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Introduction: Angiogenesis has been correlated with increased invasion and metastases in a variety of human

neoplasms. Inadequate inhibition of the growth of tumor microvessels by anticancer agents may result in treatment

failure, rated clinically as progressive or stable disease. We designed this trial to investigate the modification of the

vascular endothelial growth factor (VEGF) and interferon-c (IFN-c) in advanced colorectal cancer patients during

treatment with a weekly combination of cetuximab plus irinotecan.

Materials and methods: Forty-five metastatic colorectal cancer patients were prospectively evaluated for

circulating levels of VEGF and IFN-c during the treatment with cetuximab (initial dose of 400 mg/m2, followed by

weekly infusions of 250 mg/m2) plus weekly irinotecan (90 mg/m2). The circulating levels of the cytokines were

assessed at the following time points: just before and at 1, 21, 50 and 92 days after the start of cetuximab plus

irinotecan treatment.

Results: Basal serum VEGF median levels were significantly decreased just at the first day (after the first treatment

infusion (P = 0.016). The VEGF persisted at the following time points reaching the highest statistical significance

92 days after the first infusion (P < 0.0001). On the contrary, IFN-c values showed a statistical significant increase one

day after the first infusion (P < 0.0001). This effect persisted 21 days after the treatment start (P = 0.001), but was no

more evident at the following time points. Moreover, a linear regression model with variance analysis showed

a significant negative correlation between VEGF and IFN-c values 1, 21 and 50 days after the treatment beginning

(P = 0.002, 0.001 and 0.047, respectively).

Conclusions: This study suggests that a cetuximab may induce a modulation of VEGF circulating levels.

The reduction of VEGF serum levels is a sudden and long lasting phenomenon. Moreover, in our study we

identified a IFN-c increase, even if the specific role of this behavior remains to be investigated.
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introduction

Colorectal cancer is the third most common cancer in the USA,
with approximately 145 000 new cases expected in 2005 [1].
Estimated 5-year survival rates range from 90% for patients with
stage I disease to <10% for patients with metastatic colorectal
cancer [1].
Chemotherapy reliably enhances quality of life and prolongs

both progression-free survival and overall survival for patients
with metastatic colorectal cancer [2]. Chemotherapies,
however, are limited by their lack of specificity and are often
associated with frequent and potentially severe dose-limiting
toxicities. The FDA recently approved two targeted agents: an

anti-vascular endothelial growth factor (anti-VEGF)
monoclonal antibody (bevacizumab) and a human epidermal
growth factor receptor (HER-1/EGFR)-targeted monoclonal
antibody (cetuximab) as first- and second-line metastatic
coloretal cancer therapy, respectively [3].
Epidermal growth factor receptor (EGFR), a member of the

ErbB family of receptors, is relevant in colorectal cancer because
expression or up-regulation of the EGFR gene occurs in 60%–
80% of cases [4]. Cetuximab is a chimeric IgG1 monoclonal
antibody that binds to EGFR with high specificity and with
a higher affinity than either epidermal growth factor thus
blocking ligand-induced phosphorylation of EGFR [4].
Cetuximab’s mechanism of action in tumor cells is thought

to involve the binding of cetuximab to the EGFR, preventing
normal ligand binding and subsequent activation of the
receptor’s tyrosine kinase activity [5]. The outcome of this
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blockade is reflected in the disruption of any number of
processes regulated by EGFR pathways in a given tumor cell.
Several mechanisms have been identified in preclinical models
whereby cetuximab inhibits the growth and survival of EGFR-
positive tumors [5]. These include: inhibition of survival
pathways [6], inhibition of tumor cell motility and invasion
[7], inhibition of angiogenesis [8, 9] and interruption of
EGFR-activated survival and proliferation signaling [10].
Moreover, the blockade of EGFR receptor seems to be able to
enhance the radio-responsiveness [11] and chemo-sensitivity
[12–14] in vitro and in vivo models.
New blood vessel formation (angiogenesis) is a fundamental

