DIPARTIMENTO DI INGEGNERIA NUCLEARE

Università degli Studi di Urbino "Carlo Bo" Dipartimento Scienze dei Farmaco e della Salute Sez. Chimica Analitica e inorganica

> *Workshop Metodi avanzati di spettrometria gamma* Milano, Grattacielo Pirelli, Auditorium Gaber 10-12 novembre 2010

Coincidence-summing corrections in high resolution gamma-ray spectrometry: simplified analytical expressions

E.Tomarchio

Nuclear Engineering Department, Palermo University Viale delle Scienze, Ed. 6, I-90128 Palermo, ITALY

Introduction

The spectrometric analysis of a gamma-emitter sample measured in "close geometry" can be affected by errors due to coincidence-summing effects that can occur when two or more coincident photons (real coincidences) are emitted within the resolution time of the spectrometric system.

L'analisi spettrometrica gamma di un campione misurato in "geometria vicina" può essere affetta da errori dovuti ad effetti di coincidenza-somma che possono avvenire quando due o più fotoni sono emessi in coincidenza (stessa disintegrazione), ossia entro il tempo di risoluzione dello spettrometro.

DIDARTIMENTO DI INGEGNERIA NUCLEARE

Introduction

If a photon releases all its energy in the detector and another coinciding photon will issue only one part of its energy, a reduction in the area of full-energy peaks related to both photon energies occurs (*summing-out effect*). If the energy of the two photons in coincidence is fully released into the detector, the counting related to peak-sum of photon energies increases (*summing-in effect*).

Se un fotone rilascia tutta la sua energia nel rivelatore e un secondo fotone in coincidenza ne rilascia solo una parte, l'impulso che ne deriva non viene classificato nè in corrispondenza dell'energia del primo fotone, nè in quella del secondo, bensì in una zona diversa dello spettro (summing- out). Se invece viene rilasciata l'intera energia dei due fotoni, il conteggio del picco somma corrispondente si incrementa (summing-in).

Introduction

The basic theory on coincidence-summing phenomena is widely reported in many works. For example : ...

L'evoluzione storica della metodologia di approccio al problema delle coincidenze è data in molti lavori, ad esempio:

Debertin, K. and Schötzig U. (1979). *Coincidence summing corrections in Ge(Li)-spectrometry at low source-to-detector distances,* Nuclear Instruments and Methods **158**, 471-477.

Debertin, K. and Helmer R.G. (1988). *Gamma- and X-ray spectrometry with semiconductor detectors*. North-Holland, ISBN: 0444871071, 1988. Debertin K. (1990). *Corrections in gamma-ray spectrometry with Germanium detectors*. Proceedings of the 2th International Summer School, La Rabida, Huelva, Spain, June-July 1990, World Scientific. Gilmore G. (2008). *Practical Gamma-ray Spectrometry*. 2th edition , John Wiley &Sons, 2008. ISBN 978-0-470-86196-7. and others

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Basic expressions

With reference to the simple 2-level decay scheme (es. 60 Co), if we can neglect correction for decay, angular correlations, internal conversion, for the counting of a photopeak related to γ_{10} transition we can write the form

Con riferimento a un semplice schema a 2-livelli (tipo 60 Co, due emissioni in coincidenza, probabilità di emissione ~ 100%), se possiamo trascurare le correzioni per decadimento, correlazioni angolari, X di conversione interna, etc., per il conteggio relativo alla transizione γ_{10} possiamo scrivere:

$$C_{10} = A \varepsilon_{10}^{P} T_{C}$$

However, the presence of a coincident transition from level 2 to level 1, can be lead to a non-zero probability to detect simultaneously the photons with a loss in photopeak counting of γ_{10} . This probability is associated to the probability ε_{21}^{T} that the energy of γ_{21} is fully or in part released in the detector.

$$\mathbf{C}_{10}^* = \mathbf{A} \mathbf{T}_{\mathbf{C}} \boldsymbol{\varepsilon}_{10}^{\mathbf{P}} \left(1 - \boldsymbol{\varepsilon}_{21}^{\mathbf{T}}\right)$$

Tuttavia, la transizione dal livello 2 al livello 1 ha una probabilità non nulla di essere rivelata in coincidenza, con perdita di conteggio in γ_{10} . Questa probabilità è associata alla efficienza totale $\varepsilon_{21,}^{T}$ probabilità che l'energia del fotone γ_{21} sia tutta o in parte depositata nel rivelatore.

$$\mathbf{F}_{10}^{\mathrm{S}} = \mathbf{C}_{10} / \mathbf{C}^{*}_{10} = (1 - \boldsymbol{\mathcal{E}}_{21}^{\mathrm{T}})^{-1}$$

$$A(\gamma_{10}) = \frac{C*_{10}}{I_{10} \varepsilon_{10}^{P} T_{C}} F_{10}^{S}$$

Workshop : Metodi avanzati di spettrometria gamma

If we would consider only the effects of Internal Conversion (IC), we come easily to the expressions. *Una modifica delle espressioni, considerando la sola conversione interna, conduce a*

$$F_{10}^{s} = \left(1 - \frac{Y_{21}}{T_{1}} \frac{\varepsilon_{21}^{T}}{1 + \alpha_{21}^{T}}\right)^{-1}$$

$$F_{21}^{s} = \left(1 - \frac{Y_{10}}{T_{1}} \frac{\varepsilon_{10}^{T}}{1 + \alpha_{10}^{T}}\right)^{-1}$$

$$F_{20}^{s} = \left(1 + \frac{Y_{10}Y_{21}}{T_{1}Y_{20}} \frac{1 + \alpha_{20}^{T}}{(1 + \alpha_{10}^{T})(1 + \alpha_{21}^{T})} \frac{\varepsilon_{21}^{P} \varepsilon_{10}^{P}}{\varepsilon_{20}^{P}}\right)^{-1}$$

Workshop : Metodi avanzati di spettrometria gamma

Taking into account the coincidences γ -X_K following IC, the relations become

Prendendo in considerazione le coincidenze con i raggi X che seguono la conversione interna, si ha

$$F_{10}^{s} = \left(1 - \frac{Y_{21}}{T_{1}} \frac{\varepsilon_{21}^{T}}{1 + \alpha_{21}^{T}}\right)^{-1} \left(1 - \frac{Y_{21}}{T_{1}} \alpha_{21}^{K} \omega_{K} \frac{\varepsilon_{XK}^{T}}{1 + \alpha_{21}^{T}}\right)^{-1}$$

$$F_{21}^{s} = \left(1 - \frac{Y_{10}}{T_1} \frac{\varepsilon_{10}^{T}}{1 + \alpha_{10}^{T}}\right)^{-1} \left(1 - \frac{Y_{10}}{T_1} \alpha_{10}^{K} \omega_{K} \frac{\varepsilon_{X_K}^{T}}{1 + \alpha_{10}^{T}}\right)^{-1}$$

$$F_{20}^{s} = \left(1 + \frac{Y_{10}Y_{21}}{T_{1}Y_{20}} \frac{1 + \alpha_{20}^{T}}{(1 + \alpha_{10}^{T})(1 + \alpha_{21}^{T})} \frac{\varepsilon_{21}^{P}\varepsilon_{10}^{P}}{\varepsilon_{20}^{P}}\right)^{-1}$$

