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Abstract— A new two-dimensional approach to the mechanics belt cross-section and the cord layer, which ispprional

of rubber V-belt CVT's takes into account the changealong
the belt sides, of the sliding velocity on the puwdly walls,
together with the cross section rotation due to thehear forces.
The results show significant differences with the
dimensional thin belt model and point out the gradal increase
or decrease of the belt curvature in the entrance ral exit
regions of the contact arc, which implies the neglibility of the

belt arching in the free spans. Some experimentaésts on the
global variables of a rubber belt CVT indicate a vey fine

acceptability of the theoretical model.

I. INTRODUCTION

RUBBER V-Belt CVT's with short center distances an

different winding arcs require high adherence proge at

the belt-pulley contact, as the belt flexural stffs tends to
arch the belt line in the free strand and redueectintact
width. Nevertheless, this arching is compensategiin by

the belt softening due to the shear deflection bypdhe

transverse compliance, which produces
penetration into the groove. The shear
deformation in the free span may become importaat the
boundary with the wrap arc, influencing the varésbdf the
belt-pulley coupling (tension, penetration, slidisggle) up
to some distance from the contact endpoints [1]-[3je
present approach addresses these effects and &esa

to the change rate of the shear force.

The differential equations of the dynamical model,
which expands the analysis of [4], will then spgdiie
geometrical configuration of a belt path segmem, rhass
conservation, the equilibrium of a belt element the
directions parallel and normal to the belt, theational
equilibrium, the constitutive elastic propertiestioé¢ belt in
the axial direction and the elastic belt deflectibhe model
is considered valid for either the wound regiorttor free
strands, including or ignoring the side forces.

Experimental tests are carried out on a rubber IV-be

VT, using the test bench described in [5]. Theusation

of the belt behaviour by the present model is shtmgive
a quite good accordance with the experimentation.

Il. THEORETICAL MODEL
All physical quantities will be supposed uniformly

a gradudistributed along the transverse (axial) directsmthat any
force arttiree-dimensional effect will be ignored. Refererxcenade

to Fig. 1-3 for the notation.

A. Free Strand Analysis

No surface forces act on the belt sides and the one
dimensional analysis of references [1]-[3] may beectly

new two-dimensional model for the steady V-bel@Pplied, as summarized hereafter, assuming thattite

mechanics, extendable to the shift phases as well.

deformation remains within the field of linear dieiy.

The belt is considered as a slender ring-beam, avhos_ The seating and unseating boundary points areatetic
external surface forms a closed stream tube where 4N B, the slack and tight spans with the subscriptsand

continuous material flows inside. The Reynolds spant

...T, the driver and driven pulleys with the subscriptg

theorem is applied to the mass and momentum flux@8d --n- The example reference framBgtxy) of Fig. 1

through a fixed elementary control volume.
Timoshenko beam approach is used in the analystheof
belt deflection, including the shear deformationheT
contact wall forces are assumed variable, in bbo#ngth
and direction, along the sides of the belt crostise
because of the variation of the local velocitieshaf pulley
plates and of the belt. Actually, the local slidiwgjocities,
and hence the friction forces, depend on the lelepration
angle, on the radial coordinate, on the distanoe fthe belt
centre of curvature, which does not coincide whida pulley
centre, and on the change rate of the angle fortmyethe
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Thdas itsx axis parallel to the ideal geometric tangent tthbo

pulleys and another frameBg{sx,y) may be similarly
introduced at the boundary poifgs with the x axis
directed towards the driven pulley and thexis towards
the driver pulley inside.

