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The eukaryotic genome is a highly organized nucleoprotein structure comprising of DNA, histones, non-
histone proteins, and RNAs, referred to as chromatin. The chromatin exists as a dynamic entity, shuttling
between the open and closed forms at specific nuclear regions and loci based on the requirement of the cell.
This dynamicity is essential for the various DNA-templated phenomena like transcription, replication, and
repair and is achieved through the activity of ATP-dependent chromatin remodeling complexes and covalent
modifiers of chromatin. A growing body of data indicates that chromatin enzymatic activities are finely and
specifically regulated by a variety of small molecules derived from the intermediary metabolism. This review
tries to summarize the work conducted in many laboratories and on different model organisms showing how
ATP-dependent chromatin remodeling complexes are regulated by small molecules and metabolites such as
adenosine triphosphate (ATP), acetyl coenzyme A (AcCoA), S-adenosyl methionine (SAM), nicotinamide
adenine dinucleotide (NAD), and inositol polyphosphates (IPs).
x: +39 091 238 60721.
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1. Introduction

Eukaryotic DNA is organized into chromatin, a dynamic combina-
tion of DNA and proteins that makes up chromosomes. The basic
repeating element of eukaryotic chromatin is the nucleosome, which
consists of two molecules each of the histone proteins H2A, H2B, H3,
and H4 wrapped around 147 bp of DNA [1]. In order to achieve the
high level of control required to coordinate nuclear processes such as
transcription, DNA replication, and repair, eukaryotic cells have
developed a variety of mechanisms to locally and specifically
modulate chromatin structure and function. This can involve covalent
modification of histones, the incorporation of histone variants, and
the non-covalent remodeling of nucleosomes by ATP-dependent
nucleosome remodeling enzymes.

ATP-dependent nucleosome remodeling factors are classified into
subfamilies depending on the presence of other domains within the
ATPase-containing subunit. The four main subfamilies characterized so
far are the SWI/SNF, ISWI, CHD, and INO80 subfamilies (Fig. 1a).
Remodeling enzymes have been shown to slide nucleosomes along
DNA, to exchange/remove histones, and to disrupt histone–DNA
contacts (Fig. 1b). At present, it is not clear whether all of these
represent distinct reactions or merely alternative outcomes of a
common mechanism. Nevertheless, what is shared among all ATP-
dependent chromatin remodeling enzymes is that their activity results
in altered DNA accessibility.

The variety of functions associated with nucleosome remodeling
factors indicates that these nuclear enzymatic activities are highly
regulated. Chromatin remodeling enzymes usually work in the context
of multisubunit complexes. Indeed, it has been shown in many model
organisms that chromatin remodeling factors can be regulated by their
subunits [2,3]. However, recent works highlighted important roles also
for small active molecules coming from the cell intermediary metab-
olism such as adenosine triphosphate (ATP), acetyl coenzyme A
(AcCoA), S-adenosyl methionine (SAM), nicotinamide adenine dinu-
cleotide (NAD), and inositol polyphosphates (IPs) in the regulation of
chromatin remodeling activity (Fig. 2). These metabolites can them-
selves directly regulate the activity of nucleosome remodeling factors or
can be used by other enzymes to covalentlymodify remodelers or other
proteins regulating them. This review aims at illustrating the multitude
ofways bywhichATP-dependent chromatin remodeling complexes can
be regulated by small molecules and metabolites such as ATP, AcCoA,
SAM, NAD, and IPs.

