available in the literature concerning the accuracy of the WST test, we used the
non-informative beta prior for it (i.e. α = 1β = 1).

From the test results, we obtained the vector O for the number of subjects which have one of
the 16 different test patterns (see Table 4).

We implemented the Gibbs sampler as in Section 2 with N = 4 by using the MATLAB6.5

software package. We chose the initial values of π(0), Se(0)
n and Sp(0)

n along the nine-dimensional
unitary cube. In order to choose arbitrary values for these parameters, we used the MATLAB
function rand, which generates uniformly distributed random numbers in the interval [0,1]. We
also performed simulations with initial values of π(0), Se(0)

n and Sp(0)
n placed near the corners
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Table 3. Prevalence and coefficients of the beta prior distributions for the parameters of
GERD diagnostic tests.

Prevalence (GERD)
Range 0.30–0.50
Beta coefficients α = 38, β = 57

Sensitivity Specificity

Test 1 (WST)
Range – –
Beta coefficients α = 1, β = 1 α = 1, β = 1

Test 2 (24 h pH monitoring)
Range 0.80–0.90 0.80–0.90
Beta coefficients α = 172.6, β = 30.45 α = 172.6, β = 30.45

Test 3 (endoscopy)
Range 0.50–0.70 0.70–0.90
Beta coefficients α = 57, β = 38 α = 50.40, β = 12.60

Test 4 (histology)
Range 0.80–0.99 0.80–0.99
Beta coefficients α = 36.38, β = 4.268 α = 36.38, β = 4.268

Note: A uniform distribution was used for the prior distribution for the WST for GERD.

Table 4. Results of WST (Test 1), 24 h pH monitoring
(Test 2), endoscopy (Test 3) and histology (Test 4)
tests for GERD on 172 individuals.

Number of
Test 1 Test 2 Test 3 Test 4 observations

0 0 0 0 3
0 0 0 1 13
0 0 1 0 2
0 0 1 1 4
0 1 0 0 2
0 1 0 1 12
0 1 1 0 1
0 1 1 1 7
1 0 0 0 4
1 0 0 1 25
1 0 1 0 0
1 0 1 1 24
1 1 0 0 2
1 1 0 1 28
1 1 1 0 11
1 1 1 1 34

of the nine-dimensional unitary cube to test the convergence of the Gibbs sampling more effec-
tively. At each iteration of the Gibbs sampling, we chose the MATLAB function binornd, which
generates random numbers from the binomial distribution, to implement Equation (13) and the
function betarnd, which generates random numbers from the beta distribution, to implement Equa-
tions (14)–(16). In order to avoid reproducing the same output of the random number functions,
we changed the MATLAB variable state each time before running simulations.

Firstly, we applied the Gibbs sampler to the data obtained from our four test results and used
the prior parameters of Table 3 to generate the pilot samples of the test parameters, one for the
prevalence, four for sensitivity and four for specificity. We chose r = 0.005 and s = 0.95, so the
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1346 F. Principato et al.

Table 5. Output parameters of gibbsit program for pilot samples for GERD prevalence and the sensitivity
and specificity of the four diagnostic tests with the 172 observed data, for the q = 0.025 and q = 0.975
quantiles and with the precision r = 0.005, with informative priors.

q = 0.025 q = 0.975

kthin kind M Jprec I kthin kind M Jprec I

π 1 2 5 5687 1.52 1 3 4 5105 1.36
Se1 1 2 4 4778 1.28 1 2 5 5330 1.42
Se2 1 2 3 4447 1.19 1 2 4 3650 1.24
Se3 1 2 2 3993 1.07 1 1 2 3555 0.95
Se4 1 2 2 4025 1.08 1 2 4 4941 1.32
Sp1 1 2 4 5105 1.36 1 2 4 4882 1.30
Sp2 1 2 2 3989 1.07 1 2 3 3711 0.99
Sp3 1 3 4 4826 1.29 1 2 4 4920 1.31
Sp4 1 2 2 3880 1.04 1 2 4 4667 1.25

relative errors in the estimated test parameters are less than 20% for the 0.025 quantile and less
than 6% for the 0.975 quantile (see Table 2).

We generated pilot sequences by running the Gibbs sampler with 4000 iterations, just above
the minimum value Jmin = 3746. By changing the starting values of the Gibbs sampler, new pilot
samples were obtained and by running the gibbsit again, new values of the parameters kthin, kind,
M , Jprec and I were obtained. Table 5 shows the output parameters of gibbsit program for the
pilot samples of the four diagnostic tests, with q = 0.025 and q = 0.975, for the case r = 0.005,
with informative prior distributions. When the starting values are changed, the output parameters
do not vary significantly.