Considering an elementary control volume between tw
fixed cross-sections distadt and balancing the momentum
flux with the external forces, one gedf(N—AA)t]/dc +
d(Sn)dc = 0, whereu andv are the unit length mass and the
belt velocity (see detail of Fig. 1). The belt iteris thus
associated with the tensile forcM by defining the
"dynamic" tension and the "dynamic" elongatidn= N -
MV and e = T/S, where§ is the longitudinal stiffness. The
rotational equilibrium givedM + Sdc =0.
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Fig. 2. Velocity distribution across the belt thiglss. Primes: derivatives
with respect tog, z :coordinate normal to the cord layer(z) = sliding
angle in rotation planey = penetration angleS = shear stiffness [N].

Introducing the shear ratio tgr= S/Tand the belt slope

@ = arctan@ly/dy, integrating the two scalar components of

the equilibrium equation and using the generic stips...;
for ...t or ..., one obtainsT(@) = Try COS@ — Pry —

Yrylcosk; andS(@) = — TrysiN(@ — Pry — Yky)/COSY Ry

(axial direction

-
N
ip (belt line direction

ig (circumferential
direction)

TetrahedrolABCD:

ABC meridian plane
ABD wall tangent plane
BCD sliding plane
ACD rotation plane

dFn(2) and fdF(2 : normal andl
frictional forces on elementary
area  dA (29  order
infinitesimals)

Fig. 3. Wall forces on belt elemeffit= coefficient of friction;a = groove
half-angle;y(2) = arctan[cogtanKz)] = sliding angle on pulley wall.

condition and the above relationships betwEamdS:

e gt
S, S, |7 s \dc

Introducing the small flexural parameter= S/D?S,
which is of ordetO(1/10000+ 1/500000) for rubber V-belts
reinforced by embedded cords, and the longitudimal-
shear stiffness ratie = §/S,, which is usually rather large
because of the high cord stiffness, the followimdeos of

magnitude are to be presumeud: O(\/E), oy = O(Q/E) =
O(Ve ), thy=O(XP), s00 (LVP) = O(1/9).

Using the dimensionless co-ordinafe= c/D, variable
between 0 and,,x/D = cosj, Equation (1) may be written
in the formsP(d 2g/d¢?) /[1 + sP(d¢/dQ) 3] + s(de/dg) /(1
+ s£ = 0, so that a first integration can be worked ou
exactly and leads to (1s€)%[1 + sP(d@/d¢) %] = constant =
(1 +s&r)/[1 + SPP/dO)r].

A second integration may be carried out by separati
of the variables and, taking into consideration #imve
orders of magnitude, may be calculated as in [3thi&
approximate form ¢ gry cosh@@)) + (dg/ddr;

d’¢

dc?

1)

whenceS = dT/df, T = - dS/dp. The shear force vanishessinh(2()/2, where @ = 1/,/P(s+Ve,) is a quite large
for ¢ = ¢ry + Yryand is positive or negative on the dfiVerparameter, whence it is expected that 0 - (dg/dd)r; /2

or driven side of this section.

and ¢ is very small almost everywhere along the freenspa

Defining the flexural stiffness and the shear 88S gaye in the neighbourhoods of the two endpointseldeer,

with § and S, indicating the original factory radius with ks turns out to be nearly equal @,

fact. /277 the  belt deflection —equation is mposing the end condition for the slope and the
dg/dc-Yrue = M/S, +(dS/dc)/s,, which gives by curvature at the boundary points with the drivetieguone
differentiation and by use of the rotational edwilim gets as in [3]
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Prs D_(j O~tey  Pn D+[j Uy (2a,b) tany(Z): 1-« - O
QLAG s AL P tany cosx(l+s{1— ZH casz(%wr )—K%ﬂsg} 4)
Comparing with the conventional arching model [6], o1 {1_K(l—x)[l+ZH(,\/'+saJ)]}
where the Navier bending theory is applied agd| | tany cosx(L+e)

JP/&, (DIr), the loss of the contact angle is quite ) ) )
wherex = wr. IV, 01 is a constant kinematic parameter,

smaller, due to the fact thati¢f/d(),, << (D/r\) because of yhich is calculable in dependence on the variahlees at
the gradual increase of the belt curvature towdlrdsnside ggme specific point of the wrap arc (e.g. the paint).