2. AcCoA and acetylation

Acetylation is a regulative post-translational modification catalyzed
by enzymes (acetyltransferases) that use the AcCoA as a substrate to
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Fig. 1. Asummaryof thedifferent classes of nucleosome remodelingATPases and reactions they catalyze. (a) Each catalytic subunit is characterizedby anATPase domain (DExx–spacer–HELICc)
flanked by unique domains characteristic of each family. Members of the SWI/SNF subfamily contain a bromodomain (red) that binds acetylated histones. ISWI contains a SANT-SLIDE (blue)
module recognizing unmodified histones. The CHD subfamily contains a chromodomain (yellow) recognizingmethylated histones. The INO80 subfamily has a characteristic long spacer (gray)
within the ATPase domain and like the SWI/SNF subfamily also contains an HSA (helicase-SANT) domain (green). (b) Chromatin remodeling factors can use the energy of ATP hydrolysis to
catalyze a variety of reactions on the nucleosome substrate without covalently modifying the DNA or its associated histones. Remodelers can slide nucleosomes to make certain chromatin
domains differently accessible. The same task can also be achieved by evicting histones, replacing them with variants, or by exposing a DNA loop on the surface of the nucleosome.
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transfer an acetyl group to lysine residues of other proteins [4]. This
covalent modification is counterbalanced by the activity of other
enzymes (deacetylases) that can remove the acetyl group by different
mechanisms [5]. Acetyltransferases can directly covalently modify the
catalytic ATPase subunit of chromatin remodeling complexes (Fig. 3a).
Studies conducted inmousefibroblasts have shown thatBRM, oneof the
twoATPase subunits of the SWI/SNFcomplex, has twomotifs containing
lysine residues that can bemodified by PCAF acetyltransferase, in vitro at
the C-terminal domain [6]. It has been shown that the acetylation of
BRM has a role in destabilizing its interaction with the retinoblastoma
onco-suppressor protein pRb, resulting in deregulation of cell prolifer-
ation [6]. Moreover, treatment of BRM non-expressing cancer cell lines
with inhibitors of histone deacetylases (HDACi) restores BRM expres-
sion.However,HDACi treatment can also induce BRMacetylation that in
turn blocks its function [7].

Despite the high homology existing between BRM and BRG1 (the
second ATPase subunit of the SWI/SNF complex [8]), there is no direct
evidence for BRG1 acetylation at day. One interesting possibility is that
BRG1 could be indirectly regulated by BRM acetylation. Acetylated BRM
couldhaveadominantnegative effectonBRG1activity, by competing for
the SWI/SNF complex subunits [6]. Alternatively, since BRG1 is part of
the nuclear receptor corepressor (N-CoR) complex that could associate
with HDAC activities [9], an intriguing speculation is that HDACs in N-
CoR complexmaymaintain BRG1 in a deacetylated state thus regulating
the catalytic activity of the SWI/SNF complex [3].

In vivo and in vitro studies have also shown that in Drosophila the
nucleosome remodeling ATPase ISWI is acetylated at lysine K753 by the
GCN5 acetyltransferase. Interestingly, acetylated ISWI associates with
NURF301 but not with ACF1 [10], two regulative subunits of distinct
ISWI complexes [11]. Although the exact biological function of ISWI
acetylation has still to be elucidated, one intriguing observation is that
acetylated ISWI localizes on condensed metaphase chromosomes in
early embryos [10].

The ATPase subunits of chromatin remodelers are usually embedded
in multiprotein complexes [2]. Factors associated with the catalytic
remodeling ATPase subunit could be themselves post-translationally
modified, to modulate nucleosome remodeling reactions (Fig. 3a).
Indeed, RSC4 is a component of the yeast RSC chromatin remodeling
complex, highly related to SWI/SNF [12]. RSC4 is acetylated at lysineK25
by GCN5 and this modification prevents its binding to histone H3



Fig. 2. Small molecules coming from the intermediary metabolism posses active chemical groups (red squared boxes) that can be transferred to the amino acid residues of chromatin
remodeling ATPases or their regulators. Acetyltransferase can use AcCoA as donor of acetyl group, kinases utilize ATP to transfer the orthophosphate group, NAD can be used bymany
nuclear enzymes to produce poly-ADP-ribose, phospholipases can split phosphatidylinositides into different form of inositol polyphosphates (IPs), methyltransferases can transfer
the thio-methyl group present in the SAM. Acetyl coenzyme A (AcCoA), adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), inositol polyphosphates (IPs), and
S-adenosyl methionine (SAM).
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acetylated in K14 (H3K14Ac) [13]. In another example, the SNF2h
ATPase, a mammalian homolog of ISWI, is associated with TIP5 in
nucleolar remodeling complex (NoRC), a chromatin remodeling
complex regulating ribosomal gene expression [14]. MOF-dependent
acetylation of TIP5 on lysine K633 regulates the formation of silent
heterochromatin at rDNA loci [15].