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

For EC decay, the relations become: Per il decadimento EC (cattura elettronica), si ha :

$$F_{10}^{s} = \left(1 - \frac{Y_{21}}{T_{1}} \frac{\varepsilon_{21}^{T}}{1 + \alpha_{21}^{T}}\right)^{-1} \left(1 - \frac{Y_{21}}{T_{1}} \alpha_{21}^{K} \omega_{K} \frac{\varepsilon_{X_{K}}^{T}}{1 + \alpha_{21}^{T}}\right)^{-1} \times \left(1 - \frac{Y_{21}}{T_{1}} \frac{Y_{32}(P_{K})_{32}}{T_{2}} \omega_{K} \varepsilon_{X_{K}}^{T}}\right)^{-1} \left(1 - \frac{Y_{31}(P_{K})_{31}}{T_{1}} \omega_{K} \varepsilon_{X_{K}}^{T}}\right)^{-1} \times \left(1 - \frac{Y_{10}}{T_{1}} \frac{\varepsilon_{10}^{T}}{1 + \alpha_{10}^{T}}\right)^{-1} \left(1 - \frac{Y_{10}}{T_{1}} \alpha_{10}^{K} \omega_{K} \frac{\varepsilon_{X_{K}}^{T}}{1 + \alpha_{10}^{T}}\right)^{-1} \times \left(1 - \frac{Y_{32}(P_{K})_{32}}{T_{2}} \omega_{K} \varepsilon_{X_{K}}^{T}}\right)^{-1} \times \left(1 - \frac{Y_{32}(P_{K})_{32}}{T_{2}} \omega_{K}^{$$

Workshop : Metodi avanzati di spettrometria gamma

For the sake of simplicity, the relations do not take into account bremmstrahlung radiation, angular correlations, shielding presence as well as other X-rays ($X_{L}, X_{M}, ...$) and electrons are considered removed by absorbers between source and detector (cap, dead layers and so on). This statement is generally correct for p-type detectors but is not strictly applicable to n-type or well-type detector based measurements.

Per semplicità, non sono presi in considerazione gli effetti di bremmstrahlung, correlazioni angolari, fotoni X relativi ai livelli L,M,.... e degli elettroni in quanto ritenuti rimossi dagli assorbitori (cap, strato-morto, etc.) interposti tra sorgente e cristallo di Ge; ciò può essere corretto per rivelatori tipo p mentre per rivelatori tipo n o a pozzetto non è strettamente applicabile.

Workshop : Metodi avanzati di spettrometria gamma

Mathematical formulation

As a generalization of the previous formulations, for a decay scheme with *n* levels, numbered from 0 (ground state) to *n*-1, the expression to compute the correction factor F_{ij}^{s} is derived from the one reported in:

Generalizzando le espressioni precedenti, per uno schema di decadimento a n livelli, numerati da 0 (stato finale del nucleo) ad n-1, l'espressione per il calcolo del fattore di correzione F_{ij}^{s} relativo a una transizione γ_{ij} (i>j) tra due livelli è stata dedotta da quella riportata in :

Morel, J., Chauvenet, B., Kadachi, A. (1983). *Coincidence-summing corrections in gamma-ray spectrometry for normalized geometries*, The Intern.J. of Applied Radiation and Isotopes **34**, 1115-1122.

Lepy, M.C., Morel, J., Chauvenet, B. (1986). Correction des pertes de comptage dues aux coïncidences gamma-gamma, gamma-X et X-X dans un spectre de photons. Rapport CEA-R-5356.

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Mathematical formulation

$$F_{ij}^{s} = \prod_{k=l+1}^{n-2} \prod_{k=l+1}^{n-1} (A_{kl}^{\gamma})^{-1} \prod_{p=1}^{j} \prod_{m=0}^{p-1} (B_{pm}^{\gamma})^{-1} \prod_{g=j+1}^{i-1} (C_{gj}^{\gamma})^{-1} \prod_{g=j+1}^{i-1} (C_{gj}^{\gamma})^{-1} \prod_{g=j+1}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{p=1}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{p=1}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{p=1}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{p=1}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{q=i}^{n-1} (C_{nl}^{\gamma})^{-1} \prod_{q=i}^{n-$$

Workshop : Metodi avanzati di spettrometria gamma

C

Mathematical formulation

The terms A,D are related to "*summing-out*" effects due to gamma transitions originating from levels above *i*, the terms B,E are related to transitions originating from levels lower than *j*, term C is associated to "*summing-in*" effects and, F represents "*summing-out*" contribution of X-ray from EC-decay of the parent nucleus.

I termini A,D sono correlati all'effetto di summing-out dovuto a transizioni gamma che si originano da livelli superiori a quello di riferimento (i), mentre B,E sono relativi a transizioni che si originano da livelli inferiori a j, C è associato al summing-in, F rappresenta il termine di summing-out con radiazioni X originati dal decadimento EC.

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Mathematical formulation

$$\mathbf{M}_{li} = \begin{cases} 1 & (l=i) \\ \frac{\mathbf{Y}_{li}}{\mathbf{T}_{i}} & (l=i+1) \\ \frac{\mathbf{Y}_{li}}{\mathbf{T}_{i}} + \sum_{b=i+1}^{l-1} \frac{\mathbf{Y}_{lb}}{\mathbf{T}_{b}} & \mathbf{M}_{bi} & (i+2 \le l \le n-2) \end{cases}$$
$$\mathbf{N}_{jp} = \begin{cases} 1 & (p = j) \\ \frac{\mathbf{Y}_{jp}}{\mathbf{T}_{j}} & (p=j-1) \\ \frac{\mathbf{Y}_{jp}}{\mathbf{T}_{j}} + \sum_{q=p+1}^{j-1} \frac{\mathbf{Y}_{jq}}{\mathbf{T}_{j}} & \mathbf{N}_{qp} & (1 \le p \le j-2) \end{cases}$$

The quantities M_{ji} and N_{jp} represent the probabilities that a transition cascade starting from level ℓ will reach the level ℓ and from level jdown to level p, respectively.

Le quantità M e N rappresentano le probabilità che una transizione che parte da un livello l possa raggiungere il livello l e che, partendo al livello j, arrivi al livello p, rispettivamente.