of the boundary region of the contact arc. The vectorial equilibrium equation is similar teetfree

B. Analysis of the Contact Region strand, but considering also the wall force ve¢tdy, per

unit angle), whose components are calculable bymsom

the effects of the elementary compression and idrict
forces acting on the various stripb& of Fig. 3:

The one-dimensional model of references [1] toi§5]
here refined taking into account the variation,nglche
sides of the belt cross-profile, of the slidingoaty on the
pulley wall. The cord layer is assumed on the tod & (dF')y ber = 2dF', X

considered as the neutral layer due to its muclinenig x[_ —— f( T )] (5)

longitudinal stiffness with respect to the rubbdrhe sihasiny COS),, COSaSIn Y +SIny,, COSY

coordinatez is measured from the cord, orthogonally to it akdFwoper = 2dF' x 6

in Fig. 2. No hunching is supposed for the crossiae, ><[sinacosx+ f(cosywcosacosx—sinywsin)()] (©)

which is assumed to remain plane and rotate witheaet to

the cord because of the shear force. where y(2) = arctan(cos tany) indicates the sliding angle
Indicate with I the radial coordinate of the top cordon the tangent plane, functiond{Fig. 3).

and with x = (r,— F)/r, the dimensionless elastic  Assume an elastic modulls,, in the axial direction

penetration, where,, is the radius for infinite transverseand suppose it constant across the belt thickress
stiffness, so thaf = r,(1- x). The geometrical condition Indicating the belt width withw(2) = W (1 - 2Z\Wana),

F'= - F tany may be turned into the dimensionless form WhereW = h/w and the over-bar refers to the top cord
layer, the axial equilibrium condition may be cordd
X' = (1 - X) tany ©) with the belt constitutive properties, giving:

Applying Carnot's theorem, the pulley velocity eari (dFwaxa= dF'w(cosa - f cosy, sina) =

with z according towr(z) = a)\/FZ -2zt cosy+2z° O _ 2tanaEaxia,hrjx(1— x—-ZH cosx) 4z =

Wro(1 — X — ZHcosy), whereZ = z/his a dimensionless W(l-2ZWtana)cosy @)
coordinate, variable between 0 anchis the belt thickness __k§ x(l— X-ZH cosx)

andH = h/r,, (<< 1). 2tana cosy(1- 2ZW tana)

Likewise, the velocity of the belt side points cha
thought as composed of a "rigid" rotation arourel¢bntre \where the belt elastic parametier = 4tarfa Eay hr?/
of curvature and of a shear rotation around thectod (see (WS) has been introduced as in [1][3], whose value is
Fig. 2). Ascribe the longitudinal belt force to thely cord  nroportional to the square of the wrap radius enptialley.
layer, which is much stiffer than the rubber anglpghe The elementary normal fora, must be calculated by
mass conservation condition to such a layer akénone- (7) as a function oZ and replaced into Egs. (5-6), which
dimensional modelV = v, (1+¢), where the subscripb  muyst be integrated frol= 0 toZ = 1 to get the wall forces
refers to an infinite longitudinal stiffness. Theit, is  on the belt element in the directions parallel andmal to
possible to writev(Z) = v.(1+ &[1-ZHcosy(1+X)/(1- X)]  the belt.
- wr,HZsd', where cog(1+Y)/T is the belt cord curvature  Observing thatdn/déd and dt/dé are tangent and
and o= S/Sis the dimensionless shear force. orthogonal to the belt respectively and both edgiml
The generic triangle of velocities of Fig. 2 indesthat modulus to the dimensionless curvatatg /dg = d(8 +
vcosy — axr = vsinytany and, using the above results andy)/d@= 1 + y, the corresponding internal force components
neglecting small order terms, one gets a two-dilo@as acting on a belt element through the upstream and
relationship for the sliding angi¢z) downstream cross sections add + 1 + x)d& and
TA+x)d6-ds



