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Berry’s phase in cavity QED: Proposal for observing an effect of field quantization
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We propose a feasible experiment to investigate quantum effects in geometric phases, arising when a
classical source drives not a single quantum system, but two interacting ones. In particular, we show how to
observe a signature of the quantization of the electromagnetic field through a vacuum effect in Berry’s phase.
To do so, we describe the interaction of an atom and a quantized cavity mode altogether driven by an external
quasiclassical field. We also analyze the semiclassical limit recovering the usual Berry’s phase results.
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Geometric phases, or Berry’s phases, are well known
classical electromagnetism and quantum mechanics sinc
early works of Pancharatnam@1# and Berry@2#. Their origin
relies on the geometric nature of state spaces and has
studied in many different systems, such as spins, polar
light, and atomic physics@3#. Recent works have explore
their application in interferometry and quantum computat
@4,5#.

Earlier works on the subject suggest how to observe th
phases in single quantum systems adiabatically driven
external classical devices or sources, where, by classica
mean any system whose state does not change conside
during the interaction time; an intense magnetic field int
acting with a spin1

2 or a birefringent medium interactin
with polarized light@6–11#.

A more recent work explores new geometrical effe
arising from the interaction of two independent quantiz
systems@12#. In particular, the cyclic evolution of a two
level system interacting with two independent quantized h
monic oscillators is analyzed, especially when the state
the harmonic oscillator is the vacuum. It is shown that
quantization of the modes introduces deviations from
predictions of the correspondent semiclassical model, wh
the two-level system interacts with a classical polarized fie

Interactions of this nature, between two-level systems
quantized harmonic oscillators, have been the subjec
many experimental investigations in the last two decad
specially in the cavity QED domain@13–16#. Many of these
experiments test the quantum nature of light itself. In t
paper, we propose a different experiment in cavity QED t
allows one to observe and measure the novel geometric
fects described in Ref.@12#.

In the above, the theoretical model considered is a re
nant Jaynes-Cummings interaction, coupling a two-level s
tem of Bohr frequencyn and a quantized mode of creatio
and annihilation operatorsâ and â†:

H05nâ†â1nb̂†b̂1nŝ221l~ŝ21â1ŝ12â
†!, ~1!

where ŝ i j 5u i &^ j u ( i , j 51,2), with u1& and u2& ground and
exited states of the two-level system, respectively. A sec
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mode with creation and annihilation operatorsb̂ and b̂† and
frequencyn initially is not interacting with the particle no
with the first mode.

The initial Hamiltonian is then adiabatically transforme
by linearly combining the two modes according to the fo
lowing:

H~u,f!5nŝ221n~ â†â1b̂†b̂!1lF S cos
u

2
âe2 i ~f/2!

1sin
u

2
b̂ei ~f/2!D ŝ211H.c.G , ~2!

whereu and f are two parameters, which can be chang
externally. Formally, this transformation of the modes can
represented by a point of coordinatesu andf on a sphere,
the Poincare´ sphere~see Fig. 1!.

It is shown that by changing adiabatically the initi
HamiltonianH0 according to this transformation, a syste

FIG. 1. A closed loop described by the polarization vector of
external driving field. The~classical! geometric phase generated
this way is equal to one-half of the solid angle enclosed by the p
~equal top in this figure!. Note that the same picture can be used
represent the evolution of a quantum two-level system whose s
space has the same structure as a two-dimensional sphere~known as
the Bloch sphere!. In our paper, we combine these two pictures w
the quantization of the field to produce and measure a new p
effect. The evolution of the joint atom and the quantized-field st
can no longer be represented in this simple way.
©2003 The American Physical Society04-1
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initially prepared in an eigenstateucn,m
6 &51/A2(ue,n&

6ug,n11&)um& of H0 ~where un& and um& are the Fock
states of modesâ andb̂, respectively! acquires the geometri
phase given by

xn,m5
1

2
gS n2m1

1

2D , ~3!

whereg is the solid angle enclosed in the path traversed
the parametersu andf on the Poincare´ sphere~see Fig. 1!.
Note that bothucn,m

1 & and ucn,m
2 &, for fixed values ofn and

m, acquire the same geometric phasexn,m , which implies
that the statesue,n,m& and ug,n11,m& do, too. The most
remarkable case is obtained with initial stateue,0,0&
51/A2(uc0,0

1 &1uc0,0
2 &). In this case, the adiabatic evolutio

determines a Berry’s phase

xzero5
g

4
. ~4!