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

MATRIX REPRESENTATION OF A DECAY SCHEME

Page -123-

GAMMA-RAY ENERGIES AND INTENSITIES

dide: actor	⁶⁰ Co : 55 cm ³ coaxial	Ge (Li)	Half Life: 5.2714(5) yr. Method of Production: ⁵⁹ Co(n, ₇)					
	E, (keV)	σE,	L, (ret)	4,09	σĻ	s		
	346.93	0.07		0.0076	0.0005	4		
	826.28	0.09		0.0076	0.0008	4		
	1173.237	0.004	100	99.9736	0.0007	1		
	1332.501	0.005	100	99,9856	0.0004	1		
	2158.77	0.09	1260330	0.0011	0.0002	4		
	2506	1.000	10	10000000000	10000000	4		

y, dEy, Ly, dLy - 1998 ENSOF Da

Very intuitive but insufficient as regards decay data *Intuitivo ma insufficiente per quanto riguarda i dati presentati*

Gamma-ray spectrum catalogue –

(Helmer et al., Idaho National Engineering & Environmental Laboratory)

24MG B 1392.94 1699.939 8 6.12 5 24MG G 2869.50 6 0.00024 3 M1+E2 7+89.56 19 24MG G 996.09 6 0.00123 27M1+E2

24MGS B EAV=555.15 8 24MG G 2754.007 1 26.E-7 24MG2 G KC=25.E-7 \$LC=16.E-8 \$MC= 24MG 0.000015 24MG2 G KC=0.000016 5\$LC=0.00000

UNIVERSITA' DEGLI STUDI DI PALERMO

DIPARTIMENTO DI INGEGNERIA NUCLEARE

60NI 60NI C 60NI T 60NI T	60CO B- DECAY (5.2 References: 2002Ba8 Auger electrons and {U Energy (keV)	711 Y) 5 ^X ray energies a)} {U Intensit	and emission ir :y } {U Li	ntensities: ine }	MA	TRIX	
60NI T 60NI T	7.46097 7.47824	0.00334 12 0.0065 3	XKA2 XKA1		RF	PRESENT	ΔΤΙΟΝ
60NI T 60NI T	8.2647]	XKB3				/
60NI T 60NI T	8.3287] 0.00136 5]	XKB1 XKB5II			ADECA	
60NI T 60NI T	0.74-0.94	0.0002	XL (total)		SC	HEME	
60NI T 60NI T	0.74 -0.94		XLL XLG				
60NI T 60NI T	6.26-6.54	11	KLL AUGER				hat
60NI T 60NI T	7.2-7.47 8.1-8.32] 0.0154 5	^KLX AUGER	R			ιαι
60NI T 60NI N	0.7-0.9	0.0392 12	L AUGER				
60CO P 60NI L	9 0.0 5+ 1332.508 4 2+	5.2711 0.713 E	Y 8 PS 11	2823.07	21 60NI L 0	0+	STABLE
60NI B 60NIS B	5 1490.56 210.12 5 EAV=625.6 1 60NI G	3 14.7 1332.492 4 99.98	326 6 E2		2U 0.000125		
60NI2 G 60NI L	KC=0.000115 5%LC=11 2158.61 3 664 46 210 002	.3E-6 3\$MC= 0.59 PS	5 17		211		
60NIS B 60NI2 G	EAV=274.8 1 60NI G KC=0.0003 4\$LC=29.1	826.10 3 0.007 E-6 17\$MC=	76 8 M1+E2	0.9 3	0.000344		
60NI G 60NI2 G	2158.57 3 0.0012 KC=44.5E-6 14\$LC=43	2 E2 .E-7 2\$MC=	49.5E	E-615			
60NI L 60NI B	2505.748 5 4+ 317.32 2199.88	0.30 PS 3 7.51	5 9				
60NIS B 60NI2 G	6 EAV=95.6 1 60NI G 3 7 KC=0.00499 15\$LC=0.0	347.14 7 0.0075 000503 15\$MC=	5 4 [E2]		0.0055717		
60NI G 60NI2 G	1173.228 3 99.85 KC=0.000151 7\$LC=14	3 E2(+M3) .8E-6 4\$MC=	0.000)164			
60NI G	2505.692 5 20.E-7 KC=0.000078 3\$LC=76	4 E 4 E-7 3SMC=	0.000	083			

Workshop : Metodi avanzati di spettrometria gamma

LNE – LNHB/CEA Table de Radionucléides

 $^{60}_{27}$ Co $_{33}$

http://www.nucleide.org/DDEP _WG/Nuclides/Co-60_tables.pdf 27 Co 33

1 Decay Scheme

Co-60 disintegrates by beta minus emissions to excited levels of Ni-60. Le cobalt 60 se désintègre par émission bêta moins vers des niveaux excités de nickel 60.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{60}\mathrm{Co}~) &:& 5,2711 & (8) & \mathrm{a} \\ Q^{-}(^{60}\mathrm{Co}~) &:& 2823,07 & (21) & \mathrm{keV} \end{array}$

2.1 β^- Transitions

	Energy keV	Probability × 100	N	lature	lg ft		
$\beta_{0,3}^-$	317,32 (21 664 46 (21) 99,88 (3)	A Unique 2	llowed nd Forbidde	7,51		
$\beta_{0,1}^{-2}$	1490,56 (21) 0,12 (3)	Unique 2	nd Forbidde	m 14,7		
Gar	nma Transi	tions and h	ternal Co	museion	Coefficie	mte	
Gar	nma Transi	tions and h	nternal Co	onversion	Coefficie	ents	\sum
Gar	nma Transi Energy keV	tions and In	nternal Co	nversion (10 ⁻⁴)	Coefficie $\frac{\alpha_L}{(10^{-4})}$	ents $\binom{\alpha_T}{(10^{-4})}$	α ₄ (10 ⁻⁵)
Gar	nma Transi Energy keV 347,14 (7)	tions and In ¹ 375 × 100 0,0075 (4)	ternal Co	(10 ⁻⁴) 49,9 (15)	Coefficie $\frac{\alpha_L}{(10^{-4})}$ 5.03 (15)	ents (10 ⁻⁴) 55,7 (17)	α _* (10 ⁻⁵)
Gar 	Energy keV 347,14 (7) 826,10 (3)	tions and In ¹ 77-68 × 100 0,0075 (4) 0,0076 (8)	144 minute for the formation of the form	(10 ⁻⁴) 49,9 (15) 3,0 (4)	Coefficie $\frac{\alpha_L}{(10^{-4})}$ 5,03 (15) 0,291 (17)	ents (10^{-4}) 55.7 (17) 3.4 (4)	α ₄ (10 ⁻⁵)
Gar 	Energy keV 347,14 (7) 826,10 (3) 1173,240 (3)	tions and In × 100 0,0075 (4) 099,85 (3)	1621 1621 1621 1622 1621 1621 1621 1621	(10^{-4}) $(10^$	Coefficie $\frac{\alpha_L}{(10^{-4})}$ 5.03 (15) 0.291 (17) 0.148 (4)	ents (10 ⁻⁴) 55,7 (17) 3,4 (4) 1,68 (4)	α ₄ (10 ⁻⁵) 0,62 (7)
Gar 	Energy keV 347,14 (7) 826,10 (3) 1173,240 (3) 332,508 (4)	tions and In × 100 0,0075 (4) 0,0076 (8) 99,85 (3) 99,9085 (2)	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(10 ⁻⁴) (10 ⁻⁴) 49,9 (15) 3,0 (4) 1,51 (7) 1,15 (5)	Coefficie $\frac{\alpha_L}{(10^{-4})}$ 5.03 (15) 0.291 (17) 0.148 (4) 0.113 (3)	$\frac{\frac{\alpha_T}{(10^{-4})}}{\frac{55,7(17)}{3,4(4)}}$	0.62 (7) 0.62 (7) 3.4 (4)
Gar (2.1(Ni) (2.1(Ni) (2.1(Ni) (2.1(Ni) (2.1(Ni) (2.1(Ni)) (2.1(Ni))	Energy keV 347,14 (7) 826,10 (3) 1173,240 (3) 1332,508 (4) 2158,61 (3)	tions and In × 100 0.0075 (4) 0.0076 (8) 99.9988 (2) 0.0012 (2)	161 in 1 sign 162 in 162 in 16	(10 ⁻⁴) 49.9 (15) 3.0 (4) 1.51 (7) 1.15 (5) 0,445 (14)	Coefficie $\frac{\alpha_L}{(10^{-4})}$ 5.03 (15) 0.291 (17) 0.148 (4) 0.113 (3) 0.043 (2)	ents (10^{-4})	α_{4} (10 ⁻⁵) 0,62 (7) 3,4 (4)