event in the process of tumor growth and metastatic
dissemination. Hence, the molecular basis of tumor
angiogenesis has been of keen interest in the field of cancer
research. The VEGF pathway is well established as one of the key
regulators of this process. The VEGF/VEGF-receptor axis is
composed of multiple ligands and receptors with overlapping
and distinct ligand-receptor binding specificities, cell-type
expression and function [15]. Activation of the VEGF-receptor
pathway triggers a network of signaling processes that promote
endothelial cell growth, migration and survival from pre-
existing vasculature. In addition, VEGF mediates vessel
permeability, and has been associated with malignant effusions
[16]. However, the tumor is not the only protagonist of VEGF
synthesis. The recruitment of monocytes, macrophages and
other inflammatory cells to a tumor appears to be a common
denominator for the major processes involved in tumor
development and progression. Inflammatory cells contribute to
tumor angiogenesis by supplying proangiogenic growth factors,
such as VEGF, cytokines and proteases. They also contribute
factors that promote the formation and enlargement of
intratumoral or peritumoral lymphatic vessels, eventually
allowing a tumor to metastasize to distant organs. Finally,
they may also play a critical role in arteriogenesis by promoting
the growth of the larger vessels that supply the expanding
capillary bed, feeding the rapidly growing tumor mass [16].
Moreover, previous studies have reported a positive correlation
between platelet number and serum VEGF level in cancer
patients [17, 18], supporting the hypothesis that platelets may
serve the role of storage of VEGF in the circulation.
Vascular endothelial growth factor is a potent angiogenic

factor, and widely studied as a prognostic factor for cancer
patients [19, 20]. The higher levels of VEGF are usually reported
to be correlated with the tumor burden and also the higher levels
found to be related with poor prognosis in solid tumor patients
[19–21]. As a consequence, VEGF circulating levels may
represent a surrogate marker of anti-tumor activity.
IFN-c is a pleiotropic cytokine endowed with potent

immunomodulatory effects and secreted by activated CD4 and
CD8 T cells. The real role of serum IFN-c increase is not known,
although there is some evidence in the literature supporting
an antiangiogenic action by IFN-c through an inhibition of
endothelial proliferation [22, 23].
The aims of the present study are the assessment of the VEGF

circulating levels, modifications in colorectal cancer patients
treated with cetuximab plus irinotecan and the evaluation of
IFN-c role as a mediator of antiangiogenic properties of this
treatment.

materials and methods

study design and patients’ eligibility criteria
Patients were considered eligible for the study if they had a histologically

confirmed colorectal adenocarcinoma resected or not associated with distant

metastases (with or without local relapse).

We considered patients eligible if they were more than 18 years of age and

had stage IV, histologically confirmed colorectal adenocarcinoma. In

addition, immunohistochemical evidence of EGFR expression measured

semiquantitatively (> 0 on a scale of 0, 1+, 2+ or 3+) in a single reference

laboratory (University Campus Bio-Medico, Rome) was required. These

measurements were performed and graded using a now commercially

available kit (EGFRpharmDx; Dako Corporation, Carpentino, CA)

according to the manufacturer’s instructions. Patients were permitted to

undergo the screening process for tumor EGFR expression before meeting

other entry criteria and before study entry.

Other criteria for eligibility were: a ECOG performance-status score £2,
adequate hematologic function (hemoglobin ‡9 g/dl, neutrophil count

‡1500/mm3, platelet count ‡100 000/ mm3), renal function [serum

creatinine <1.5· the upper limit of normal (ULN) range], and liver function

(total bilirubin < 1.5· ULN range; aspartate aminotransferase and alanine

aminotransferase <5· ULN values). Patients were considered ineligible for

accrual when they had reported fever (body temperature >38.0�C) during
the last week before study entry or had received any radiotherapy,

chemotherapy, immunotherapy or growth factors during the last 4 weeks

before study accrual. Moreover, if patients received radiotherapy or growth

factors during our study they were excluded from the final evaluation, as

well. Patients recently (less than 1 week) or simultaneously treated with

steroids and with acute or chronic infections or inflammatory diseases were

considered ineligible for the study. Finally, significant cardiovascular or

neurological disease represented exclusion criteria.

