
 
 

 

  

Abstract— A new two-dimensional approach to the mechanics 
of rubber V-belt CVT's takes into account the change, along 
the belt sides, of the sliding velocity on the pulley walls, 
together with the cross section rotation due to the shear forces. 
The results show significant differences with the one-
dimensional thin belt model and point out the gradual increase 
or decrease of the belt curvature in the entrance and exit 
regions of the contact arc, which implies the negligibility of the 
belt arching in the free spans. Some experimental tests on the 
global variables of a rubber belt CVT indicate a very fine 
acceptability of the theoretical model. 

I. INTRODUCTION 

     UBBER V-Belt CVT's with short center distances and 
different winding arcs require high adherence properties at 
the belt-pulley contact, as the belt flexural stiffness tends to 
arch the belt line in the free strand and reduce the contact 
width. Nevertheless, this arching is compensated in part by 
the belt softening due to the shear deflection and by the 
transverse compliance, which produces a gradual 
penetration into the groove. The shear force and 
deformation in the free span may become important near the 
boundary with the wrap arc, influencing the variables of the 
belt-pulley coupling (tension, penetration, sliding angle) up 
to some distance from the contact endpoints [1]-[3]. The 
present approach addresses these effects and formulates a 
new two-dimensional model for the steady V-belt 
mechanics, extendable to the shift phases as well. 

The belt is considered as a slender ring-beam, whose 
external surface forms a closed stream tube where a 
continuous material flows inside. The Reynolds transport 
theorem is applied to the mass and momentum fluxes 
through a fixed elementary control volume. The 
Timoshenko beam approach is used in the analysis of the 
belt deflection, including the shear deformation. The 
contact wall forces are assumed variable, in both strength 
and direction, along the sides of the belt cross-section 
because of the variation of the local velocities of the pulley 
plates and of the belt. Actually, the local sliding velocities, 
and hence the friction forces, depend on the belt penetration 
angle, on the radial coordinate, on the distance from the belt 
centre of curvature, which does not coincide with the pulley 
centre, and on the change rate of the angle formed by the 

 
Francesco Sorge is with the Department of Mechanics, University of 

Palermo, 90128 – Palermo, Italy (phone: +39 091 6657157; fax: +39 091 
6657163; e-mail: sorge@dima.unipa.it).  

belt cross-section and the cord layer, which is proportional 
to the change rate of the shear force. 

The differential equations of the dynamical model, 
which expands the analysis of [4], will then specify the 
geometrical configuration of a belt path segment, the mass 
conservation, the equilibrium of a belt element in the 
directions parallel and normal to the belt, the rotational 
equilibrium, the constitutive elastic properties of the belt in 
the axial direction and the elastic belt deflection. The model 
is considered valid for either the wound region or the free 
strands, including or ignoring the side forces. 

Experimental tests are carried out on a rubber V-belt 
CVT, using the test bench described in [5]. The simulation 
of the belt behaviour by the present model is shown to give 
a quite good accordance with the experimentation. 

II.  THEORETICAL MODEL 

All physical quantities will be supposed uniformly 
distributed along the transverse (axial) direction, so that any 
three-dimensional effect will be ignored. Reference is made 
to Fig. 1-3 for the notation.  

A. Free Strand Analysis 

No surface forces act on the belt sides and the one-
dimensional analysis of references [1]-[3] may be correctly 
applied, as summarized hereafter, assuming that the belt 
deformation remains within the field of linear elasticity. 

The seating and unseating boundary points are indicated 
with B, the slack and tight spans with the subscripts …S and 
…T, the driver and driven pulleys with the subscripts …R 
and …N. The example reference frame (BRT,x,y) of Fig. 1 
has its x axis parallel to the ideal geometric tangent to both 
pulleys and another frame (BRS,x,y) may be similarly 
introduced at the boundary point BRS, with the x axis 
directed towards the driven pulley and the y axis towards 
the driver pulley inside. 