INEEL /R. G. Helmer

03/02/1998 - 1/3/2010

DIPARTIMENTO DI INGEGNERIA NUCLEARE

MATRIX REPRESENTATION OF A

More suitable, because the formulation was chosen to use the data provided in the database, www.nucleide.org/DDEP WG/D **DEPdata.htm** Molto più adatti, anche perché la formulazione è stata appositamente scelta; i dati forniti nel database sono ormai disponibili su web www.nucleide.org/DDEP_WG/DD EPdata.htm

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

MATRIX REPRESENTATION OF A DECAY SCHEME

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

MATRIX REPRESENTATION OF A DECAY SCHEME

	0	1	2	3	4	5
0	E ₀	I_{10}	I ₂₀	I ₃₀	I ₄₀	T ₀
1	Y ₁₀	E ₁	0	I ₃₁	0	T_1
2	Y ₂₀	0	E ₂	0	0	T_2
3	Y ₃₀	Y_{31}	0	E ₃	I ₄₃	T ₃
4	Y40	0	0	Y ₄₃	E ₄	T_4
5	Y ₅₀	0	Y_{52}	Y ₅₃	Y_{54}	
	0 1 2 3 4 5	$\begin{array}{c c} 0 \\ 0 \\ 1 \\ Y_{10} \\ 2 \\ Y_{20} \\ 3 \\ Y_{30} \\ 4 \\ Y_{40} \\ 5 \\ Y_{50} \end{array}$	$\begin{array}{c ccc} 0 & 1 \\ 0 & E_0 & I_{10} \\ 1 & Y_{10} & E_1 \\ 2 & Y_{20} & 0 \\ 3 & Y_{30} & Y_{31} \\ 4 & Y_{40} & 0 \\ 5 & Y_{50} & 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Workshop : Metodi avanzati di spettrometria gamma

Equations to compute coincidence-summing correction factor can be obtained for each nuclide taking into account decay data taken mainly from *DDEP/BIPM-5 database* (*CEA-LMRI, 2004-2008*).

Le equazioni per il calcolo di correzione del fattore di coincidenza-somma possono ottenersi tenendo conto dei dati dal database DDEP/BIPM-5 (CEA-LMRI, 2004-2008).

Equation terms are easy to compute because they are related to transition energy E and not to levels *i* and *j* from which originates.

I termini dell'equazione sono facili da calcolare perché legati all'energia E della transizione e ai livelli i e j.

So, information about the decay layout are unnecessary. Each term of equations appears as $[1 \pm h \cdot \varepsilon]$, where h is a numerical coefficient which depends only on the decay data and ε is an efficiency value (FEPE=Full-Energy_peak efficiency or TE= Total efficiency) Quindi, le informazioni relative allo schema di decadimento non sono necessari . Ogni fattore dell'equazione si può scrivere come $[1 \pm h \varepsilon]$, dove h è un coefficiente numerico che dipende soltanto dai dati di decadimento ed ε è un valore di efficienza.

It should point out here that the correction factor, to avoid errors, must be assessed by calculating each term within the brackets and then working the product of various terms.

Si deve precisare che il fattore di correzione, al fine di evitare errori, deve essere valutato calcolando ogni termine entro le parentesi e poi operando il prodotto dei vari termini.

To better explain this point, we take as reference an expression whose coefficients are given either in *Schima and Hoppes* (1983) or in *Dryak et al.* (2009), namely the one refers to 604 keV of ¹³⁴Cs.

Per spiegare meglio questo punto, si prenda come riferimento una espressione i cui coefficienti sono forniti sia in Schima e Hoppes (1983) sia in Dryak et al. (2009), vale a dire l'equazione per l'energia 604 keV del ¹³⁴Cs.

As efficiency values, we adopt the evaluations referring to "0 cm" efficiency curve, as determined in the next example. Per le efficienze, saranno adottate le valutazioni riferite alla geometria "0 cm", le cui curve di efficienza sono riportate nell'esempio appresso riportato.

Schima- Hoppes (1983) 1/Fs (604 keV ¹³⁴Cs)= [1–0.004 ε^T(K_X)–0.074 ε^T(563)–0.160 ε^T(569)–0.890 ε^T(796) –0.075 ε^T(802) –0.032 ε^T(1365)]→ 1.479

Dryák, et al. (2009) 1/Fs = [1-0.004 ε^T(L_X)-0.0032 ε^T(K_α) -0.0008 ε^T(K_β)-0.0125 ε^T(475) - 0.0854 ε^T(563) -0.1563 ε^T(569)-0.8705 ε^T(796) -0.0728 ε^T(802) - 0.0307 ε^T(1365) - 0.010 ε^T(1038)] → 1.4245 (But if we add a quadratic term +0.8705×0.1563× ε^T(569 keV)× ε^T(795keV)) → 1.407.

Present work 1/Fs (604keV,¹³⁴Cs)=[1-0.8706 $\varepsilon^{T}(795)$][1-0.1567 $\varepsilon^{T}(569)$] [1-0.0853 $\varepsilon^{T}(563)$] [1-0.0726 $\varepsilon^{T}(802)$] [1-0.0307 $\varepsilon^{T}(1365)$] [1-0.01257 $\varepsilon^{T}(475)$] [1-0.0101 $\varepsilon^{T}(1038)$] → 1.383

 ϵ term +0.8705×0.1563× ϵ^{T} (569 keV) × ϵ^{T} (795keV)) → 1.407.