Histones are target of a large number of covalent modifications,
defining a complex network of epigenetic information known as
“histone code” [16,17]. Histone acetyltransferases (HATs) can covalently
attach the acetyl groupof AcCoA to lysine residues present in thehistone
N- andC-terminal tails [18]. Acetylationof histone tails is oftennecessary
for the recruitment of ATP-dependent chromatin remodelers or for the
modulation of their activity (Fig. 3b andc). Data coming fromyeast show
that acetylated histones mediate the retention of SWI/SNF chromatin
remodeling complex at theHOpromoter [19].Moreover, the retention of
the SWI/SNF complex at the PHO5 promoter is compromised in cells
mutated for gcn5, showing the existenceof an interdependence between
nucleosome remodeling and HAT activities [20]. Furthermore, GCN5-
dependent histone acetylation of the human IFN-β promoter provides a
high-affinity surface for SWI/SNF [21]. Subsequent studies have
eventually shown that GCN5 specifically acetylates histone H4 on K8
(H4K8Ac), which mediates the recruitment of the SWI/SNF complex
[22]. PCAF, another HAT, has been shown to acetylate histone H3 at K14
(H3K14Ac) of mouse MMTV promoter, providing an anchor site for
BRG1 andBRM, to catalyze the histoneH2A/H2B dimer removal through
the BAF complex [23].

image of Fig.�2


Fig. 3. Chromatin remodeling regulation by AcCoA. Schematic representation of nucleosome remodeling reactions regulation by direct acetylation of the remodeling ATPases, their
complex subunits and histone tails.

674 G. Burgio et al. / Biochimica et Biophysica Acta 1799 (2010) 671–680

image of Fig.�3


675G. Burgio et al. / Biochimica et Biophysica Acta 1799 (2010) 671–680
The interactionof theyeast RSC complexwithnucleosomes acetylated
on histone H3 in K9 (H3K9Ac) induces conformational changes of RSC
itself, resulting in the stabilizationof a closed conformationof theenzyme,
a prerequisite for the remodeling mechanism [24]. Acetylated histones
can also bind Bdf1, a TFIID-interacting protein, that in turn can recruit the
yeast SNF2-family SWR-C complex inorder tomodulate heterochromatin
boundary elements near telomeres through the exchange of the histone
Htz1 variant [25]. Another component of the RSC complex, RSC4, through
its bromodomain can be recruited by histone H3 acetylations in K14
(H3K14Ac), thus regulating genes involved in the nicotinic acid synthesis
and cell wall integrity (Fig. 3a) [12].

Site-specific acetylation of histone H4 on K16 (H4K16Ac) is an
important post-translational modification involved in transcriptional
activation and euchromatin maintenance [26,27]. In Drosophila melano-
gaster, H4K16Ac is involved in the increased male X linked genes
transcription, occurring during dosage compensation [28,29]. This
histone modification has important effect on chromatin remodeling
regulation. Drosophila ISWI ATPase activity is counteracted by H4K16Ac
in vitro and in vivo [30]. Moreover, the incorporation of H4K16Ac in
nucleosomal particles impairs the ISWI-containing complex ACF to
mobilize mononucleosomes in vitro [31]. On the other hand, H4K16Ac is
necessary for the targeted chromatin recruitmentofNURF301, the largest
subunit ofNURF, another ISWI-containing complex [11,32]. Furthermore,
H4K16Ac is also required for chromatin binding of the NoRC complex
subunit TIP5, to promote the deposition of histone heterochromatin
epigenetic marks and to induce transcriptional silencing of rRNA genes
(Fig. 3a) [33].

3. ATP and phosphorylation

Protein phosphorylation is a key event during cell cycle transition
from interphase to mitosis [34]. In particular, it has been estimated that
more than 50 proteins become phosphorylated during mitosis [35]. In
response to different cellular stimuli, chromatin remodeling factors can
also be directly or indirectly regulated by phosphorylation (Fig. 4).
Indeed, the nucleosome remodeling factor BRG1has been identified in a
phosphorylated form in Xenopus embryos [36]. Studies in mammals
Fig. 4. Chromatin remodeling regulation by ATP. Schematic representation of nucleosome r
their complex subunits and histone tails.
have shown that phosphorylated hBRM and BRG1 have low affinity for
the nuclear structure in early M phase and are excluded from mitotic
chromosomes, suggesting a mechanism in which the exclusion of BRM
and BRG1 is functional to the transcriptional arrest occurring during
mitosis [37]. In addition to BRG1 and BRM, hSWI/SNF is phosphorylated
during mitosis at the level of the hSWI3 subunit by the ERK1 kinase.
Phosphorylated hSWI3 also promotes the switch of hSWI/SNF complex
to an inactive form that is compatible with the repressed state of
chromatin during mitosis [38].