Before being considered for the study all patients had a documented

disease progression after two standard anticancer regimens: one

oxaliplatin-based chemotherapy regimen (capecitabine + oxaliplatin or

FOLFOX IV) as first line and one irinotecan-based chemotherapy regimen

(FOLFIRI) as second line for at least 2 months.

treatment plan
Cetuximab was given at a loading dose of 400 mg/m2, followed by weekly

infusions of 250 mg/m2. Irinotecan was administered weekly at 90 mg/m2.

A histamine-receptor antagonist and atropine (0.25 mg) were given as

premedication before every infusion. No corticosteroids were routinely

administered. A standard antiemetic drug was always given in the

premedication and in the following days according to the physician’s

opinion. All the patients were to be treated until disease progression or

unacceptable toxic effects occurred.

Modifications to the cetuximab dose were made only in cases of toxic

effects to the skin, and modifications to the irinotecan dose were made in

cases of hematologic or non-hematologic toxic effects.

Venous blood for cytokine assessment was drawn into a EDTA

anticoagulant tube just before the beginning of the first drug infusion and

again at 1, 21, 50 and 92 days after the first cetuximab + irinotecan infusion

(just before every subsequent infusion). After drawing, the venous blood

sample was rapidly centrifuged for 10 min at 10 000 rpm and plasma stored

at �80�C until tested for VEGF and IFN-c levels. Moreover, standard

hematologic parameters were tested before every single course.

cytokine analysis
VEGF and IFN-c were assayed with R&D quantitative kits according to

the manufacturer’s instructions (R&D Systems, Minneapolis, USA).

The detection limit of the cytokines was as follows: 62.5 pg/ml for VEGF
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and 10 pg/ml for IFN-c. The curve for the analysis was linear until 1000 pg/ml

for VEGF and 4000 pg/ml for IFN-c; values out from this range were

calculated performing a mathematical extrapolation from the standard curve.

statistical analysis
Basal cytokine levels were compared with the values observed at 1, 21, 50

and 92 days after the start of cetuximab plus irinotecan usingWilcoxon’s test

for non-parametric dependent continuous variables. A linear regression

model with variance analysis was used to correlate different cytokines levels.

A two-tailed P value was considered significant when less than 0.05. SPSS

software (version 11.5, SPSS, Chicago) was used for statistical analysis.

results

Forty-five consecutive patients (21 males, 24 females), aged
27–79 years (median age 69), with advanced colorectal cancer
were included in the study. All patients matched all the inclusion
criteria. Patients’ characteristics are shown in Table 1.

VEGF analysis

The median VEGF basal value (228.60 mg/dl; 95% CI 224.60–
328.40 mg/dl) showed a statistically significant decrease of

16.91% just 1 day after the start of cetuximab + irinotecan
anticancer treatment (median 194.90 mg/dl; 95% CI 154.57–
212.60 mg/dl; P = 0.016). This effect persisted during the
following time points. At 21 days after the first course, VEGF
levels showed a decrease of 46.05% compared with the basal
ones (median 123.20 pg/ml; 95% CI 104.73–196.98; P = 0.001).
This effect on circulating VEGF levels was still evident and
persisted at 50, with a reduction of 39.09% and a median value
of 139.60 mg/dl (95% CI 98.17–163.50 mg/dl; P = 0.002).
Interestingly, at the last time point (92 days after the treatment
start) the decrease reached the highest statistical significance: the
median value was 110.55 pg/ml with a reduction of 51.75%
(95% CI 96.43–224.37 mg/dl; P < 0.0001). These results are
summarized in Tables 2 and 3 and in Figure 1. Finally, it is of
some interest to stress that at the last time point (92 days after
the first infusion) 71.1% of the patients developed a reduction
of at least 25% with respect to the VEGF basal levels.