It should be noted that the values of M were less than 10 in all cases, so a few burn-in iterations
were required to obtain convergence. kthin = 1 in all cases, so the chains for all parameters are
first-order Markov chains and kind is about a few units. The small values of kind indicate that the
correlation in the chains is low. This is also confirmed by the values of the statistic I , which was
always close to 1. The number of iterations of the Gibbs sampler required to obtain the required
precision Jprec, i.e. ex0.025 < 20% and ex0.975 < 6%, was never higher than 6000.

We also performed simulations with the same data without informative priors, i.e. by setting
α = β = 1 for π , Sen and Spn, with n = 1, . . . , N . In Table 6 are displayed the values of the
output parameters of the gibbsit. The results show that, although the number of burn-in iterations

Table 6. Output parameters of gibbsit program for pilot samples for GERD prevalence and the sensitivity
and specificity of the four diagnostic tests with the 172 observed data, for the q = 0.025 and q = 0.975
quantiles and with the precision r = 0.005, without informative priors.

q = 0.025 q = 0.975

kthin kind M Jprec I kthin kind M Jprec I

π 2 3 44 46,668 12.47 2 26 8 26,526 7.09
Se1 7 2 84 100,877 26.95 1 10 4 10,576 2.83
Se2 2 2 24 28,814 7.70 2 14 4 13,786 3.68
Se3 5 1 45 37,415 10.00 2 16 8 17,498 4.68
Se4 2 2 22 26,160 6.99 2 12 5 13,682 3.66
Sp1 1 2 8 9048 2.42 4 40 13 45,080 12.04
Sp2 5 30 30 43,365 11.58 1 11 7 11,890 3.18
Sp3 5 25 25 36,040 9.36 3 21 8 24,699 6.68
Sp4 2 12 12 14,858 3.97 5 40 12 37,200 9.94
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Iteration

Iteration

Figure 2. Plots of the WST specificity with number of iterations of the chain of the Gibbs sampler for the
0.025 quantile, (a) with beta and (b) with uniform prior distribution.

M increases by roughly only an order of magnitude, a large number of iterations, up to 100,000,
is required to obtain the same precision r = 0.005 for both considered quantiles. Moreover, the
values kthin and kind in all cases are greater than 1, so the correlation in the chains of the parameters
is high. Finally, it should be noted that the statistic I mostly assumes values greater than 5. This
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1348 F. Principato et al.

indicates poor implementation of the Gibbs sampler [22]. By varying the starting values to generate
pilot samples, the gibbsit generates similar large values.

The difference in convergence between the case of informative and non-informative prior
distributions can be also be illustrated graphically. For example, the values of specificity of the

Iteration

Iteration

Figure 3. Log–log plots of ergodic averages of the WST specificity with number of iterations of the chain
of the Gibbs sampler for the 0.025 quantile, (a) with beta and (b) with uniform prior distribution.
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Table 7. Medians and 0.95 credible intervals of the output parameters of the accuracy of the
water-siphon (Test 1), 24 h pH monitoring (Test 2), endoscopy (Test 3) and histology (Test 4)
tests for GERD for the 172 investigated subjects.

Prevalence 0.53 [0.45–0.62]

Test 1 Test 2 Test 3 Test 4

Sensitivity 0.82 [0.71–0.90] 0.83 [0.78–0.88] 0.60 [0.53–0.68] 0.90 [0.83–0.95]
Specificity 0.38 [0.23–0.55] 0.84 [0.78–0.88] 0.76 [0.66–0.84] 0.46 [0.36–0.58]
NPVa 0.65 [0.45–0.81] 0.81 [0.72–0.88] 0.62 [0.53–0.72] 0.80 [0.68–0.89]
PPVb 0.60 [0.49–0.72] 0.85 [0.78–0.91] 0.74 [0.62–0.84] 0.66 [0.55–0.76]

Note: The results are obtained with 10 burn-in and 6000 sub-sequential iterations of the Gibbs sample.
aNegative predictive value.
bPositive predictive value.