NIVERSITA' **DEGLI STUDI DI PALERMO**

The results are quite different. However, if the coefficients reported by both authors are composed in the formulation above suggested, i.e a series of products, the results practically coincide. I risultati sono diversi. Tuttavia, se i coefficienti riportati da entrambi gli autori sono utilizzati nella formulazione suggerita, una serie di prodotti, i risultati praticamente coincidono.

```
With coefficients of Schima and Hoppes:
1/Fs (604 \text{ keV}^{134}Cs) = [1-0.074 \epsilon^{T}(563)] [1-0.160 \epsilon^{T}(569)]
                                       [1-0.890 \varepsilon^{T}(796 \text{ keV})] [1-0.075 \varepsilon^{T}(802 \text{ keV})]
                                      [1-0.032 \epsilon^{T}(1365 \text{ keV})] [1-0.004 \epsilon^{T}(K_{x})] \rightarrow 1.381.
 With coefficients of Dryak :
1/Fs (604 \text{keV},^{134}\text{Cs}) = [1-0.0854 \epsilon^{T}(563 \text{keV})] [1-0.1563\epsilon^{T}(569 \text{keV})]
                                [1-0.8705ε<sup>T</sup>(796 keV)] [1-0.0728 ε<sup>T</sup>(802 keV)]
                                [1-0.0307 ε<sup>T</sup>(1365 keV)] [1-0.0125 ε<sup>T</sup>(475keV)] )]
                                [1-0.01 \ \varepsilon^{T}(1038 \ \text{keV})] \ [1-0.0004 \ \varepsilon^{T}(L_{x})]
                                [1-0.0032 \ \varepsilon^{\mathsf{T}}(\mathsf{K}_{\alpha})] [1-0.0008 \ \varepsilon^{\mathsf{T}}(\mathsf{K}_{\beta})] \rightarrow 1.383.
```


e term +0.8705×0.1563× ε^T(569 keV) × ε^T(795keV)) → 1.407.

EGLI STUDI DI PALERMO

Therefore, it is confirmed that the differences are related mostly to the different degree of approximation of the relation and only in less part to differences in the characteristic data of decay scheme. As a suggestion, it seems suitable to use a form similar to the one here proposed and the numerical coefficients can be obtained from Schima and Hoppes (1983) or Dryak et al. (2009) besides those provided by us and included in the cited article in press on "Radiation Physics and Chemistry".

Ciò conferma, pertanto, che le differenze sono dovute principalmente al tipo di formulazione (e diverso grado di approssimazione) e solo in minima parte a differenze nei dati di decadimento.

Come suggerimento, sembra utile utilizzare una formulazione tipo serie di prodotti, i cui coefficienti numerici possono essere ottenuti sia da Schima e Hoppes (1983), sia da Dryak et al. (2009), o utilizzare quelli dati nel presente lavoro e riportati più diffusamente in un articolo in stampa su "Radiation Physics and Chemistry".

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Table 1

Expressions of coincidence-summing correction factor for the most intense gamma emissions of a selected set of nuclides. The $[1 \pm h\epsilon]$ factor with h less than 0.005 are not reported with the exception of γ -X_K terms.