Similarly, the Drosophila Mi-2 chromatin remodeler is a phospho-
protein in vivo. The dCK2 kinase binds and phosphorylates Mi-2 at its
N-terminal domain, and dephosphorylation is a step necessary to
promote Mi-2-dependent nucleosome binding and spacing activity
[39]. The Williams Syndrome Transcription Factor (WSTF) protein, a
subunit of the WSTF Including Nucleosome Assembly Complex
(WINAC) chromatin remodeling complex, is also phosphorylated by
MAPK kinases on Ser158. In this case, the phosphorylation of WSTF is
essential to maintain its association with other complex components
and to promote WINAC remodeling activity [40].

As it has been shown for histone acetylation events, histone
phosphorylation also plays an essential role in regulatingATP-dependent
chromatin remodeling reactions. For example, immunodepletion of
INCEP-aurora B kinase complex reduces the association of XCAP-F, the
Xenopus ortholog of ISWI, with mitotic chromosomes suggesting a
functional dependence of XCAP-F binding to phosphorylated H3 on S10
(H3S10P) [41]. On the other hand, H3S10P stimulates the recruitment of
the BAF complex at the MMTV promoter to induce its activation [42].
However, H3S10P can also block the RSC complex by inhibiting RSC4
binding to H3K14Ac [13].

Other cellular cues can elicit chromatin remodeling regulation by
phosphorylation. Indeed, during exposure to DNA damaging agents, the
Ies-4 subunit of the INO80 chromatin remodeling complex is target of
phosphorylation catalyzed by the Mec1/Tel1 kinase (ATM/ATR in
mammals), a covalent modification important for the DNA damage
checkpoint response [43]. Complementary studies have shown that the
INO80 chromatin remodeling complex is recruited by the Double Strand
Break (DSB)-induced HO endonuclease by phosphorylated histone H2A
emodeling reactions regulation by direct phosphorylation of the remodeling ATPases,

image of Fig.�4
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at S129 (H2AS129P). In cells lackingH2AS129P, the recruitment of INO80
is compromised, suggesting that ATP-dependent chromatin remodelers
are also able to read DNA damage–repair histone marks [44,45].

4. SAM and methylation

Works conducted in several model organisms have identified many
nuclear protein methyltransferases, but evidence for direct post-
translational methylation of chromatin remodeling ATPases and their
associated subunits is still not present in literature. However, lysine and
arginine residues of histones can be good targets for methylation by
histone methyltransferases [46–48]. In fact, methylated histones could
offer a specific interacting surface for nucleosome remodeling enzymes
and their regulators (Fig. 5).

Themethylationof histoneH3atK4 (H3K4me) is normally associated
with actively transcribed genes [49,50]. The chromatin remodeler CHD1
is the first identified chromodomain-containing protein recognizing
methylated histones. Interestingly, the human but not the yeast CHD1
directly and specifically recognizes H3K4me [51]. Interestingly, CHD1
was identified as a component of SAGA and SLIK, two complexes
associated with HAT activity. Indeed, CHD1 chromodomain mediated
binding to H3K4me is a prerequisite for histone hyperacetylation
associated with transcriptional activity [52,53].

The trithorax group protein Kismet-L (KIS-L) is amember of the CHD
subfamily of chromatin remodeling factors that plays a global role in
RNA polymerase II transcription. Despite the significant overlap
between the distributions of KIS-L and Ash1 (the histone methyltrans-
ferase responsible for H3K4me) on fly polytene chromosomes, KIS-L did
not bind methylated histone tails in vitro, and loss of Ash1 function did
not alter the association of KIS-L with chromatin. By contrast, loss of kis
function led to a dramatic reduction in the levels of Ash1associatedwith
chromatinandwasaccompaniedbyan increasedmethylationof histone
H3 at K27 (H3K27me), a histone mark required for transcriptional
Fig. 5. Chromatin remodeling regulation by SAM. Schematic representation of nu
repression by Polycomb group proteins. These data suggest that KIS-L
could counteract Polycomb repression by recruiting the Ash1 histone
methyltransferases to chromatin [54].

In addition to the CHD subfamily of chromatin remodeler, factors
containing the plant homeodomain (PHD) finger domain, such as ING2
and BPTF, directly associate with dimethylated and trimethylated
histone H3 on K4 (H3K4me2 and H3K4me3) [55]. In particular, the
ING2 PHD domain binds with high-affinity H3K4me2 or H3K4me3,
promoting a more stable binding of the mSin3A/HDAC1 complex on
proliferation gene promoters [56]. On the other hand, studies conducted
in S. cerevisiae have shown that the trimethylation of histone H3 at K36
(H3K36me3) is another recognition site for other PHD finger containing
factors (ING2 family members) highlighting a general function for this
domain to transduce lysine methylation signals [57].