WST generated by the Gibbs sampler are shown in Figure 2 as a function of the iterations in a run of
the chain. Figure 2(a) shows those with informative prior distributions, whereas Figure 2(b) refers
to a run with α = β = 1 in all prior distributions (i.e. uniform distributions). The starting value is
0.88 for both chains. It should be noted that the first chain shows good convergence. Indeed, the
white noise behavior of this series indicates low correlation in the chain and the stationary in the
variance ensures convergence of the quantile within a few Gibbs iterates. Conversely, in the case
of uniform prior distributions for all diagnostic test parameters, the same series is more highly
correlated and its variance is non-stationary.

Figure 3 shows the ergodic averages of the runs of Figure 2 in a log–log plot. It should be noted
that in the first case (Figure 3(a)), after a short initial transient period the 0.025 quantile exhibits
asymptotic behavior toward 0.23 (see Table 7). In the case of non-informative prior distributions
(Figure 3(b)), note that the initial burn-in period of M = 8 iterates given by gibbsit (see Table 6))
is followed by almost periodic oscillations which relax after one thousand iterates, over which
the average does not exhibit asymptotic behavior. These oscillations do not alter the average final
value (≈0.016). This explains the low value of M obtained but indicates convergence problems.

Moreover, the low value of 0.016 for the 0.25 quantile of the WST specificity in the imple-
mentation without informative priors demonstrates that the 0.95 confidence interval limits of the
specificity of the WST are too broad. The same wide confidence intervals are obtained for the
other parameters of the other diagnostic tests in the case of non-informative priors.

So in order to obtain an estimate of the prevalence of GERD and that of the parameters of the four
tests used, we ran the Gibbs sampling with M = 10 and Jprec = 6000. We used all these iterates
for inference because kthin = 1 for all parameters. Table 7 shows the values of the medians and
the 95% credibility intervals, obtained from posterior distributions, for the prevalence of GERD,
the sensitivity, specificity, PPV and the NPV of the four diagnostic tests from the data set of the
172 investigated subjects.

5. Discussion

In this study, we used the Bayesian analysis for multiple binary diagnostic test evaluation in
the absence of a gold standard. The latent data and observations from the joint posterior were
simulated in the Bayesian approach by an iterative MCMC technique using the Gibbs sampler.
The simulated samples were then used to approximate the actual posterior distributions.

In the attempt to use this Gibbs sampler algorithm to evaluate the performance of theWST, and of
24 h pH monitoring, endoscopy and histology, none of which can be considered a gold standard, we
investigated how its implementation affects the accuracy of the parameters of these tests. Indeed,
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1350 F. Principato et al.

incorrect implementation of the Gibbs sampler can affect the accuracy of the parameters of the
diagnostic tests obtained from posterior distributions. For this purpose, we applied the method
of R&L [21,22], valid for investigating the convergence of MCMC algorithms, to determine the
error in the estimated quantiles of the posterior distributions with a known accuracy.

One of the main results of our work is that we obtained a method for checking the accuracy of
the estimated quantiles of the posterior distributions obtained with the Gibbs sampler in the case of
N diagnostic independent tests and one population. Indeed, in [22] the error in the 0.025 quantile
was evaluated only in the case of Normal, t4 and Cauchy distributions. When the behavior of the
tails of the posterior distribution is unknown in advance, the authors of the method suggest fixing
r and then Jmin by considering the worst case of the Cauchy distribution. Here we show how this
error can be calculated and derive an approximate expression for it, which gives this error when
the parameters α and β are known. The relation of the quantile error with the parameters of the
posterior beta distribution can be used to select an appropriate number of iterations of the Gibbs
sampler.

As described in Section 3.2, we applied the gibbsit only to the tail quantiles 0.025 and 0.975.
This is suggested in [22] for a general case but without any proof of this assertion being provided.
We demonstrate this by considering the expression for the error (17).

In [15] the method was applied to two diagnostic tests by performing 20,000 iterations for
inference after 500 burn-in iterations, but the authors do not specify how the number of these
iterations relates to the accuracy of the estimated test parameters. It should also be noted that in
our case the number of burn-in iterations M differs from the number used in [15]. In the software
package [14] it is possible to select the values of M and Jprec, but the criterion for choosing these
values is not given.

We have demonstrated that to obtain the same precision in the estimated parameters for the inves-
tigated case, the number of iterations of the Gibbs sampler varies from the case of non-informative
to that of informative a priori. In the case of non-informative priors, the implementation exhibits
several convergence problems which discourage implementation. So when adopting this Gibbs
sampler scheme to obtain the parameters of N -diagnostic tests, it is not possible to provide a
general rule for determining the appropriate number of iterations in advance.