Nuclide	Energy (keV)	I (%)	$F^{s}(E)$
^{110m} Ag	657.8	94.38	$ \begin{bmatrix} 1 - 0.7716\epsilon^{T}(884.7) \end{bmatrix} \begin{bmatrix} 1 - 0.3638 \epsilon^{T}(937.5) \end{bmatrix} \begin{bmatrix} 1 - 0.2603 \epsilon^{T}(1384.3) \end{bmatrix} \begin{bmatrix} 1 - 0.2090 \epsilon^{T}(763.9) \end{bmatrix} \begin{bmatrix} 1 - 0.1557 \epsilon^{T}(706.7) \end{bmatrix} \begin{bmatrix} 1 - 0.1372 \epsilon^{T}(1505.0) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.1113 \epsilon^{T}(677.6) \end{bmatrix} \begin{bmatrix} 1 - 0.0764 \epsilon^{T}(818.0) \end{bmatrix} \begin{bmatrix} 1 - 0.0438 \epsilon^{T}(687.0) \end{bmatrix} \begin{bmatrix} 1 - 0.0384 \epsilon^{T}(446.8) \end{bmatrix} \begin{bmatrix} 1 - 0.0320 \epsilon^{T}(744.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0287 \epsilon^{T}(620.4) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0126 \epsilon^{T}(1562.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0029 \epsilon^{T}_{XX}(23.7) \end{bmatrix} $
	937.5	34.51	$[1-1.0095 \varepsilon^{T}(884.7)] [1-0.9948 \varepsilon^{T}(657.8)] [1-0.1055 \varepsilon^{T}(446.8)] [1-0.0041 \varepsilon^{T}_{XK}(23.7)]$
	1384.3	24.70	$ \begin{bmatrix} 1 - 1.0095 \ \varepsilon^{T}(884.7) \end{bmatrix} \begin{bmatrix} 1 - 0.9948 \ \varepsilon^{T}(657.8) \end{bmatrix} \begin{bmatrix} 1 + 0.4258 \ \varepsilon^{P}(677.6) \ \varepsilon^{P}(706.7) / \varepsilon^{P}(1384.3) \end{bmatrix} \begin{bmatrix} 1 + 0.1473 \ \varepsilon^{P}(937.5) \ \varepsilon^{P}(446.8) / \varepsilon^{P}(1384.3) \end{bmatrix} \begin{bmatrix} 1 + 0.1096 \ \varepsilon^{P}(620.4) \ \varepsilon^{P}(763.9) / \varepsilon^{P}(1384.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0034 \ \varepsilon^{T}_{XK}(23.7) \end{bmatrix} $
¹⁹⁸ Au	411.8	95.54	$[1-0.0081 \ \varepsilon^{T}(675.9)]$
¹³³ Ba	81.0	32,90	$[1 - 0.6831 \varepsilon^{T}(356.0)] [1 - 0.2019 \varepsilon^{T}(302.9)] [1 - 0.0691 \varepsilon^{T}(276.4)] [1 - 0.0292 \varepsilon^{T}(79.6)] [1 - 0.0161 \varepsilon^{T}(53.2)] [1 - 0.7507 \varepsilon^{T}_{XK}(31.7)]$
	302.9	18.34	$[1-0.3622 \epsilon^{T}(81.0)] [1-0.0746 \epsilon^{T}(53.2)] [1+0.0078 \epsilon^{P}(79.6) \epsilon^{P}(223.2)/\epsilon^{P}(302.9)] [1-1.4541 \epsilon^{T}_{XK}(31.7)]$
	356.0	62.05	$[1-0.3622 \ \varepsilon^{T}(81.0)] \ [1+0.0365 \ \varepsilon^{P}(79.6) \ \varepsilon^{P}(276.4)/\varepsilon^{P}(356.0)] \ [1+0.0220 \ \varepsilon^{P}(302.9) \ \varepsilon^{P}(53.2)/\varepsilon^{P}(356.0)] \ [1-1.0887 \ \varepsilon_{XK}^{T}(31.7)]$
¹⁴⁰ Ba	162.7	6.26	$[1 - 0.5107 \varepsilon^{T}(304.9)] [1 - 0.0092 \varepsilon^{T}(113.5)] [1 + 0.005 \varepsilon^{P}(30.0) \varepsilon^{P}(132.7)/\varepsilon^{P}(162.7)] [1 - 0.0260 \varepsilon^{T}_{XK}(34.2)]$
	537.3	24.39	$[1-0.1548 \varepsilon^{T}(30.0)] [1-0.0172 \varepsilon^{T}(13.9)]$
²⁰⁷ Bi	569.7	97.76	$[1-0.7465 \varepsilon^{T}(1063.7)] [1-0.0688 \varepsilon^{T}(1770.2)] [1-0.7305 \varepsilon^{T}_{XK}(Z6.6)]$
	1063.7	74.58	$[1-0.9785 \varepsilon^{T}(569.7)] [1-0.7205 \varepsilon^{T}_{XK}(76.6)]$
212Bi	727.7	6.64	$[1 - 0.1625 \varepsilon^{T}(785.5)] [1 - 0.0805 \varepsilon^{T}(1078.6)] [1 - 0.0556 \varepsilon^{T}(893.4)] [1 - 0.0205 \varepsilon^{T}(952.3)] [1 - 0.0081 \varepsilon^{T}_{XK}(81.9)]$
²¹⁴ Bi	609,3	45.49	$ \begin{bmatrix} 1 - 0.3269 \ \varepsilon^{T}(1120.3) \end{bmatrix} \begin{bmatrix} 1 - 0.1278 \ \varepsilon^{T}(1238.1) \end{bmatrix} \begin{bmatrix} 1 - 0.1073 \ \varepsilon^{T}(768.4) \end{bmatrix} \begin{bmatrix} 1 - 0.068 \ \varepsilon^{T}(934.1) \end{bmatrix} \begin{bmatrix} 1 - 0.0524\varepsilon^{T}(1408.0) \end{bmatrix} \begin{bmatrix} 1 - 0.0467 \ \varepsilon^{T}(1509.2) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0358 \ \varepsilon^{T}(1155.2) \end{bmatrix} \begin{bmatrix} 1 - 0.0335 \ \varepsilon^{T}(665.4) \end{bmatrix} \begin{bmatrix} 1 - 0.0315 \ \varepsilon^{T}(1281.0) \end{bmatrix} \begin{bmatrix} 1 - 0.0292 \ \varepsilon^{T}(1401.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0277\varepsilon^{T}(806.1) \end{bmatrix} \begin{bmatrix} 1 - 0.0174 \ \varepsilon^{T}(1385.3) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0155\varepsilon^{T}(1583.2) \end{bmatrix} \begin{bmatrix} 1 - 0.0134\varepsilon^{T}(1207.6) \end{bmatrix} \begin{bmatrix} 1 - 0.0133\varepsilon^{T}(703.2) \end{bmatrix} \begin{bmatrix} 1 - 0.0116\varepsilon^{T}(719.9) \end{bmatrix} \begin{bmatrix} 1 - 0.0088\varepsilon^{T}(1538.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0085\varepsilon^{T}(454.8) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0075\varepsilon^{T}(1838.4) \end{bmatrix} \begin{bmatrix} 1 - 0.0074\varepsilon^{T}(388.9) \end{bmatrix} \begin{bmatrix} 1 - 0.071\varepsilon^{T}(1052.0) \end{bmatrix} \begin{bmatrix} 1 - 0.0071\varepsilon^{T}(1599.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0060\varepsilon^{T}(1594.8) \end{bmatrix} \begin{bmatrix} 1 - 0.0056 \ \varepsilon^{T}(1133.7) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0126 \ \varepsilon^{T}_{XK}(81.0) \end{bmatrix} \end{bmatrix} $
	1120.3	14.91	$[1 - 0.9973 \varepsilon^{T}(609.3)] [1 - 0.02164 \varepsilon^{T}(388.9)] [1 - 0.0069 \varepsilon^{T}(752.8)] [1 - 0.0051 \varepsilon^{T}(474.5)] [1 + 0.0258 \varepsilon^{P}(665.4) \varepsilon^{P}(454.8)/\varepsilon^{P}(1120.3)] [1 - 0.0191 \varepsilon^{T}_{XK}(81.0)]$
	1764.5	15.31	$[1-0.0208 \varepsilon^{T}(964.1)] [1+0.1065 \varepsilon^{P}(609.3) \varepsilon^{P}(1155.2)/\varepsilon^{P}(1764.5)] [1+0.0091 \varepsilon^{P}(1377.7) \varepsilon^{P}(386.8)/\varepsilon^{P}(1764.5)]$
⁸² Br	554.4	70.60	$ \begin{bmatrix} 1 - 0.7833 \ \varepsilon^{T}(776.5) \end{bmatrix} \begin{bmatrix} 1 - 0.6133 \ \varepsilon^{T}(619.1) \end{bmatrix} \begin{bmatrix} 1 - 0.3925 \ \varepsilon^{T}(698.4) \end{bmatrix} \begin{bmatrix} 1 - 0.3824 \ \varepsilon^{T}(1317.5) \end{bmatrix} \begin{bmatrix} 1 - 0.2267 \ \varepsilon^{T}(1474.9) \end{bmatrix} \begin{bmatrix} 1 - 0.0116 \ \varepsilon^{T}(1044.0) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0115 \ \varepsilon^{T}(273.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0015 \ \varepsilon^{T}_{XK}(12.8) \end{bmatrix} $
	776.5	83.40	$ \begin{bmatrix} 1 - 0.6631 \varepsilon^{T} (554.3) \end{bmatrix} \begin{bmatrix} 1 - 0.3384 \varepsilon^{T} (698.4) \end{bmatrix} \begin{bmatrix} 1 - 0.3294 \varepsilon^{T} (619.1) \end{bmatrix} \begin{bmatrix} 1 - 0.3277 \varepsilon^{T} (1044.0) \end{bmatrix} \begin{bmatrix} 1 - 0.3217 \varepsilon^{T} (1317.5) \end{bmatrix} \begin{bmatrix} 1 - 0.2869 \varepsilon^{T} (827.8) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0253 \varepsilon^{T} (221.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0151 \varepsilon^{T} (1007.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0149 \varepsilon^{T} (606.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0096 \varepsilon^{T} (273.5) \end{bmatrix} \begin{bmatrix} 1 - 0.0089 \varepsilon^{T} (1650.3) \end{bmatrix} \begin{bmatrix} 1 - 0.0068 \varepsilon^{T} (92.2) \end{bmatrix} \\ \begin{bmatrix} 1 - 0.0012 \varepsilon^{T}_{XK} (12.8) \end{bmatrix} $

E. Tomarchio and S. Rizzo - Coincidence-summing correction equations in gamma-ray spectrometry with ptype HPGe detectors . In press on Radiation Physics and Chemistry, available on-line from 30 September 2010.

a trong at a stress stresses and a stress of the stress of	Table .	1.	True	summing	probability	Pc	and	Ps
--	---------	----	------	---------	-------------	----	-----	----