Considering an elementary control volume between two 
fixed cross-sections distant dc and balancing the momentum 
flux with the external forces, one gets d[(N−µv2)t]/dc + 
d(Sn)dc = 0, where µ and v are the unit length mass and the 
belt velocity (see detail of Fig. 1). The belt inertia is thus 
associated with the tensile force N by defining the 
"dynamic" tension and the "dynamic" elongation, T = N − 
µv2 and ε = T/Sl, where Sl is the longitudinal stiffness. The 
rotational equilibrium gives dM + Sdc = 0. 
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Introducing the shear ratio tanψ = S/T and the belt slope 
ϕ = arctan(dy/dx), integrating the two scalar components of 
the equilibrium equation and using the generic subscript …J 
for …T or …S, one obtains T(ϕ) = TRJ cos(ϕ − ϕRJ − 
ψRJ)/cosψRJ  and S(ϕ) = − TRJ sin(ϕ − ϕRJ − ψRJ)/cosψ RJ, 
whence S = dT/dϕ, T = − dS/dϕ. The shear force vanishes 
for ϕ = ϕRJ + ψRJ and is positive or negative on the driver 
or driven side of this section. 

Defining the flexural stiffness and the shear stiffness 
with Sf and Ss, indicating the original factory radius with 
rfact. = lbelt/2π, the belt deflection equation is 

=− fact.rdcd 1ϕ ( ) sf SdcdSSM + , which gives by 

differentiation and by use of the rotational equilibrium 

condition and the above relationships between T and S: 
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Introducing the small flexural parameter P = Sf /D

2Sl, 
which is of order O(1/10000 ÷ 1/500000) for rubber V-belts 
reinforced by embedded cords, and the longitudinal-to-
shear stiffness ratio s = Sl /Ss, which is usually rather large 
because of the high cord stiffness, the following orders of 

magnitude are to be presumed: ε = O( P ), ϕIJ = O( 4 P ) = 

O( ε ), ψRJ = O( 4 P ), s ≅ O (1/ P ) = O(1/ε). 

Using the dimensionless co-ordinate ζ = c/D, variable 
between 0 and cmax./D ≈ cosδ, Equation (1) may be written 
in the form sP(d 2ϕ/dζ 2) /[1 + sP(dϕ /dζ) 2]  + s(dε /dϕ) /(1 
+ sε) = 0, so that a first integration can be worked out 
exactly and leads to (1 + sε)2/[1 + sP(dϕ /dζ) 2] = constant = 
(1 + sεRJ)

2/[1 + sP(dϕ /dζ)RJ
2]. 

A second integration may be carried out by separation 
of the variables and, taking into consideration the above 
orders of magnitude, may be calculated as in [3] in the 
approximate form ϕ = ϕRJ cosh(Ωζ) + (dϕ/dζ)RJ 

sinh(Ωζ) /Ω, where Ω = ( )JsP ε11 +  is a quite large 

parameter, whence it is expected that ϕRJ ≅ − (dϕ/dζ)RJ /Ω 
and ϕ is very small almost everywhere along the free span 
save in the neighbourhoods of the two endpoints. Moreover, 
ψRJ turns out to be nearly equal to −ϕRJ.  

Imposing the end condition for the slope and the 
curvature at the boundary points with the driven pulley, one 
gets as in [3] 
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Comparing with the conventional arching model [6], 

where the Navier bending theory is applied and |ϕIJ| = 

JP ε (D/rI,∞), the loss of the contact angle is quite 

smaller, due to the fact that |(dϕ /dζ)IJ << (D/rI,∞) because of 
the gradual increase of the belt curvature towards the inside 
of the boundary region of the contact arc. 

B. Analysis of the Contact Region 

The one-dimensional model of references [1] to [5] is 
here refined taking into account the variation, along the 
sides of the belt cross-profile, of the sliding velocity on the 
pulley wall. The cord layer is assumed on the top and is 
considered as the neutral layer due to its much higher 
longitudinal stiffness with respect to the rubber. The 
coordinate z is measured from the cord, orthogonally to it as 
in Fig. 2. No hunching is supposed for the cross section, 
which is assumed to remain plane and rotate with respect to 
the cord because of the shear force. 

Indicate with r  the radial coordinate of the top cord 
and with x = (r∞− r ) /r∞ the dimensionless elastic 
penetration, where r∞ is the radius for infinite transverse 
stiffness, so that r = r∞(1− x). The geometrical condition 
r ′ = − r tanχ may be turned into the dimensionless form 

 
x' = (1 − x) tanχ (3)

 
Applying Carnot's theorem, the pulley velocity varies 

with z according to ω r(z) = ω 22 cos2 zrzr +− χ  ≅  

ω r∞(1 − x − ZHcosχ), where Z = z/h is a dimensionless 
coordinate, variable between 0 and 1, h is the belt thickness 
and H = h/r∞ (<< 1). 