Evaluation of the error (17) using the method presented above may be useful when implementing
the Gibbs sampler because it allows the appropriate number of Gibbs iterates to be selected. We
demonstrated that the relative error may be high for small values of α. This generally occurs
when the number of observed subjects is small and when non-informative prior distributions are
used. To demonstrate this, Table 8 shows the estimated values of α and β of the posterior beta
distributions for each parameter of the tests investigated, with the relative errors of each diagnostic
test parameter. It should be noted that the relative error is less than 1% in the majority of cases,
thus confirming correct implementation of the method for the GERD diagnostic tests with the
172 observed data and with informative priors.

From the above considerations, we can conclude that correct implementation of the Gibbs sam-
pler to N diagnostic tests and one population is critical, and depends strongly on the variance of the
prior distributions. It is therefore not possible to give a general rule for determining in advance the
number of burn-in iterations and of sub-sequential iterations needed to summarize the information
by estimating the quantiles of prevalence, sensitivity and specificity with known precision.

Knowledge of the diagnostic accuracy of a test is important for assessing the efficacy of diag-
nostic tests in medicine, especially when the test is invasive and other non-invasive tests offering
a good level of accuracy are available, at least in the first stages of screening procedures.

Various problems may occur in the context of this complex study given the absence of a gold
standard diagnostic test for GERD. One problem concerns the influence of spectrum and selection
bias. For example, the judgement of the clinician who has to decide which patients are to undergo
diagnostic tests will be crucial. Patients who are referred to hospital tend to have more severe
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Table 8. Estimated values of α and β for the posterior beta distri-
butions of the parameters of the four investigated diagnostic tests
with informative priors.

α β ex0.025 % ex0.5 % ex0.975 %

π 143 124 0.60 0.07 0.47
Se1 87 20 0.57 0.06 0.31
Se2 256 52 0.29 0.03 0.20
Se3 121 79 0.62 0.07 0.46
Se4 130 15 0.36 0.03 0.18
Sp1 26 43 1.80 0.19 1.15
Sp2 226 44 0.30 0.03 0.20
Sp3 98 32 0.58 0.06 0.36
Sp4 50 57 1.15 0.13 0.79

Note: The relative errors due to the limited number of Gibbs sampler
iterations are for the 0.025, 0.5 and 0.975 quantiles.

symptoms. It is usually easier to discriminate between ‘disease’ and ‘no disease’ if patients have
more extreme manifestations of the disorder. Patients with more severe symptoms are referred to
secondary or tertiary care and evaluation in this setting will increase the sensitivity and will reduce
the specificity of tests in the diagnosis of GERD. It is important to be aware of the influence of
spectrum and selection bias on the accuracy of diagnostic tests in GERD, but this must be kept
in perspective. It is better to carefully assess the sensitivity and specificity of tests in a selected
group than not to do this [19].

Another problem concerns the assumption of conditional independence. In this study, condi-
tional independence has been assumed, in other words the tests must be conditionally independent
given the disease status, i.e. the probability of any test outcome given that the disease status is con-
stant across all outcome categories of the other test. Because it simplifies the statistical problem,
numerous methods have been developed on the basis of the assumption of conditional indepen-
dence [12] in spite of the fact that in some practical situations it is not realistic, e.g. when there
is a spectrum of disease severity that may induce correlation between the tests. All tests may be
positive in subjects with severe disease, whereas false negatives may be more likely in subjects
with mild disease [20]. A different situation occurs when two or more diagnostic tests may be
conditionally dependent due to a factor other than the disease status, for example arising from a
common biological phenomenon on which the tests are based. If the test is used in combination
with other tests whose performance is affected by the severity of the disease, then dependence
would be induced between the tests [5]. There is no agreement in the literature about the way
to assess the validity of the conditional independence assumption, as it is difficult to verify in
practice [16]. The conditional independence assumption can be directly tested only when data
on disease are available and, if it is in doubt, a dependence structure must be specified [20]. An
alternative approach is to assume conditional independence (i.e. the conditional correlations are
zero), providing that a biological argument can be made to support this assertion [2]. In our study
of the GERD disease, the assumption of conditional independence between the four test outcomes
for a given subject is reasonable because the four tests measure different biological processes.

As regards the results of simulations, Table 7 gives the medians and of the 0.95 credibility
intervals of the prevalence of GERD, the sensitivity and the specificity of the 172 investigated
subjects. The prevalence of GERD is estimated to be 0.53 with [0.45–0.62]. In the application
of the Bayesian analysis with Gibbs sampler, we focus mainly on the performance of the WST
because the sensitivity and the specificity of this test is scarcely documented with respect to the
other three tests, which are also used in the screening of different diseases.
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1352 F. Principato et al.