This result presents two interesting aspects, both relate
the quantized nature of the harmonic oscillators. First,
two-level system acquires a phase even for initially em
modes, a typical signature of Rabi oscillations. Second,
more important, this phase is half the value obtained in
equivalent semiclassical model, as shown in Ref.@12#, allow-
ing for yet another method to clearly distinguish betwe
classical and quantized harmonic oscillators.

In order to propose an experiment to observe this eff
we use a cavity QED setup to engineer the parameter de
dent Hamiltonian~2!. Our scheme relies on two Raman i
teractions in theL configuration, as shown in Fig. 2~b!.
Transitions 1↔3 and 1↔4 are coupled by means of dispe
sive Jaynes-Cummings interactions@17# to two orthogonally
polarized cavity modes, with respective coupling consta
g1 andg2 ~1 for the right and2 for the left polarizations!.
Transitions 2↔3 and 2↔4 are coupled by externally in
jected quasiclassical fields, with respective Rabi frequen
V1 andV2 . The Hamiltonian for the whole system in th
interaction picture is given by

Hint5\~g1ŝ31â11g2ŝ41â21V1ŝ321V2ŝ32!e
2 idt

1H.c., ~5!

whereâ1 (â2) denotes the annihilation operator of the rig
~left! circularly polarized quantized mode, and we assu
the same detuningd for each transition, as shown in Fig. 2

Due to the dispersive nature of the interactions, the t
upper electronic levels of the atom act only as virtual sta
allowing for the two-photon coupling between levelsu1& and
u2&. Following the same procedure described in Ref.@18#,
for large detuning, i.e.,d@g,V, we adiabatically eliminated
levels u3& and u4&. The whole system, then, evolves accor
ing to the effective Hamiltonian
06380
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He f f5\
V2

d
ŝ221\

g2

d
~ â1

† â11â2
† â2!ŝ11

1lF S cos
u

2
ei ~f/2!â11sin

u

2
e2 i ~f/2!â2D ŝ211H.c.G ,

~6!

In Eq. ~6!, we express the polarization of the external fie
so thatV15cos(u/2)eif/2V and V25sin(u/2)e2 if/2V. In
this way, its free parametersu andf coincide with the ones
described in~2!. Note that, by changing the external fie
polarization, we can control the effective coupling betwe
transition u1&→u2& and the cavity modesâ1 and â2 . For
example, if u50 (V250), the atom is coupled only to
mode â1 . For general values ofu and f, this effective
interaction will reproduce exactly the one described
Hamiltonian ~2!. Therefore, by rotating the polarization o
the injected quasiclassical field, we can perform the cyc
evolution in the parameters space described in the theore
model. We are also assuming, for the sake of simplicity, t
the atom couples with the same strength to each polariza
both with the classical and the quantized modesg15g2

5g5V and we definel5gV/d as the effective coupling
constant of the whole system.

Once the proper interaction is engineered, the geome
phase shift acquired by the atom-cavity modes compo
system can be observed through the usual Ramsey inter
metric method~Fig. 2! @13#. The atom is prepared in the firs

FIG. 2. The experimental proposal. The Rydberg atoms cr
cavity C one at a time; the cavity mode is initially prepared in som
weak coherent state and a circularly polarized intense fi

EW (t) drives the atom-cavity mode system. The atomic levels
shown in ~b!. For large detuningsd@g,V, the two lower levels
interact effectively through a two-photon process; for simplici
we consider g5V, where V15cos(u/2)eif/2V and V2

5sin(u/2)e2 if/2V; in R1, the atoms are prepared in symmetr
quantum superpositions of levels 1 and 2, and subsequently per
an integral number of Rabi flips insideC. During this interaction in
C, the polarization of the external field is slowly rotated so as
complete a closed loop in the Poincare´ sphere~as in Fig. 1!; the
atoms are finally rotated back inR2, and detected in I.
4-2
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Ramsey zone and put into a symmetric superposition of
els u1& andu2&, while modea1 is prepared in some arbitrar
state and modea2 is prepared in the vacuum. The initia
polarization of fieldEW (t) is chosen so that only modea1

interacts with the atom. The external field is turned on a
the whole system is allowed to interact inside the cavity
a timet@1/l, during which the polarization of the extern
field is rotated at a much slower rate compared tol until it is
back to its original value. After that, the atom undergoe
p/2 rotation in the second Ramsey zone and is detected
ionization.