Likewise, the velocity of the belt side points can be 
thought as composed of a "rigid" rotation around the centre 
of curvature and of a shear rotation around the top cord (see 
Fig. 2). Ascribe the longitudinal belt force to the only cord 
layer, which is much stiffer than the rubber and apply the 
mass conservation condition to such a layer as in the one-
dimensional model: v = v∞ (1+ε), where the subscript ∞ 
refers to an infinite longitudinal stiffness. Then, it is 
possible to write v(Z) = v∞(1+ε)[1−ZHcosχ(1+χ')/(1− x) ] 
− ωr∞HZsσ', where cosχ(1+χ')/ r  is the belt cord curvature 
and σ = S/Sl is the dimensionless shear force. 

The generic triangle of velocities of Fig. 2 indicates that 
vcosχ − ωr = vsinχtanγ and, using the above results and 
neglecting small order terms, one gets a two-dimensional 
relationship for the sliding angle γ(Z) 
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where κ = ω r∞ /v∞ ≅ 1 is a constant kinematic parameter, 
which is calculable in dependence on the variable values at 
some specific point of the wrap arc (e.g. the exit point). 

The vectorial equilibrium equation is similar to the free 
strand, but considering also the wall force vector (F'w per 
unit angle), whose components are calculable by summing 
the effects of the elementary compression and friction 
forces acting on the various stripes dA of Fig. 3: 

 
(dF'w)// belt = 2dF'n × 

× ( )[ ]χγχαγχα cossinsincoscossinsin wwf ++  
(5)

(dF'w)⊥ belt = 2dF'n × 

× ( )[ ]χγχαγχα sinsincoscoscoscossin wwf −+  
(6)

 
where γw(Z) = arctan(cosα tanγ) indicates the sliding angle 
on the tangent plane, function of Z (Fig. 3). 

Assume an elastic modulus Eaxial in the axial direction 
and suppose it constant across the belt thickness h. 
Indicating the belt width with w(Z) = w (1 − 2ZWtanα), 
where W = h/w  and the over-bar refers to the top cord 
layer, the axial equilibrium condition may be combined 
with the belt constitutive properties, giving: 

 
(dF'w)axial = dF'n× (cosα − f cosγw sinα) = 
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where the belt elastic parameter k = 4tan2α Eaxial hr∞

2/ 
( w Sl) has been introduced as in [1]-[3], whose value is 
proportional to the square of the wrap radius on the pulley. 

The elementary normal force dFn must be calculated by 
(7) as a function of Z and replaced into Eqs. (5-6), which 
must be integrated from Z = 0 to Z = 1 to get the wall forces 
on the belt element in the directions parallel and normal to 
the belt. 

Observing that dn/dθ and dt/dθ are tangent and 
orthogonal to the belt respectively and both equal in 
modulus to the dimensionless curvature dϕ /dθ = d(θ + 
χ)/dθ = 1 + χ', the corresponding internal force components 
acting on a belt element through the upstream and 
downstream cross sections are dT + S(1 + χ')dθ and 
T(1+χ')dθ − dS. 



 
 

 

Thus, dividing by Sldθ, the equilibrium equation can be 
split in its two components: 
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where tanβ = fsinγw /(sinα + fcosγwcosα) and β = β(Z). 

Recalling the deflection equation, considering that dc = 
r∞(1 − x)dθ /cosχ, minding the positive increasing direction 
of the shear force along the arc of contact, different from 
the free span (Fig. 1), and introducing the dimensionless 
bending moment variable m = 
( ) ( ) χcos11 xrrSM fact.f −+ ∞ , one has 

 
1−=′+′→′+′= mssm σχσϕ  (10)

 
Equation (1) incorporates the deflection equation and 

the rotational equilibrium condition but refers to the free 
span and does not take into account the moment of the wall 
friction forces, which is given by the integral 

( ) θdFdz
h

w∫ ′
0 //belt  and implies writing the rotational 

equilibrium in the form dM/dc = S − ( ) rFdz
h

w /cos
0 //belt χ∫ ′  

for the contact region. Therefore, minding that dc = 
r dθ /cosχ, whence d2(…)/dc2 = [(…)'' + (…)'(1 − χ') 
tanχ]cos2χ / r 2, Equation (1) can be changed into the 
dimensionless form  
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Equations (3), (4) and (8)-(11) constitute a system of 

five ordinary differential equations and a parametric 
equation, Eq. (4), in the six variables x, ε, σ, γ, χ and m. 