Na-22 : co	incidence	of the E0 wit	h El	Ce-139 : coincidence of the E0 with E1				
E0=12	274.6			E0=165.9				
E1	Pc			E1	Pc			
LX(Ne)	0.0000			LX(La)	0.0706			
KXα(Ne)	0.0014			KXα(La)	0.5721			
KXβ(Ne)	0.0000			KXβ(La)	0.1287			
511.0	0.8987							
				Eu-152 : co	incidence	of the E0 wit	<u>h E1</u>	
Na-24 : coi	ncidence o	f the E0 with	1 E1	E0=121.8		E0=244.7		
E0=13	368.6	E0=2	754.0	E1	Pc	E1	Pc	
E1	Pc	E1	Pc	LX(Sm)	0.1283	5.6	0.1941	
LX(Mg)	0.0000	0.1	0.0000	KXα(Sm)	0.6181	39.9	0.8445	
KXα(Mg)	0.0000	1.2	0.0000	KXβ(Sm)	0.1546	45.6	0.2112	
KXβ(Mg)	0.0000	1.3	0.0000	244.7	0.1232	121.8	0.4620	
2754.0	0.9994	1368.6	1.0000	444.0	0.0271	295.9	0.0126	
				688.7	0.0136	444.0	0.0381	
Sc-46 : coi	incidence o	of the E0 with	<u>h E1</u>	867.4	0.0691	488.7	0.0141	
E0=889.3		E0=1	120.6	964.1	0.2337	656.5	0.0172	
E1	Pc	E1	Pc	1005.2	0.0108	674.6	0.0205	
LX(Ti)	0.0000	0.5	0.0000	1112.1	0.2183	719.4	0.0317	
KXα(Ti)	0.0000	4.5	0.0000	1212.9	0.0231	867.4	0.5061	
KXβ(Ti)	0.0000	4.9	0.0000	1408.0	0.3397	926.3	0.0344	
1120.6	0.9997	889.3	0.9998			1005.2	0.0793	
						1212.9	0.1692	
Cr-51 : coir	ncidence o	f the E0 with	E1	E0=344.3		E0=778.9		
E0=320.1				E1	Pc	E1	Pc	
E1	Pc			LX(Gd)	0.0007	LX(Gd)	0.0054	
LX(V)	0.0050			KXα(Gd)	0.0031	KXα(Gd)	0.0222	
$KX\alpha(V)$	0.2011			KXβ(Gd)	0.0008	KXβ(Gd)	0.0057	
$KX\beta(V)$	0.0269			411.1	0.0815	344.3	0.9616	
				503.5	0.0049	520.2	0.0039	
Fe-52 : coir	ncidence o	f the E0 with	E1	520.2	0.0019			
E0=168.7		E0=1	434.1	586.3	0.0169			
E1	Pc	E1	Pc	678.6	0.0171			
LX(Mn)	0.0029	LX(Cr)	0.0001	764.8	0.0067			
KXα(Mn)	0.1100	KXα(Cr)	0.0039	778.9	0.4680			
KXβ(Mn)	0.0149	$KX\beta(Cr)$	0.0006	989.7	0.0011			
511.0	0.5596	511.0	0.9842	1089.7	0.0626			
				1299.1	0.0590			

P. Dryak, P. Kovar (2009) -Table for true summation effect in gamma-ray spectrometry -Journal of Radionalytical and Nuclear Chemistry, 279

(2), 385-394

Workshop : Metodi avanzati di spettrometria gamma

Milano, 10-12 novembre 2010

DIPARTIMENTO DI INGEGNERIA NUCLEARE

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Present work

Energy	Intensity	Coincident	Summing	Coincident	Summing	Coincident	Summing
(keV)	(%)	with	Coefficient	with	Coefficient	with	Coefficient
		Energy		Energy		Energy	
		(keV)		(keV)		(keV)	
657.8	94.38	884.7	0.7716	937.5	0.3638	1384.3	0.2603
		763.9	0.2090	706.7	0.1557	1505.0	0.1372
		677.6	0.1113	818.0	0.0764	687.0	0.0438
		446.8	0.0384	744.3	0.0320	620.4	0.0287
		1562.3	0.0126				
937.5	34.51	884.7	1.0095	657.8	0.9948	446.8	0.1055
1384.3	24.70	884.7	1.0095	657.8	0.9948	677.6;	0.4258
						706.7	
		937.5;	0.1473	620.4;	0.1096		
		446.8		763.9			

Workshop : Metodi avanzati di spettrometria gamma

EXPERIMENTAL VALIDATION OF COINCIDENCE EQUATIONS Corrected efficiency values for ⁶⁰Co and ¹⁵²Eu are almost equal to the ones of the "single-line" efficiency curve.

To use equations for *point sources* is needed to introduce, for a given measurement geometry and for each energy, point source FEPE or TE values. The last values can be derived from suitable calibration curves $\epsilon^{T}(E)$ and $\epsilon^{P}(E)$ obtained through a proper fit of spectrometric measurement data of "single-line" radionuclide.

L'impiego delle equazioni per sorgenti puntiformi è immediato, basta introdurre, per una geometria di misura, i rispettivi valori di efficienza FEPE o TE, relativi all'energia specificata. Questi valori possono essere ricavati da adatte curve di calibrazione di $\varepsilon^{T}(E)$ and $\varepsilon^{P}(E)$ ottenute tramite misure spettrometriche di radionuclidi "single-line".

The equations cannot be applied to extended volume sources, as the effect of coincidence is related to coincident photons emitted from a point on the source. The average efficiency over the entire volume can not be However, any source volume can be considered used. composed of many volumes dV located at a distance r. Le equazioni non possono essere applicate alle sorgenti di volume perché l'effetto di coincidenza è collegato a fotoni emessi in coincidenza da uno stesso punto della sorgente. Non possono quindi essere impiegate le efficienze mediate sull'intero volume. Tuttavia, qualsiasi volume può essere considerato composto da molti volumi piccoli (dV) posti a distanza r.

The relations return to be valid for each elementary volume, considered as a point source, with the condition to know $\varepsilon^{T}(E, \mathbf{r})$ and $\varepsilon^{P}(E, \mathbf{r})$ efficiency behaviours as function of position besides that of the attenuation factor as function of energy and sample matrix composition, if required. Unfortunately, the experimental determination of $\varepsilon^{T}(E, \mathbf{r})$ and $\varepsilon^{P}(E, \mathbf{r})$ is a difficult and tedious task, and with a rather complex data analysis. Le relazioni possono essere considerate valide per ogni volume elementare, considerato come una sorgente puntiforme, con la condizione di conoscere gli andamenti $\varepsilon^{T}(E,\mathbf{r})$ and $\varepsilon^{P}(E,\mathbf{r})$, oltre che i fattori di attenuazione in funzione della composizione di energia e matrice del campione, se necessario. Purtroppo, la determinazione sperimentale <u>degli andamenti</u> $\varepsilon^{T}(E,\mathbf{r})$ and $\varepsilon^{P}(E,\mathbf{r})$ <u>è un compito difficile e noioso, e con</u> una analisi piuttosto complessa dei dati.