If the initial state of modea1 is also the vacuum, then
He f f is resonant~for V5g) and the probability to detect th
atom in level u2&, after an integral number of Rabi flip
inside the cavity and thep/2 pulse of the second Ramse
zone, is given byP25(12cosg/4)/2. This corresponds to
g/4 geometric phase shift, which is a surprising effect, co
paring to the usualg/2 classical result. Note that the Jayne
Cummings interaction is particularly appropriated to obse
this effect. The atom-cavity mode system splits into doub
except for a lonely ground state, which does not acquire
phase at all. Therefore, this lowest energy level works as
intrinsic reference frame for the measurement of the glo
geometric phase acquired by the remaining dressed st
This structure is only possible due to the existence o
vacuum state of the cavity mode, which becomes clear w
the experiment is repeated with modea1 initially prepared
in a coherent stateua&. Then, the probability to measure th
atom in stateu2& for the sameg is given by

2P25~12e2uau2!~12cosg/2!1e2uau2~12cosg/4!.

From this equation it is clear that only forua&50, we have
the surprisingg/4 ratio. As the intensity of the initial coher
ent state increases, and the role of that lonely reference fr
is reduced, the observed phase shift goes to the well expe
g/2 semiclassical limit. In this calculation, we assume
slightly different setup in which the dynamical effects can
eliminated, following the results described in Ref.@19#.

In Fig. 3~a!, we show the phase shift in the probabilityP2
to find the atom in levelu2& for an induced geometric phas
g5p due to the rotation of the polarization of the drivin
field. In Fig. 3~b!, we showP2 as a function of different
initial coherent states in the cavity field, for a fixed intera
tion time t510/l and the same phase shiftg5p.

Typical values for the one-photon vacuum Rabi frequen
areg/2p.50 kHz @13,20#. Choosing the same coupling fo
the classically driven transitionV/2p.50 kHz, and a detun-
ing d53V, l/2p.15 kHz, which means that the atom-fie
system can perform approximately ten complete Rabi cy
during an effective interaction time of 0.6 ms. Times of i
teraction of this order are achievable in microwave cavit
for atomic velocities of the order of 10 m/s and are with
typical decaying times~1 ms! for the cavities used in Ref
@13#. According to our calculations, in these experimen
conditions, the nonideal adiabatic rotation of the polarizat
produces errors of the order of 5% inP2, which are smaller
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than the ones produced by other sources, such as dete
inefficiency and cavity field decay.

In this paper, we have proposed an experimental setu
observe and measure the geometric behavior of two inter
ing quantized systems. We analyze a cavity QED experim
in which an externally injected field drives the interactio
between a flying atom and two quantized cavity modes. T
joint system acquires a geometric phase whose value is
of a two-level~spin 1

2 ) system driven classically. We note i
passing that this behavior is reminiscent of a particle w
spin-14 fractional statistics. The model hereby describ
could also be easily translated into trapped ions system
the Lamb-Dicke regime, where orthogonal vibration mod

FIG. 3. Experimental prediction.~a! Probability P2 to measure
the atom in stateu2&, for a fixed number of Rabi flips inside th
cavity and different relative phasesj betweenR1 andR2; the black
curve is the caliber curve for the Ramsey interferometry and
gray curve represents the situation in which a geometric phase
of p/4 is induced in the system, according to the proposed exp
ment. This phase shift corresponds to the solid angleg5p de-
scribed in Fig. 1 . Part~b! represents the probabilityP2 for different
coherent states prepared in the cavity, as a function of the ampli
a of the coherent state~for each value ofa, we assume to set the
interferometer such thatP250 in absence of geometric shift!. We
see that for the vacuum states~i.e., a coherent state of amplitude 0
the shift would be equal top/4 „i.e., P251/2@12cos(p/4)#…, and it
would increase with the coherent-state amplitude converging to
expected~semiclassical! value ofp/2 „i.e., P251/2@12cos(p/2)#….
Note that the convergence is very fast, and for amplitudes of
and higher the semiclassical result is in a very good agreement
the fully quantized calculation.
4-3
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of the ions would play the role of the quantized harmo
oscillators.

In this work, we also clarify the physical origin of th
model described in Ref.@12#. In particular, we show how to
simulate the rotation of the polarization of quantized mod
by engineering an effective Hamiltonian that produces
same final geometrical effect on the dressed atom-fi
states.

Our experimental proposal also reinforces the versat
and power of setups combining a quantized cavity mode
nipulated by an externally injected quasiclassical field. T
precise control of the properties of a quasiclassical exte
field allows one to engineer different atom-cavity modes
.
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al
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teractions. In particular, in this paper, we show how to e
plore these interactions to investigate intrinsic geome
characteristics of a two-level system dressed by orthogo
harmonic oscillators. Similar setups could be used to furt
understand these geometrical properties as, for exam
their effect on the collapses and revivals of atomic popu
tion in the Jaynes-Cummings model@21#. Furthermore, the
addition of cavity mode damping to the model could al
help understanding the geometric behavior of mixed stat
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