The domain is the whole region of contact and the boundary 
conditions are given by: (b1-b2) x = 0 at the entrance and 
exit endpoints; (b3-b4) ε = εin and ε = εout at these points, in 
dependence on the belt forcing and the torque; (b5-b6) the 
matching of the shear with the tight and slack free spans by 

Eqs. (2), to be written in the form σ = ± ( )εε sP +1 (1+x") 

(plus or minus sign for entrance or exit points, see [3]). 
This differential system is strongly non-linear and 

appears of the boundary layer type, that is to say it changes 
to a lower differential order when neglecting some smaller 
terms, so that not all the boundary conditions can be 
fulfilled. Such a "degenerescent" trend is typical of all V-
belt models, also in a one-dimensional analysis and/or in the 
shift phases of CVT's [7]. Nevertheless, it is worsened by 
the two-dimensional shear effects. The solutions are sought 
as for an initial value problem, starting from the contact exit 
point with zero penetration x and integrating by a Runge-
Kutta routine as far as the penetration vanishes again, at the 
contact entrance. The integration is repeated by iterative 
shooting techniques until all the mentioned boundary 
conditions are fulfilled. 

III.  RESULTS. PRACTICAL FORMULARY 

Figures 4 and 5 show the numerical solutions for two 
example cases, of a driver and a driven pulley. The data 
were chosen according to the characteristics of a small 
rubber belt CVT, whose tests appear in the next section. 

Each figure shows, in the upper side, the diagrams of the 
dynamic longitudinal elongation ε = (N − µv2) /Sl of the 
dimensionless radial penetration x = ∆r/r∞ and of the 
dimensionless shear force σ = S/Sl. In the lower side, the 
diagrams of the sliding angle are traced for various 
distances from the top cord. It is possible to see the 
significant variability of the sliding conditions on 
proceeding from the top towards the interior, due to the 
variation of the pulley and belt velocities along this 
direction. The whole force on the belt element sides is given 
by the sum of the small forces on the single longitudinal 
slices dA and involves significantly different distributions of 
the belt tension and penetration with respect to the one-
dimensional approach of [1]-[7]. On the contrary, the shear 
force diagram is little affected by the two-dimensionality of 
the model and turns out to be very similar to ref. [3]. The 
shear force is much smaller than the belt tension and is in 
practice negligible in the main inner region of contact. It 
exhibits a decreasing trend in the seating region and a 
decreasing-increasing trend with a minimum value in the 
unseating region. 

The lower plots of Figg. 4 and 5 report alos the belt 
curvature and indicate that it is nearly equal to the ideal 
wrapping curvature in the main inner region, but is subject 
to a gradual but rather rapid reduction in the two boundary 



 
 

 

regions until becoming quite small at the entrance and exit 
endpoints. 

In addition, through the observation of several solutions 
curves for the highest torque levels, a simplified heuristic 
model can be formulated for the axial thrust, which can be 
helpful for many design problems. 

As regards the driver pulleys, the penetration x is rather 
uniform along the inner region of contact, while it increases 
in the seating region and decreases in the unseating one 
with a trend which can be roughly approximated by two 
parabolic laws. Moreover, the ratio ξR = εin /(kxinner) remain 
roughly unchanged for several wrap angles and tensioning 
levels and may be thought to be a characteristic number of 
each belt drive. A similar conclusion may be approximately 
derived for the widths of the seating and unseating regions, 
ΘR,seat and ΘR,unseat, so that, after estimating these three 
parameters, ξR, ΘR,seat and ΘR,unseat, the axial thrust 
calcualtion is very easy for driver pulleys, approximating 
Eq. (7) with its dominant terms, i. e. F'R,axial = kxSl /(2tanα), 
and integrating with respect to θ. 

The driven pulley solutions for x lead to similar 
approximations, except that they show an increasing trend 
inside the inner region, according roughly to a monomial 
power law, and a sort of bump in the unseating region, 
whose height is roughly given by kxmax. ≅ εout /2 (see Fig. 5). 

Putting …I = …R or …N (driver or driven) and …J = …T 
or …S (tight or slack), one has the compact formulation 
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where …J = …T and …S for …I = …R and …N respectively, 
ΘI is the whole wrap width, ξR,unseat = ξR and ξN,unseat = 2. In 
the driven pulley case in particular, the coefficient λ is 
obtainable by connecting the partial diagrams and is given 
by λ = (0.5TT  − TS/ξN)/(ΘN − ΘN,seat − ΘN,unseat)

n. 

