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Berry’s phase in cavity QED: Proposal for observing an effect of field quantization
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We propose a feasible experiment to investigate quantum effects in geometric phases, arising when a
classical source drives not a single quantum system, but two interacting ones. In particular, we show how to
observe a signature of the quantization of the electromagnetic field through a vacuum effect in Berry’s phase.
To do so, we describe the interaction of an atom and a quantized cavity mode altogether driven by an external
quasiclassical field. We also analyze the semiclassical limit recovering the usual Berry’s phase results.
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Geometric phases, or Berry's phases, are well known ifnode with creation and annihilation operatbrandb’ and
classical electromagnetism and quantum mechanics since th@quencyw initially is not interacting with the particle nor
early works of Pancharatnaftt] and Berry[2]. Their origin  with the first mode.
relies on the geometric nature of state spaces and has beenThe injtial Hamiltonian is then adiabatically transformed

studied in many different systems, such as spins, polarizegy |inearly combining the two modes according to the fol-
light, and atomic physic$3]. Recent works have explored |owing:

their application in interferometry and quantum computation
[4,5].
Earlier works on the subject suggest how to observe these H( 9, ¢)=va,,+ v(a’a+b'b)+x
phases in single quantum systems adiabatically driven by
external classical devices or sources, where, by classical, we P
mean any system whose state does not change considerably +sin—= be'(#/2)
during the interaction time; an intense magnetic field inter- 2
acting with a spins or a birefringent medium interacting
with polarized light[6—11]. where § and ¢ are two parameters, which can be changed
A more recent work explores new geometrical effectsexternally. Formally, this transformation of the modes can be
arising from the interaction of two independent quantizedrepresented by a point of coordinatésand ¢ on a sphere,
systems[12]. In particular, the cyclic evolution of a two- the Poincaresphere(see Fig. 1
level system interacting with two independent quantized har- It is shown that by changing adiabatically the initial
monic oscillators is analyzed, especially when the state oHamiltonianH, according to this transformation, a system
the harmonic oscillator is the vacuum. It is shown that the
guantization of the modes introduces deviations from the
predictions of the correspondent semiclassical model, where
the two-level system interacts with a classical polarized field.
Interactions of this nature, between two-level systems and
guantized harmonic oscillators, have been the subject of
many experimental investigations in the last two decades,
specially in the cavity QED domaifi3—-16. Many of these
experiments test the quantum nature of light itself. In this
paper, we propose a different experiment in cavity QED that
allows one to observe and measure the novel geometric ef-
fects described in Refl12].
In the above, the theoretical model considered is a reso-
nant Jaynes-Cummings interaction, coupling a two-level sys-
tem of Bohr frequency and a quantized mode of creation

and annihilation operatos anda':

cosg e 1(4/2)

O'21+ H.c.

, @

FIG. 1. Aclosed loop described by the polarization vector of the
external driving field. Théclassical geometric phase generated in
this way is equal to one-half of the solid angle enclosed by the path
(equal to in this figure. Note that the same picture can be used to
~ o . represent the evolution of a quantum two-level system whose state
where o;=1i)(j| (i,j=1,2), with |1) and|2) ground and space has the same structure as a two-dimensional sikneren as
exited states of the two-level system, respectively. A seconghe Bloch sphere In our paper, we combine these two pictures with

the quantization of the field to produce and measure a new phase
effect. The evolution of the joint atom and the quantized-field state
*Electronic address: v.vedral@ic.ac.uk can no longer be represented in this simple way.
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initially prepared in an eigenstatéy, ) ="1/12(|e,n) a
*=|g,n+1))|m) of Hy (where|n) and |m) are the Fock

states of modea andb, respectivelyacquires the geometric 5 Py
hase given b - .
phase given by > ‘ —
1 1 N
Xn,mzi'y n_m+§ ) ©)
. : . b

wherey is the solid angle enclosed in the path traversed by
the parameterg and ¢ on the Poincarsphere(see Fig. L
Note that both ¢, ) and |y, ), for fixed values ofn and
m, acquire the same geometric phagg,, which implies 2
that the statege,n,m) and|g,n+1m) do, too. The most
remarkable case is obtained with initial stafe,0,0) FIG. 2. The experimental proposal. The Rydberg atoms cross
=1N2(|50+|¥0)- In this case, the adiabatic evolution cavity C one at a time; the cavity mode is initially prepared in some
determines a Berry’s phase weak coherent state and a circularly polarized intense field

E(t) drives the atom-cavity mode system. The atomic levels are
shown in(b). For large detunings>g,Q}, the two lower levels
Z. (4) interact effectively through a two-photon process; for simplicity,
4 we consider g=0Q, where Q,=cos@?2)e??Q and Q_
=sin(@2)e '¥?Q); in R1, the atoms are prepared in symmetric
fuantum superpositions of levels 1 and 2, and subsequently perform
n integral number of Rabi flips inside During this interaction in
, the polarization of the external field is slowly rotated so as to
omplete a closed loop in the Poincaghere(as in Fig. J; the
toms are finally rotated back R2, and detected in I.