The assessment of efficiency behaviours performed with efficiency transfer, Monte Carlo methods or others, lets we to propose the use of equations for volume sources by substituting FEPE and TE with the corresponding "<u>effective FEPE</u>" and "<u>effective TE</u>" as defined in (*Arnold and Sima*, 2001). *La valutazione degli andamenti delle efficienze, effettuata con codici Monte carlo o di trasferimento di efficienza, ci ha indotti a usare le equazioni sostituendo FEPE e TE con il corrispondente "FEPE efficace" e "TE efficace" come definito nella (Arnold e Sima, 2001).*

$$\varepsilon_{T}^{eff}\left(E_{i},E_{j},V\right) = \frac{\int \varepsilon_{p}\left(E_{i},\vec{r}\right) \cdot \varepsilon_{T}\left(E_{j},\vec{r}\right) dV}{\int \varepsilon_{p}\left(E_{i},\vec{r}\right) dV} \approx \frac{\sum_{i=1}^{N} \varepsilon_{p}\left(E_{i},\vec{r}_{i}\right) \cdot \varepsilon_{T}\left(E_{j},\vec{r}_{i}\right) \Delta V_{i}}{\sum_{i=1}^{N} \varepsilon_{p}\left(E_{p},\vec{r}_{i}\right) \Delta V_{i}}$$

$$\varepsilon_{p}^{eff}\left(E_{p},E_{q},V\right) = \frac{\int \varepsilon_{p}\left(E_{p},\vec{r}\right) \cdot \varepsilon_{p}\left(E_{q},\vec{r}\right) dV}{\int \varepsilon_{p}\left(E_{p}+E_{q},\vec{r}\right) dV} \approx \frac{\sum_{i=1}^{N} \varepsilon_{p}\left(E_{p},\vec{r}_{i}\right) \cdot \varepsilon_{p}\left(E_{q},\vec{r}_{i}\right) \Delta V_{i}}{\sum_{i=1}^{N} \varepsilon_{p}\left(E_{p}+E_{q},\vec{r}_{i}\right) dV}$$

Workshop : Metodi avanzati di spettrometria gamma

Application of equations

S. Rizzo, E. Tomarchio **Applied Radiation and** Isotopes, 68 (2010), 555-560.

a gamma workshop : Melodi avanzali di spelirometri

Milano, 10-12 novembre 2010

DIPARTIMENTO DI INGEGNERIA NUCLEARE

As *Gelsema* (2001) well stated, this approach is generally not valid because the whole equation must be weighted volume-averaged or a different approach may be used (i.e. Monte Carlo simulation code, an efficiency transfer method and so on).

Come Gelsema (2001) ha giustamente affermato, questo approccio non è generalmente valido perché si deve mediare l'intera equazione sul volume o deve essere usato un approccio diverso (un codice Monte Carlo, un metodo di trasferimento di efficienza, etc.).

Although in some cases the relations may still be used, the most meaningful way of determining correction factors for extended sources seems to be obtain them directly from MC simulation using existing efficiency transfer or others commercially available codes. Anche se in alcuni casi abbastanza semplici le relazioni possono essere ancora utilizzate, sembra più significativo determinare i fattori di correzione per sorgenti estese direttamente da una simulazione MC o altri codici disponibili in commercio.

A case study – Determination of correction factor trends as a function of distance

POINT SOURCES

FEPE and TE calibration parameters for HPGe detectors can be determined through spectrometric measurements of "singleline" point sources whose activity value was adequate to close geometry measurements.

Experimental determination of FEPE and TE can be performed by using, for example, a sources kit provided by CEA, code 9CH04-EGEA10, composed of the following sources: ²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ¹¹³Sn, ¹³⁷Cs, ⁵⁴Mn, ⁶⁵Zn.

In addition, to extend the energy range, can be also used a source of ⁸⁸Y of the same type.

Workshop : Metodi avanzati di spettrometria gamma 💦 🛚 🔊

DIPARTIMENTO DI INGEGNERIA NUCLEARE

FEPE calibration curve

Workshop : Metodi avanzati di spettrometria gamma

DIPARTIMENTO DI INGEGNERIA NUCLEARE

TE calibration curve

Coincidence correction factor trends

POINT SOURCES

With the FEPE and TE efficiency trends it is easy to assess the correction factors by using the relations and determine a possible variation with distance. In this way, some curves can be obtained as those shown in the figures below for some nuclides

Determinate le efficience FEPE e TE in funzione dell'energia, tramite le equazioni è facile valutare i coefficienti di correzione e determinare una loro variazione con la distanza. In questo modo sono state ricavate alcune curve come quelle riportate nelle seguenti figure per alcuni radionuclidi.

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Correction factor trends as a function of distance

Workshop : Metodi avanzati di spettrometria gamma

A case study - Volume source

One of more difficult problem to be solved is the determination of a "single-line" efficiency curve for an extended volume sample. In this example, we consider a measurement geometry largely used in a research activity carried out for many years and concerning air particulate radioactivity sampling and measurement, in particular <u>during the days following the Chernobyl accident</u>. The measurement geometry was identified as "**packet-sample**" in our works (e.g. *Cannizzaro et al.*, 1994; *Rizzo et al.*, 2010)

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Volume source

To derive an efficiency curve at the distance of 2 cm, it was decided to use activity data of some radionuclides retained like "single-line" and identified in a filter measured at 25 cm distance. With reference to their gamma emissions, the radionuclides considered are: ¹⁴¹Ce (133 keV), ¹⁴⁴Ce (145 keV), ¹³²Te (228 keV), ¹³¹I (364 keV), ¹⁰³ Ru(497 keV), ¹⁴⁰Ba (537 keV), ¹³⁷Cs (662 keV), ⁹⁵Nb(765 keV).

Per ottenere una curva di efficienza alla distanza di 2 cm, si è deciso di utilizzare dati relativi all'attività di alcuni radionuclidi da considerare "single-line" quantificati in un filtro misurato a 25 cm di distanza. Con riferimento alle loro emissioni gamma, i radionuclidi considerati sono: ¹⁴¹Ce (133 keV), ¹⁴⁴Ce (145 keV), ¹³²Te (228 keV), ¹³¹I (364 keV), ¹⁰³Ru(497 keV), ¹⁴⁰Ba (537 keV), ¹³⁷Cs (662 keV), ⁹⁵Nb(765 keV).

DIPARTIMENTO DI INGEGNERIA NUCLEARE

Volume source

To these was successfully added ⁷Be (477 keV) previously determined and ⁴⁰K (1460 keV) by measuring a second standard set up adding a small quantity of KCI to a blank filter. Other two values were also considered from the ¹⁵²⁻¹⁵⁴Eu standard, at 1112 and 1408 keV energies. Suitable corrections for the last values were obtained by using CORCO program (*Lepy et al.*, 1987) and considering an equivalent cylindrical geometry.

A questi è stato aggiunta la determinazione precedente di ⁷Be(477 keV) e quella di ⁴⁰K (1460 keV) misurando un secondo standard realizzato aggiungendo una piccola quantità di KCI a un filtro in bianco. Altri due valori sono stati considerati da uno standard ¹⁵²⁻¹⁵⁴Eu, a 1112 e 1408 keV energie. Le correzioni per gli ultimi valori sono stati ottenuti utilizzando il programma CORCO (Lepy et al., 1987) e considerando una geometria cilindrica equivalente.

A case study – packet-sample single-line efficiency

Thank you for your attention !

Grazie per l'attenzione!

Coincidence-summing corrections in high resolution gamma-ray spectrometry: simplified analytical expressions

E.Tomarchio

Nuclear Engineering Department, Palermo University Viale delle Scienze , Ed. 6, I-90128 Palermo, ITALY Tel. 091 232251 – Fax 091 232202 - e-mail : tomarchio @ din.unipa.it

Workshop : Metodi avanzati di spettrometria gamma