IV.  EXPERIMENTAL COMPARISON 

Some experimental results were collected extracting the 
steady sub-phases from several shift tests carried out on a 
continuously variable transmission (CVT) using the test 
bench described in [5]. 

A DC electric motor drove the transmission, while a 
pneumatically operated disk brake applied the resistant 
torque. The continuously variable unit consisted in a small 
power motorcycle variator with a downstream reduction 
gearing of ratio 13:1. 

The speed and torque were measured on the driver and 
driven sides by two speed-torque meters of the strain-gauge 
type and the winding radius changes of both pulleys were 
measured by two LASER sensors. All electric signals were 
channelled to a data acquisition system and worked out by 
special software. 

The belt stiffness in the longitudinal and transverse 
directions was measured on a testing machine giving: Sl = 
59000 N, Ez h / w = 21 Nmm-2. Load tests on a clamped 
piece of belt gave the flexural stiffness Sf = 6500 Nmm2 and 
the shear stiffness Ss = 105 N. These measures correspond 
to the data of Figg. 4 and 5, so that the numerical 
calculation permits estimating the following parameter 
values, ΘI,seat ≅ π /6, ΘI,unseat ≅ π /18, ξR ≅ 2.2, ξN ≅ 1.5, n = 
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Fig. 4. Example of driver pulley solution. 
Data: f = 0.4; k = 0.15; α = 13°; Sf / (Sl r2) = 0.00004; γout (0) = 191° 
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5, whence λ = (0.5TT  − TS/1.5)/(ΘN − 2π/9)5, and 
integrating Eqs. (11). Then 

 

FR,axial ≅ 






 −
27

2

tan4.4

πΘ
α R

TT
 

FN,axial ≅ 
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





 −
−

++






 −
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tan72
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αα

ππΘ
α N

STT
N

S TTTT
 

(12a,b)

 
The experimental evaluation of the axial thrust was 

indirect, as it was calculated using the measures of the wrap 
radii, the knowledge of the operative characteristics of the 
two actuators and the previous measurement of the actuator 
parameters. On the driver side, a centrifugal mass system 
adjusted the speed ratio to the input speed, while on the 
driven side, a loading spring generated the belt forcing and 
moreover, the axial thrust was corrected by the resistant 
torque through a suitable helical shape of the coupling 
tracks between the movable and fixed half-pulleys. 

Considering the torque equation, TT − TS = 0.5×(CR /r∞R 

+ CN /r∞N), it is possible to calculate the tight and slack 
tension forces, TT and TS, by the measures of the driver and 
driven torque, by the experimental estimation of any one of 
the two axial forces, e. g. FN,axial, based on the actuator 
characteristics, and by use of the correspondent Eq. (12). 
Then, the theoretical value of the other axial force, e. g. 
FR,axial, is calculable with the other of Eqs. (12) and 
comparable with its experimental counterpart. 

As an example, Figure 6 shows the results for several 
test cases and indicate a very fine agreement between the 
theoretical and experimental values of FR,axial, though it is to 
be emphasized that the approximation, Eqs. (11-12), is 
based on a global estimation of the axial thrust and does not 
ensure that the assumed plot of the elastic penetration x 
conforms exactly to the true situation: other diagrams of x 
might give the same axial thrust Faxial, provided that they 
subtend the same area. 

V. CONCLUSION 

The numerical results of the present analysis show that 
the trend of most belt variables is somewhat different from 
the thin belt model with no shear. Moreover, which is quite 
interesting, the curvature of the belt at the entrance and the 
exit of the pulley is very small, so that the free span shape is 
more close to a straight line than to the conventional 

flexural arch. The curvature increases on the contrary 
towards the inside of the wound arc in the short boundary 
regions, of seating and unseating, together with the elastic 
belt penetration inside the groove. Therefore, the 
conventional belt arching theory overestimates the loss of 
the arc of contact, which appears nearly inexistent indeed, 
to some advantage of the gross slip prevention. 
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Data of CVT: 
belt length = 758 mm; centre distance = 255 mm; belt width = 15.5 mm; 
unit length mass of belt = 0.124 g/mm; groove half-angle = 12.8 deg; belt-
pulley coefficient of friction = 0.4 
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