Xzero—

This result presents two interesting aspects, both related
the quantized nature of the harmonic oscillators. First, th
two-level system acquires a phase even for initially empty
modes, a typical signature of Rabi oscillations. Second, an
more important, this phase is half the value obtained in the
equivalent semiclassical model, as shown in REZ], allow-
ing for yet another method to clearly distinguish between Q2. 02 iin apa -
classical and ; ; i Heti=h —0 +ﬁ—(aT a +aT_a_)a
quantized harmonic oscillators. eff 5 v gl ay 1
In order to propose an experiment to observe this effect,
we use a cavity QED setup to engineer the parameter depen-
dent Hamiltonian(2). Our scheme relies on two Raman in-
teractions in theA configuration, as shown in Fig.(1®.
Transitions 13 and k-4 are coupled by means of disper- (6)
sive Jaynes-Cummings interactidri¥’] to two orthogonally
polarized cavity modes, with respective coupling constants o }
g. andg_ (+ for the right and— for the left polarizations In Eq. (6), we express the polarization of the external field
.. . — i pl2 — ip/2
Transitions 2-3 and 2-4 are coupled by externally in- S© that(), = cos@?2)e'”*Q) and Q_=sin(@2)e '**Q. In
jected quasiclassical fields, with respective Rabi frequencie§!is Way, its free parametersand ¢ coincide with the ones
Q, andQ_ . The Hamiltonian for the whole system in the described in(2). Note that, by changing the external field
interaction picture is given by polarization, we can control the eﬁectlvg coupllpg between
transition|1)—|2) and the cavity modea, anda_. For
example, if =0 (Q2_=0), the atom is coupled only to
mode a, . For general values of and ¢, this effective
+H.c., (5)  interaction will reproduce exactly the one described by
Hamiltonian (2). Therefore, by rotating the polarization of
L the injected quasiclassical field, we can perform the cyclic
wherea, (a_) denotes the annihilation operator of the right evolution in the parameters space described in the theoretical
(left) circularly polarized quantized mode, and we assumenodel. We are also assuming, for the sake of simplicity, that
the same detuning for each transition, as shown in Fig. 2. the atom couples with the same strength to each polarization,
Due to the dispersive nature of the interactions, the twdoth with the classical and the quantized modgs=g_
upper electronic levels of the atom act only as virtual states=g=() and we define\=gQ/§ as the effective coupling
allowing for the two-photon coupling between levEls and  constant of the whole system.
|2). Following the same procedure described in R&8], Once the proper interaction is engineered, the geometric
for large detuning, i.e.¢>g,(), we adiabatically eliminated phase shift acquired by the atom-cavity modes composite
levels|3) and|4). The whole system, then, evolves accord-system can be observed through the usual Ramsey interfero-
ing to the effective Hamiltonian metric methodFig. 2) [13]. The atom is prepared in the first

+2\ o1+ H.C.

0 . 6 “
cos e'(?23, +sin Ee*' (¢12)3

Hint=7(0 038, +9_04@_+ Q03+ Q_Ggp)e

063804-2



BERRY’S PHASE IN CAVITY QED: PROPOSAL F&.. .. PHYSICAL REVIEW A 67, 063804 (2003

Ramsey zone and put into a symmetric superposition of lev-
els|1) and|2), while modea, is prepared in some arbitrary
state and modea _ is prepared in the vacuum. The initial 087