Thus, dividing bySdég, the equilibrium equation can be The domain is the whole region of contact and ihenary

split in its two components: conditions are given by: (b1-b¥)= 0 at the entrance and
exit endpoints; (b3-b4d = &, ande = &, at these points, in
/I belt: g'+a(1+)('): dependence on the belt forcing and the torqueb@sthe
matching of the shear with the tight and slack &pans by
o[ 1- ZH cosy . . -4 "
_ kx(l— X)J T 1-x | tany+tang 4z ® Egs. (2), to be written in the form= _w/P£i1+ s¢) (2+x™)
1-2ZWtana 1- tang (plus or minus sign for entrance or exit pointg E3).
° cos atany This differential system is strongly non-linear and
appears of the boundary layer type, that is toitselyanges
Obelt: 5(1+)(')—(7' - to a lower differential order when neglecting sosnealler
terms, so that not all the boundary conditions ¢en
L[ - ZHcosy © fulfilled. Such a "degenerescent" trend is typioflall V-
= k{L- X)J' 1-x 1-tanStany dz belt models, also in a one-dimensional analysi¢aarid the
! 1-2ZWtana 1- tang shift phases of CVT's [7]. Nevertheless, it is vemesd by
cos atany the two-dimensional shear effects. The solutiomssaught
as for an initial value problem, starting from ttentact exit
where tag = fsiny,/(sina + fcos,cosa) andS = A2). point with zero penetratior and integrating by a Runge-

Recalling the deflection equation, considering that=  Kutta routine as far as the penetration vanishasagt the
ro(1 - X)d@ fcosy, minding the positive increasing directioncontact entrance. The integration is repeated erative
of the shear force along the arc of contact, difierffrom Shooting techniques until all the mentioned boupdar
the free span (Fig. 1), and introducing the dimemisiss Conditions are fulfilled.

bending moment variable m =
(M/Sf +]/rfact.)roo (1_ x)/cosx, one has Ill. RESULTS PRACTICAL FORMULARY
Figures 4 and 5 show the numerical solutions fay tw
m=g¢' +s0’ R X +s0’ =m-1 (10) example cases, of a driver and a driven pulley. da&

were chosen according to the characteristics omalls
rubber belt CVT, whose tests appear in the nexicsec
Each figure shows, in the upper side, the diagrmaintise
dynamic longitudinal elongatiom = (N - 4%)/S of the
dimensionless radial penetration = Ar/r,, and of the
h o N . dimensionless shear forae= S/S. In the lower side, the
.[0 Z(dF, )06 and implies writing the rotational diagrams of the sliding angle are traced for vawiou
L h , distances from the top cord. It is possible to see
equilibrium in the formdM/dc = S- | 2(dF,) significant variability of the sliding conditions no
for the contact region. Therefore, minding thd¢ = proceeding from the top towards the interior, daethe
f délcosy, whenced?(...)/dc® = [(...)" + (...)(1 — y) variation of the pulley and belt velocities alongist
tanylcoSy/T 2, Equation (1) can be changed into thalirection. The whole force on the belt element sidegiven
dimensionless form by the sum of the small forces on the single lamdiital
slicesdA and involves significantly different distribution$
) the belt tension and penetration with respect ® dhe-
1—Xj - dimensional approach of [1]-[7]. On the contrahg shear
force diagram is little affected by the two-dimeamslity of
the model and turns out to be very similar to [8f. The
(11)  shear force is much smaller than the belt tensiwhis in
1|1 practice negligible in the main inner region of . It
kHxcosy|Z 1 ZZ\}\/_tX tan)(t+tan,8 dz exhibits a decreasing trend in the seating regind a
o |1- ana |, tang S _ . - .
decreasing-increasing trend with a minimum valughia
unseating region.
The lower plots of Figg. 4 and 5 report alos thé be
Equations (3), (4) and (8)-(11) constitute a syst®m cuyrvature and indicate that it is nearly equal e ideal
five ordinary differential equations and a parametr wrapping curvature in the main inner region, bustsject
equation, Eq. (4), in the six variablese, o, y; y andm.  to a gradual but rather rapid reduction in the beandary