We obtain for the sensitivity and the specificity of the WST 0.82 [0.71–0.90] and 0.38 [0.23–
0.55], respectively.

Simulation results (Table 7) show that the WST has a high sensitivity the histology. One
possible reason is that reflux may cause histologically detectable microscopic damage that is not
yet detectable endoscopically. WST evidences reflux as a mechanical event independently of its
chemical composition and the occurrence of complications. The low sensitivity of endoscopy
can be explained because only GERD complications can be detected. This is the reason for high
specificity of endoscopy and the low specificity of both WST and histology. As regards the low
specificity of histology, the microscopic tissue damage can be caused by minimal reflux episodes
that are not yet detectable by other tests.

For the PPV and NPV of the WST we have 0.60 [0.49–0.72] and 0.65 [0.45–0.81], respectively
(see Table 7). In our case, the NPV is the more relevant parameter. In practical applications of
tests, PPV and NPV are important performance measurements. Indeed, both parameters depend
critically on the prevalence of the diagnostic trait, in our case the GERD. A comprehensive
discussion of the role of the prevalence is beyond the scope of this work. Briefly, NPV increases
if prevalence declines and vice versa. It can be seen that NPV is 100% if the prevalence is zero.
A 100% NPV value would be desirable as it indicates that all individuals tested negative are
actually non-diseased. The lower the NPV, the higher the risk that truly diseased individuals will
test negative.

From the results obtained in our analysis, we found that Se and NPV of the WST are higher
than those of endoscopy, which is an invasive test. We therefore believe that the WST can be
considered a valid test for GERD. However, it is important to bear in mind that both sensitivity
and specificity parameters should be analyzed to illustrate the disadvantages of accepting tests
without considering specificity.

Separate analysis of all parameters in the Table 7 will provide a decision basis for the clinical
risk based on the criterion of choice and at the same time will allow specificity to be considered as a
criterion on its own, particularly in the first stage of the procedure of screening for GERD. Overall,
these results are difficult to analyze from an epidemiology standpoint. Generally speaking, the
specificity estimates obtained from the analysis are very low compared with what is expected
in routine diagnosis and what has been regularly observed for years by the experts. There may
therefore be some bias in our study that could lead to underestimation of the specificity of the
tests evaluated. However, the uncertainty regarding the specificity of the WST can be resolved
simply by collecting and analyzing more data, although increase in sample size does not guarantee
an improvement in the inference of the accuracy of the test parameters [13]. As far as WST is
concerned, nothing in the results of the study provides any argument for rejecting this test as
suitable for GERD control, as the levels of sensitivity and specificity are no different from those
of 24 h pH monitoring, endoscopy and histology. The level of sensitivity obtained with these tests
demonstrates that the WST has the capacity to detect diseased individuals with at least the same
level of confidence as the other tests that are normally used.

6. Conclusion

In this work we presented a study of the implementation of the Gibbs sampler used to estimate
the parameters of N binary diagnostic tests in one population without a gold standard. After the
extension of the method proposed by Joseph et al. [15] to the case of N diagnostic tests, we
investigated the computational aspects of implementation of the Gibbs algorithm of this method.

We used the R&L diagnostic convergence method [21,22] to evaluate the number of burn-in
and sub-sequential iterations needed to estimate the quantiles of interest from the posterior beta
distributions with a known precision, by calculating the relation for the error in the estimate
quantile for the case of the beta distribution as a function of the number of Gibbs iterates. By
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applying this procedure to the case of four diagnostic tests for GERD, we find that implementation
of this method is highly sensitive to the parameters of both the prior distributions and the data.
Convergence diagnostic is therefore generally advised for this method.

In the proposed procedure, we evaluated the accuracy of the WST compared to three other
imperfect reference tests that are normally used in the GERD diagnostic, i.e. 24 h pH monitoring,
endoscopy and histology. For this case we obtained good convergence of the Gibbs sampling and
very small errors in the estimated quantiles.

The values for the WST obtained with our analysis compared with those of the other three tests
demonstrate that the WST has the ability to detect diseased individuals with at least the same
degree of confidence as the other tests. Further investigations should be performed in order to
consider in greater detail some critical aspects that affect the accuracy of the tests, such as the
planning sampling of the data and the estimate of the effective prevalence of GERD.
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