polarization of fieIdE(t) is chosen so that only mode,
interacts with the atom. The external field is turned on and®®]
the whole system is allowed to interact inside the cavity for
a time 7> 1/\, during which the polarization of the external
field is rotated at a much slower rate compared tntil it is o5 /
back to its original value. After that, the atom undergoes a
/2 rotation in the second Ramsey zone and is detected b . ‘ ‘ ‘
ionization. 2 o ° ? e
If the initial state of modea, is also the vacuum, then (y) T——
He¢ is resonantfor Q0 =g) and the probability to detect the P8 Shied cinel
atom in level|2), after an integral number of Rabi flips
inside the cavity and ther/2 pulse of the second Ramsey
zone, is given byP,=(1—cosvy/4)/2. This corresponds to a
vl4 geometric phase shift, which is a surprising effect, com- 01
paring to the usua}/2 classical result. Note that the Jaynes- g5
Cummings interaction is particularly appropriated to observeM_
this effect. The atom-cavity mode system splits into doublets™
except for a lonely ground state, which does not acquire any?]
phase at all. Therefore, this lowest energy level works as ar;]
intrinsic reference frame for the measurement of the global
geometric phase acquired by the remaining dressed state "
This structure is only possible due to the existence of a o = o) 5 z 0
vacuum state of the cavity mode, which becomes clear wher(b) .
the experiment is repeated with mode initially prepared - — R
in a coherent statgy). Then, the probability to measure the
atom in statd2) for the samey is given by FIG. 3. Experimental predictior{a) Probability P, to measure
the atom in statd2), for a fixed number of Rabi flips inside the
cavity and different relative phasédetweerR1 andR2; the black
2P2=(1—e*|“|2)(1—COSy/2)+e*‘“‘2(1—COSy/4). curve is the caliber curve for the Ramsey interferometry and the
gray curve represents the situation in which a geometric phase shift
of /4 is induced in the system, according to the proposed experi-
From this equation it is clear that only fo)=0, we have ment. This phase shift corresponds to the solid angter de-
the surprisingy/4 ratio. As the intensity of the initial coher- scribed in Fig. 1 . Parib) represents the probabilify, for different
ent state increases] and the role of that |0ne|y reference frarﬁ@herent states prepared in the cavity, as a function of the amplitude
is reduced, the observed phase shift goes to the well expectgdof the coherent statgfor each value otx, we assume to set the
yI2 semiclassical limit. In this calculation, we assume ainterferometer such tha,=0 in absence of geometric shiftwe
slightly different setup in which the dynamical effects can be3e€ that for the vacuum statée., a coherent state of amplitude 0)
eliminated, following the results described in REf9]. the shift would be equal tar/4 (i.e., P,=1/7 1 - cosm/4))), and it
In Fig. 3a), we show the phase shift in the probabily would increase with the coherent-state amplitude converging to the

. - . - expectedsemiclassicalvalue of /2 (i.e., P,=1/2 1—cos(@/2)]).
to find the atom in Iev_e|2) for an Induged _geometrlc phqse Note that the convergence is very fast, and for amplitudes of two
y= due to the rotation of the polarization of the driving

4 . . - and higher the semiclassical result is in a very good agreement with
field. In Fig. 3b), we showP, as a function of different X ye g

e ; > 2 . : the fully quantized calculation.
initial coherent states in the cavity field, for a fixed interac-
tion time =10/ and the same phase shift= 7. than the ones produced by other sources, such as detectors
Typical values for the one-photon vacuum Rabi frequencyinefficiency and cavity field decay.
areg/2m=50 kHz[13,20. Choosing the same coupling for In this paper, we have proposed an experimental setup to
the classically driven transitiof}/27w=50 kHz, and a detun- observe and measure the geometric behavior of two interact-
ing 6=3Q, N27=15 kHz, which means that the atom-field ing quantized systems. We analyze a cavity QED experiment
system can perform approximately ten complete Rabi cyclem which an externally injected field drives the interaction
during an effective interaction time of 0.6 ms. Times of in- between a flying atom and two quantized cavity modes. The
teraction of this order are achievable in microwave cavitiejoint system acquires a geometric phase whose value is half
for atomic velocities of the order of 10 m/s and are within of a two-level(spin ) system driven classically. We note in
typical decaying times1 ms for the cavities used in Ref. passing that this behavior is reminiscent of a particle with
[13]. According to our calculations, in these experimentalspin+ fractional statistics. The model hereby described
conditions, the nonideal adiabatic rotation of the polarizatiorcould also be easily translated into trapped ions systems in
produces errors of the order of 5% By, which are smaller the Lamb-Dicke regime, where orthogonal vibration modes
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of the ions would play the role of the quantized harmonicteractions. In particular, in this paper, we show how to ex-
oscillators. plore these interactions to investigate intrinsic geometric
In this work, we also clarify the physical origin of the characteristics of a two-level system dressed by orthogonal
model described in Ref12]. In particular, we show how to harmonic oscillators. Similar setups could be used to further
simulate the rotation of the polarization of quantized modeg/inderstand these geometrical properties as, for example,
by engineering an effective Hamiltonian that produces thdheir effect on the collapses and revivals of atomic popula-
same final geometrical effect on the dressed atom-fieldion in the Jaynes-Cummings modell]. Furthermore, the
states. addition of cavity mode damping to the model could also

Our experimental proposal also reinforces the versatiliy/1€/P understanding the geometric behavior of mixed states.
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