Equation (1) incorporates the deflection equatiod a
the rotational equilibrium condition but refers ttee free
span and does not take into account the momeineoivall
friction forces, which is given by the integral

et COSX /T

m = mtan)(()(’—l)+l(

P

_ZHcosy

cos atany



— 0.004 . The driven pulley solutions foix lead to similar
0.003 approximations, except that they show an increasiegd
= 0.002 kx inside the inner region, according roughly to a ororal
\ 0.001 7 power law, and a sort of bump in the unseatingomgi
/ o ' whose height is roughly given by 0 & /2 (see Fig. 5).
Ry Putting ..; = ...gr0r ...y (driver or driven) and .;.= ...1
180 g5 150 50 -g;001 or ...s(tight or slack), one has the compact formulation
2
| rolp ? 1 2yl T 0 2
i . ' J
,,/%ﬁ 2% lolp seating F axial = 1- -1
& : : Z{I tana cal,seat
-1
2)forz=0..1 Az=o.2l_w?= T.
180 ‘1}/2(0) & 60 =% FRada =5
- 9° - - 2, tana
Fig. 4. Example of driver pulley solution. inner (11)
Data:f = 0.4;k = 0.15;a = 13° S/ (S r?) = 0.00004;)6,: (0) = 191° T, P .
FlN,axiaI = 2{ tana + 2tang ( - N,seat)
0.004 N
0.003 © T o -6 2
. kx unseating F'| axial = i 1-| = -1
0.002 ZEI ,unseattana OI ,unseat
K<~ 0.001 ¢
e
T 0.000 where ..;= ...rand ..gfor ..., = ...gand .. respectively,
180 ¢ 190 50 60'001 @ is the whole wrap widthéz ynsea= &k and & unsear= 2. In
2 the driven pulley case in particular, the coeffitiel is
folp N lolp @ L 2y(dlm obtainable by connecting the partial diagrams angiven
0 lolp by/‘ = (0-5rT - TS/CIN)/(Q\I - a\l,seat_ a\l,unsea)n-
Y@ forz=0..1,42=0.2
7 -1 IV. EXPERIMENTAL COMPARISON
180 120 60 '02 Some experimental results were collected extradtieg

90
Fig. 5. Example of driven pulley solution.
Data:f = 0.4;k = 0.15;a = 13° S/ (S r?) = 0.00004;)6, (0) = 184°

steady sub-phases from several shift tests caotgdn a
continuously variable transmission (CVT) using tiest
bench described in [5].

regions until becoming quite small at the entraaocd exit A DC electric motor drove the transmission, while a

endpoints.

In addition, through the observation of severalisohs
curves for the highest torque levels, a simpliffexuristic
model can be formulated for the axial thrust, whiem be
helpful for many design problems.

As regards the driver pulleys, the penetratias rather
uniform along the inner region of contact, whilénitreases
in the seating region and decreases in the ungeatie
with a trend which can be roughly approximated ‘p t
parabolic laws. Moreover, the ratfg = &, /(KXnner) remain
roughly unchanged for several wrap angles and daimgj
levels and may be thought to be a characteristicheu of

pneumatically operated disk brake applied the tasis
torque. The continuously variable unit consistec ismall
power motorcycle variator with a downstream redarcti
gearing of ratio 13:1.

The speed and torque were measured on the drider an

driven sides by two speed-torque meters of thénsgrauge
type and the winding radius changes of both pullsgse
measured by two LASER sensors. All electric signedse
channelled to a data acquisition system and wodkgdy
special software.