IFN-c levels

The median IFN-c basal level was 13.03 pg/ml (95% CI
11.67–22.99 mg/dl). These levels significantly increased to
56.13% 1 day after the start of cetuximab + irinotecan
(31.06 pg/ml; 95% CI 26.87–36.73 mg/dl; P < 0.0001).
This effect persisted at day 21 after infusion, with an increase

Table 3. Median changes in percentage (%) of circulating VEGF and

IFN-c levels during cetuximab plus irinotecan treatment

Median reduction (%) 95% CI

VEGF

1 Day �16.91% 11.54%–22.80%

21 Days �46.05% 46.05%–53.71%

50 Days �39.09% 39.09%–44.78%

92 Days �51.75% 33.71%–63.85%

IFN-c
1 Day +56.13% 47.11%–64.90%

21 Days +47.20% 34.98%–54.95%

50 Days +26.12% 19.85%–33.71%

92 Days +17.58% 12.94%–24.77%

Table 1. Baseline characteristics of the patients

Patient’s characteristics No. of patients (%)

Total number 45 (100%)

Male/female 21/24 (46.7%–53.3%)

Age (years)

Median 69

Range 27–79

Performance Status

Median 1

Range 1–2

Primary tumor site

Colon 30 (66.7%)

Rectum 15 (33.3%)

No. of metastatic sites

1 8 (17.8%)

2 18 (40.0%)

3+ 19 (42.2%)

Sites of metastases

Liver 31 (68.9%)

Lung 20 (44.4%)

Nodes 16 (35.6%)

Local 12 (26.7%)

Other 19 (42.2%)

Prior adjuvant therapy

None 16 (35.6%)

FU/LV 29 (64.6%)

First-line regimen

XELOX 31 (68.9%)

FOLFOX 14 (31.1%)

Second-line regimen

FOLFIRI 55 (100%)

EGFR expression

Score 1 14 (31.1%)

Score 2 19 (42.2%)

Score 3 12 (26.7%)

Table 2. VEGF and IFN-c modifications during cetuximab plus

irinotecan treatment

Median (pg/ml) 95% CI (pg/ml) P (Wilcoxon test)

VEGF

Basal levels 228.60 224.60–328.40 –

1 Day 194.90 154.57–212.60 0.016

21 Days 123.20 104.73–196.98 0.001

50 Days 139.60 98.17–163.50 0.002

92 Days 110.55 96.43–224.37 <0.0001

IFN-c
Basal levels 13.03 11.67–22.99 –

1 Day 31.06 26.87–36.73 <0.0001

21 Days 26.22 22.33–41.86 0.002

50 Days 21.95 15.87–31. 64 0.136

92 Days 18.56 13.96–24.23 0.233
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of 47.20% if compared with the basal levels and a median value
of 26.22 pg/dl (95% CI 22.33–41.86 pg/dl). Circulating IFN-c
levels returned to values similar to the median basal value at
day 50 (21.95 pg/ml; 95% CI 15.87–31. 64 pg/ml) and day
92 (18.56 pg/ml; 95% CI 13.96–24.23); P values 0.136 and
0.233, respectively. These results are shown in Tables 2 and 3
and in Figure 2. The percentage of patients who developed at

least a 25% increase of VEGF circulating levels at the different
time-points was as follow: 62.2% at day 1, 46.6% at day 7,
17.8% at day 50 and only 6.7% at day 92.

VEGF and IFN-c correlations

A linear regression model with variance analysis showed
a significant negative correlation between VEGF values and
IFN-c values (b regression coefficient =�0.629; P = 0.005). This
data was obtained using all the available data regardless of the
different time-points. Interestingly, performing the statistical
examination at every time-point, the analysis showed that no
significance is reached at the basal time point (b value =
�0.322), while a statistically significant correlation is achieved 1,
21 and 50 days after the first anticancer cycle (P = 0.002, 0.001
and 0.047, respectively). This negative correlation is not more
evident 92 days after the start of treatment. The global
correlation between VEGF and IFN-c without taking into
consideration the different time-points is shown in Figure 3.
In addition, the correlations performed at the basal time point
and at days 1, 21 and 50 are shown in Figure 4.
When performing a linear regression analysis between the

platelet count and VEGF circulating levels, we failed to identify
any statistically significant correlation between the two
variables. However, a borderline correlation was identified at the
basal time-point (b regression coefficient = 0.291, P = 0.09).