PHD fingers are also present in BPTF, the largest subunit of the
human ISWI-containing complex hNURF [58]. BPTF preferentially
associates with H3K4me3 chromatin and loss of H3K4me3 causes
partial release of BPTF from chromatin with consequent defective
recruitment of the associated ATPase SNF2L at HOX gene promoters
[59]. Interestingly, loss of BPTF in Xenopus embryos compromises
spatial control of HOX gene expression, suggesting that NURF-mediated
ATP-dependent chromatin remodeling is directly coupled to H3K4me3
to maintain HOX gene expression patterns during development [59].

Furthermore, Drosophila NURF301 presents different isoforms
associated in distinct NURF chromatin remodeling complexes. Full-
length NURF301 contains a C-terminal bromodomain that binds
H4K16Ac and a juxtaposed PHD finger binding H3K4me3. The
NURF301 isoform lacking the C-terminal bromodomain and PHD finger
can still assemble into a multisubunit complex. However, NURF
remodeling complex deficient in H3K4me3 and H4K16Ac recognition
modules causes germ-line-specific defects [32].

In addition to H3K4me3, the yeast Isw1 ATPase also recognizes
H3K4me2 on chromatin [60]. These histonemethylations catalyzed by
cleosome remodeling reactions regulation by histone and DNA methylations.

image of Fig.�5
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the Set1p HMT mediates Isw1 binding on chromatin and the
subsequent chromatin remodeling necessary for the correct distribu-
tion of RNA Polymerase II over the coding region of genes involved in
the methionine biosynthetic pathway [60].

The Ash1 histone methyltransferase methylates histone H3 at K4
and K9 (H3K4me, H3Kme9) as well as histone H4 at K20 (H4K20me).
Histone methylation catalyzed by Ash1 represents a specific signal for
the establishment of epigenetic active transcription patterns [61].
Indeed, transcriptional activation byAsh1 coincideswithmethylation of
these three lysine residues at the promoter of Ash1 target genes [61].
The methylation pattern established by Ash1 recruits the BRM
chromatin remodeling complex and at the same time inhibits the
interactionof transcriptional repressor, leading to theUltrabithoraxgene
transcriptional activation in flies [61]. Recent findings have also shown
the importance of histone methylation in myogenesis control. During
myogenesis Carm1/PRMT4, a protein arginine methyltransferases,
responsible for histoneH3dimethylation at R17 (H3R17me2), facilitates
SWI/SNF chromatin remodeling of late myogenesis genes [62].

In addition to histones, chromatin can also bemethylated in its DNA
component by DNA methyltransferase enzymes (DNMTs). In verte-
brates DNA methylation is a post-replicative modification occurring
exclusively at the C5 position of cytosine residues in the context of CpG
dinucleotides [63]. Proper DNA methylation is necessary for normal
development and generally correlates with gene repression, X-
chromosome inactivation, imprinting, and carcinogenesis [64]. Recent
studies have shown that DNA methylation is a chromatin mark with
many cross-talkswith other epigenetic pathways [65]. For example, the
human chromatin remodeler SNF2H co-immunoprecipitates with the
DNMT3B enzyme, probably indicating a direct functional connection
betweenDNMTs and the ISWI family of chromatin remodeling enzymes
[66]. The interaction between DNA methylation and ATP-dependent
chromatin remodelers is also mediated by methyl-CpG binding domain
proteins (MBDs) [67]. The hBRM and BRG1 localization at methylated
genes is mediated by MeCP2, an MBD protein [68–70] and the Mi-2/
NuRD chromatin remodeling complex is part ofmultiprotein complexes
containing both MBD2 and MBD3 [71,72]. These data strongly indicate
that methylated CpG dinucleotides can be recruiting elements for
chromatin remodelers through MBD proteins.

5. Inositol polyphosphates

Inositol polyphosphates (IPs) have been shown to modulate
several ATP-dependent chromatin remodeling complexes (Fig. 6a).
Indications for a direct role of IPs in regulating chromatin remodeling
reactions come from a variety of in vivo data. In yeast mutations in
genes encoding for polyphosphate kinases responsible for IP4, IP5, and
IP6 biogenesis affect the inositol-1-phosphate synthase (INO1) gene
transcription [73]. Moreover, mutations in the ARG82/IPK2 gene,
encoding for a nuclear inositol polyphosphate kinase, leads to
impaired remodeling of PHO5 promoter associated to inefficient
recruitment of SWI/SNF and INO80 complexes on the promoter,
suggesting a role of IPs in transcriptional control [74,75].