The belt stiffness in the longitudinal and transeer
directions was measured on a testing machine ging

each belt drive. A similar conclusion may be apprately 59000 N,E.h/W= 21 Nmn¥. Load tests on a clamped
derived for the widths of the seating and unseatingons, ~piece of belt gave the flexural stiffneSs= 6500 Nmnf and
Chseat aNd Gk unsea SO that, after estimating these thredhe shear stiffnes§, = 105 N. These measures correspond
parameters, &, Gksear aNd Gkunsea the axial thrust to the data of Figg. 4 and 5, so that the numerical
calcualtion is very easy for driver pulleys, appnating calculation permits estimating the following paraene
Eq. (7) with its dominant terms, i. B'g axia = kxS /(2targ),  VaIUES, Ol sear 1 716, A unsear[) 77718, {r 2.2, 4y U 1.5,n =

and integrating with respect &



5 whenced = (0.5Ty - T¢/1.5)/(G - 2m9), and 100C e . ++* Frpda (theon) |
integrating Egs. (11). Then Foca 800 Rt T s Frada | C[NM]
[N] 600 FN.axial : 15
400 e e Enaxic—{ 10
T, 2 T I == n G
Fraxial -———| Og —— 200 S === ~ *“L—-‘g w5
44tana 27 oL_Ts g
FN,axiaI 0 (lza:b) i
A P TP el = A
N N
3tana 9) 108ana  72tana 9 ) ﬂth 22 10000
1 5000
The experimental evaluation of the axial thrust was B 0

indirect, as it was calculated using the measuiéiseowrap
radii, the knowledge of the operative charactersstf the
two actuators and the previous measurement ofdhutar
parameters. On the driver side, a centrifugal nsgssem
adjusted the speed ratio to the input speed, wirleghe
driven side, a loading spring generated the betirig and
moreover, the axial thrust was corrected by théstas
torque through a suitable helical shape of the bogp
tracks between the movable and fixed half-pulleys.
Considering the torque equatioly, — Ts = 0.5¢(Cr/fwr

Fig.

6. Comparison between theory and experimeMeasures at

successive time instants (abscissae).

Data of CVT:

belt length = 758 mm; centre distance = 255 mmt; Wwilth = 15.5 mm;
unit length mass of belt = 0.124 g/mm; groove laaifle = 12.8 deg; belt-
pulley coefficient of friction = 0.

flexural arch. The curvature increases on the eontr
towards the inside of the wound arc in the shorngary
regions, of seating and unseating, together wighetfastic
belt

penetration inside the groove. Therefore,

+ Cy/ren), it is possible to calculate the tight and slackonventional belt arching theory overestimatesItiss of

tension forcesTr and Ts, by the measures of the driver andne
driven torque, by the experimental estimation of ane of
the two axial forces, e. gFnaxiay Dased on the actuator
characteristics, and by use of the correspondent(E).
Then, the theoretical value of the other axial égre. g. 1
Fraxias IS calculable with the other of Egs. (12) ané
comparable with its experimental counterpart.

As an example, Figure 6 shows the results for stvel?!
test cases and indicate a very fine agreement battre
theoretical and experimental valuesHaf.xis, though it is to
be emphasized that the approximation, Eqgs. (11-E2),
based on a global estimation of the axial thrust@wes not
ensure that the assumed plot of the elastic pditetra
conforms exactly to the true situation: other diags ofx
might give the same axial thruBt,i,, provided that they 5]
subtend the same area.

(3]

(4]

V. CONCLUSION

The numerical results of the present analysis sty [6]
the trend of most belt variables is somewhat diffierfrom [7
the thin belt model with no shear. Moreover, whilguite
interesting, the curvature of the belt at the emdeaand the
exit of the pulley is very small, so that the fegan shape is
more close to a straight line than to the conveatio

arc of contact, which appears nearly inexisted¢ed,

to some advantage of the gross slip prevention.
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