discussion

The link between EGFR signaling and angiogenesis has been
clearly identified [24–29]. The mechanisms by which EGFR
signaling pathways regulate VEGF, interleukin 8 (IL-8) and
basic fibroblast growth factor (bFGF) are unclear, but it is
established that up-regulation of these factors follows activation
of the EGFR signaling pathways by EGF or transforming growth
factor (TGF)-a. Transcription of VEGF is potentiated by the
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activation of the four AP-1 binding sites within its promoter;
the bFGF and IL-8 promoter each have one AP-1 site [30–33].
After activation of EGFR signaling pathways, ras and raf are
activated, resulting in phosphorylation of c-fos and c-jun,

leading to increased AP-1 activity [34–37]. This increase in
AP-1 activity leads to transcription of genes with AP-1 sites
in their promoter [37, 38]. Because VEGF, IL-8 and bFGF all
share AP-1 binding sites, they are potential targets for therapies
that down-regulate EGFR signaling pathways, which results in
reduced AP-1 activity.
Perrotte and colleagues [8] clearly identified, in an in vitro

model, a new mechanism that contributes to the antitumor
effect of EGFR blockade therapy with cetuximab: the inhibition
of angiogenesis. Their data suggest that the reduction in bladder
cancer vascularization is secondary to down-regulation of
VEGF, IL-8 and bFGF expression by EGFR blockade therapy
with cetuximab. The authors hypothesize that selective down-
regulation of VEGF, IL-8 and bFGF by the tumor cells after
cetuximab therapy leads to involution of tumor vessels,

Figure 4. The correlations between VEGF and IFN-c levels at the following time-points: basal, 1, 21 and 50 days after the start of treatment with

cetuxuimab + irinotecan. P values were calculated using a linear regression model with variance analysis.

Table 4. Correlation between VEGF and IFN-c at different time-points

b regression coefficient P

Total correlation �0.629 0.005

Basal levels �0.322 0.125 (NS)

1 Day �0.475 0.002

21 Days �0.655 0.001

50 Days �0.431 0.047

92 Days �0.211 0.129
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contributing to the growth inhibition and regression of the
primary tumors and, hence, reduction in spontaneous
metastases from these highly metastatic tumors.
Recently, Vallböhmer et al. [39] investigated the association

between molecular markers and clinical outcome in patients
with EGFR-expressing metastatic colorectal cancer treated with
cetuximab. The results of this study showed that higher gene
expression levels of VEGF were associated with resistance to
cetuximab. This evidence confirms the tight relation between
angiogenesis and EGFR pathway.
We designed this study with the aim of investigating if, in

colorectal cancer patients, cetuximab in association with
irinotecan can lead to a reduction of serum markers of
angiogenesis. Our results demonstrated that a statistical
significant reduction of VEGF circulating levels was identified
just one day after the beginning of treatment and, most
important, persisted along the courses. Moreover, we also
investigated the concomitant modification of IFN-c, a cytokine
with anti-angiogenic properties. The results of IFN-c analysis
revealed a significant increase that persisted during the first
cycles of therapy and that was lost 92 days after the beginning of
cetuximab + irinotecan. In addition, using a linear regression
model a statistical significant negative correlation was observed
between VEGF and IFN-c at the first time-points.
Obviously, this observation could simply be an

epiphenomenon of cetuximab administration, but we cannot
exclude the fact that IFN-c could have a role in the angiogenesis
modulation by cetuximab identified in this paper.
Moreover, our results do not represent clear evidence of

a direct effect of cetuximab or irinotecan on the tumor cell.
In fact VEGF is produced by many different cells even in
physiological conditions. The VEGF modulation induced by
the therapy could also be provided by an indirect action of
cetuximab on tumoral stroma cells. In our study, a contribution
to the VEGF circulating levels reduction could be played by
irinotecan. In fact, O’Leary and colleagues demonstrated, in
an in vitro model, that irinotecan may exert its anticancer
activity by an action against endothelial cells preventing the
growth of the tumor microvessels [40].
In conclusion, our study suggests that cetuximab, in

combination with irinotecan, may induce a significant and long-
lasting decrease of VEGF circulating levels. The modulation of
this angiogenic molecule could be one expression of the
anticancer properties of cetuximab and could be of interest to
the investigation of the correlation between cetuximab-related
serum VEGF modifications, tumor response and clinical
outcome.
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