In vitro data have shown that NURF-, ISW2-, and INO80-stimulated
nucleosome mobilization is inhibited by inositol hexakisphosphate
(IP6). On the contrary, inositol tetrakisphosphate (IP4) and inositol
pentakisphosphate (IP5) stimulate nucleosome mobilization catalyzed
by SWI/SNF complex [73]. Interestingly, the phosphatidyl inositol 4,5-
bisphosphate (PIP2) has been shown tocontrol the in vitro localization of
the BAF complex on chromatin but has no effects on SNF2L containing
chromatin remodeling complexes [76]. In addition it has been shown
that mammalian BAF complex is able to bind PIP2 micelles and PIP2-
containing mixed lipid vesicles. This association of BAF with PIP2
mediates an interaction with actin filaments, which in turn contact at
least two distinct domains of BRG1 C-terminal portion [77].

At day the existence of specific nuclear receptors for IPs is still
unclear. However, there are some data indicating that the PHD finger
containing protein ING2, a candidate tumor suppressor protein, could
be a nuclear IP receptor. Indeed, the PHD fingers of ING2 bind both in
vitro and in vivo IP5 and this interaction influences ING2 ability to
regulate p53 activation and p53-dependent apoptotic pathways [78].

6. NAD and PARylation

Poly-ADP-ribosylation (PARylation) is a post-translational modi-
fication of proteins catalyzed by the poly-ADP-ribose polymerases
(PARPs), a family of abundant and ubiquitous nuclear enzymes that
transfer and polymerize ADP-ribose units from NAD+ on a variety of
nuclear proteins to form a branched polymer known as poly-ADP-
ribose (PAR) [79]. PAR metabolism is involved in a wide range of
biological processes, such as maintenance of genome stability,
transcriptional regulation, energy metabolism, DNA repair, and
programmed cell death [80]. In vitro, the main target of PARylation
seems to be the PARP enzyme itself, even if in vivo H1 and H2B
histones are the main substrate for this post-translational modifica-
tion [79,81,82]. It has been also shown that non-covalent interactions
between histones and PAR polymers could affect chromatin dynamics
by blocking chromatin accessibility of remodeling factors [83]. Indeed,
a number of chromatin proteins posses PAR-binding domains [84,85].

Recent data strongly indicate that PARP may play a direct role in
regulating chromatin remodeling (Fig. 6b). Indeed, the Drosophila
ATPase ISWI is directly regulated by covalent PARylation. PARylated
ISWI has reduced nucleosome binding and ATPase activity [86,87]. On
the other hand, amplified in liver cancer 1 (Alc1), a member of the
SNF2 ATPase superfamily encoded by an oncogene implicated in the
pathogenesis of hepatocellular carcinoma, is strongly activated by
PARylated PARP and by free PAR [88].

7. Conclusions

ATP-dependent chromatin remodeling enzymes play a critical role in
making chromatin dynamic and have been implicated in the control of
RNA transcription, chromosome organization, DNA replication, and
damage response. However, little is known about how remodelers
activity is regulated and targeted to specific biological processes and how
their function is integrated in the complex network of covalent
modifications of chromatin. Recentworkhighlighted thatATP-dependent
chromatin remodeling complexes are regulated by small molecules and
metabolites such as ATP, AcCoA, SAM, NAD, and IPs. While remodelers
and their regulators are essential modulators of many nuclear reactions,
they may lead to human diseases when their function is altered.

The identification and characterization of chromatin remodeling
regulators will provide important support for the development of novel
therapeutic approaches to cure or ameliorate a variety of human
disorders. The recent spurt in the understanding of the role of
epigenetics in cellularphysiology and its link todisease and therapeutics
is leading to the discovery of several small molecule modulators of
chromatin enzymatic activities. The possibility of acting on epigenetic
pathways is obviously of the highest interest for gene therapy
applications and conceptually alternative to gene replacement. In fact,
thanks to its dynamic nature, the Epigenome offers the chance to
modulate gene activity and underlying gene networks by tackling
specific enzymatic activities via drugs and small molecules opening
novel therapeutic potentially revolutionary avenues for the cure of
human genetic diseases.
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